
18 NASA Tech Briefs, October 2008

by use of the OGC Style Layer Descriptor
(SLD) protocol. Full-precision spectral
arithmetic processing is also available, by
use of a custom SLD extension. This server
can dynamically add shaded relief based
on the Lunar elevation to any image layer.
This server also implements tiled WMS
protocol and super-overlay KML for high-
performance client application programs.

This program was written by Lucian Plesea
of Caltech and Trent Hare of the United States
Geological Survey for NASA’s Jet Propulsion
Laboratory.

This software is available for commercial li-
censing. Please contact Karina Edmonds of the
California Institute of Technology at (626)
395-2322. Refer to NPO-45951.

Expressions Module for
the Satellite Orbit Analysis
Program

The Expressions Module is a software
module that has been incorporated into
the Satellite Orbit Analysis Program
(SOAP). The module includes an ex-
pressions-parser submodule built on top
of an analytical system, enabling the user
to define logical and numerical variables
and constants. The variables can capture
output from SOAP orbital-prediction
and geometric-engine computations.
The module can combine variables and
constants with built-in logical operators
(such as Boolean AND, OR, and NOT),
relational operators (such as >, <, or =),
and mathematical operators (such as ad-
dition, subtraction, multiplication, divi-
sion, modulus, exponentiation, differen-
tiation, and integration). Parentheses
can be used to specify precedence of op-
erations.

The module contains a library of
mathematical functions and operations,
including logarithms, trigonometric
functions, Bessel functions, mini-
mum/maximum operations, and float-
ing-point-to-integer conversions. The
module supports combinations of time,
distance, and angular units and has a di-
mensional-analysis component that
checks for correct usage of units. A
parser based on the Flex language and
the Bison program looks for and indi-
cates errors in syntax. SOAP expressions
can be built using other expressions as
arguments, thus enabling the user to
build analytical trees. A graphical user
interface facilitates use.

This program was developed by Robert Carn-
right, David Stodden, Jim Paget, and John
Coggi of Caltech for NASA’s Jet Propulsion Lab-
oratory.

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-45052.

Virtual Satellite
Virtual Satellite (VirtualSat) is a com-

puter program that creates an environ-
ment that facilitates the development,
verification, and validation of flight soft-
ware for a single spacecraft or for multi-
ple spacecraft flying in formation. In this
environment, enhanced functionality
and autonomy of navigation, guidance,
and control systems of a spacecraft are
provided by a virtual satellite — that is, a
computational model that simulates the
dynamic behavior of the spacecraft.

Within this environment, it is possible
to execute any associated software, the
development of which could benefit
from knowledge of, and possible inter-
action (typically, exchange of data)
with, the virtual satellite. Examples of as-
sociated software include programs for
simulating spacecraft power and ther-
mal-management systems. This environ-
ment is independent of the flight hard-
ware that will eventually host the flight
software, making it possible to develop
the software simultaneously with, or
even before, the hardware is delivered.
Optionally, by use of interfaces included
in VirtualSat, hardware can be used in-
stead of simulated. The flight software,
coded in the C or C++ programming
language, is compilable and loadable
into VirtualSat without any special mod-
ifications. Thus, VirtualSat can serve as a
relatively inexpensive software test-bed
for development test, integration, and
post-launch maintenance of spacecraft
flight software.

This program was written by Stephan R.
Hammers of the Hammers Co., Inc. for God-
dard Space Flight Center. Further information
is contained in a TSP (see page 1). GSC-
14824-1

Small-Body Extensions for
the Satellite Orbit Analysis
Program (SOAP)

An extension to the SOAP software al-
lows users to work with tri-axial ellipsoid-
based representations of planetary bod-
ies, primarily for working with small,
natural satellites, asteroids, and comets.
SOAP is a widely used tool for the visuali-
zation and analysis of space missions. The
small body extension provides the same

visualization and analysis constructs for
use with small bodies. These constructs
allow the user to characterize satellite
path and instrument cover information
for small bodies in both 3D display and
numerical output formats.

Tri-axial ellipsoids are geometric
shapes the diameters of which are differ-
ent in each of three principal x, y, and z
dimensions. This construct provides a
better approximation than using
spheres or oblate spheroids (ellipsoids
comprising two common equatorial di-
ameters as a distinct polar diameter).
However, the tri-axial ellipsoid is consid-
erably more difficult to work with from a
modeling perspective. In addition, the
SOAP small-body extensions allow the
user to actually employ a plate model for
highly irregular surfaces. Both tri-axial
ellipsoids and plate models can be as-
signed to coordinate frames, thus allow-
ing for the modeling of arbitrary
changes to body orientation.

A variety of features have been ex-
tended to support tri-axial ellipsoids, in-
cluding the computation and display of
the spacecraft sub-orbital point, ground
trace, instrument footprints, and
swathes. Displays of 3D instrument vol-
umes can be shown interacting with the
ellipsoids. Longitude/latitude grids,
contour plots, and texture maps can be
displayed on the ellipsoids using a vari-
ety of projections. The distance along an
arbitrary line of sight can be computed
between the spacecraft and the ellipsoid,
and the coordinates of that intersection
can be plotted as a function of time. The
small-body extension supports the same
visual and analytical constructs that are
supported for spheres and oblate sphe-
roids in SOAP making the implementa-
tion of the more complex algorithms
largely transparent to the user.

This work was done by Robert Carnright of
Caltech and David Stodden and John Coggi
of The Aerospace Corporation for NASA’s Jet
Propulsion Laboratory.

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-45054.

Scripting Module for the
Satellite Orbit Analysis
Program (SOAP)

This add-on module to the SOAP soft-
ware can perform changes to simulation
objects based on the occurrence of spe-
cific conditions. This allows the software
to encompass simulation response of

https://ntrs.nasa.gov/search.jsp?R=20080048001 2019-08-30T05:47:34+00:00Z

cdancy
Highlight

NASA Tech Briefs, October 2008 19

scheduled or physical events. Users can
manipulate objects in the simulation envi-
ronment under programmatic control.
Inputs to the scripting module are Ac-
tions, Conditions, and the Script. Actions
are arbitrary modifications to constructs
such as Platform Objects (i.e. satellites),
Sensor Objects (representing instruments
or communication links), or Analysis Ob-
jects (user-defined logical or numeric vari-
ables). Examples of actions include
changes to a satellite orbit (v), changing
a sensor-pointing direction, and the ma-
nipulation of a numerical expression.
Conditions represent the circumstances
under which Actions are performed and
can be couched in If-Then-Else logic, like
performing v at specific times or adding
to the spacecraft power only when it is
being illuminated by the Sun.

The SOAP script represents the entire
set of conditions being considered over a
specific time interval. The output of the
scripting module is a series of events,
which are changes to objects at specific
times. As the SOAP simulation clock runs
forward, the scheduled events are per-
formed. If the user sets the clock back in
time, the events within that interval are
automatically undone.

This script offers an interface for
defining scripts where the user does not
have to remember the vocabulary of var-
ious keywords. Actions can be captured
by employing the same user interface
that is used to define the objects them-
selves. Conditions can be set to invoke
Actions by selecting them from pull-
down lists. Users define the script by se-
lecting from the pool of defined condi-
tions. Many space systems have to react
to arbitrary events that can occur from
scheduling or from the environment.
For example, an instrument may cease
to draw power when the area that it is
tasked to observe is not in view. The con-
tingency of the planetary body blocking
the line of sight is a condition upon
which the power being drawn is set to
zero. It remains at zero until the observa-
tion objective is again in view. Comput-
ing the total power drawn by the instru-
ment over a period of days or weeks can
now take such factors into considera-
tion. What makes the architecture espe-
cially powerful is that the scripting mod-
ule can look ahead and behind in
simulation time, and this temporal versa-
tility can be leveraged in displays such as
x–y plots. For example, a plot of a satel-
lite’s altitude as a function of time can
take changes to the orbit into account.

This work was done by Robert Carnright of
Caltech and David Stodden, John Coggi, and

Jim Paget of The Aerospace Corporation for
NASA’s Jet Propulsion Laboratory.

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-45055.

XML-Based SHINE
Knowledge Base
Interchange Language

The SHINE Knowledge Base Inter -
change Language software has been de-
signed to more efficiently send new knowl-
edge bases to spacecraft that have been
embedded with the Spacecraft Health In-
ference Engine (SHINE) tool. The inten-
tion of the behavioral model is to capture
most of the information generally associ-
ated with a spacecraft functional model,
while specifically addressing the needs of
execution within SHINE and Livingstone.
As such, it has some constructs that are
based on one or the other.

As NASA/JPL autonomous science mis-
sions go deeper and deeper into space, the
collection of unexpected data becomes a
problem. Data structures can easily be im-
plemented in advance that can collect any
kind of data; however, when it comes to
processing the data into information and
taking advantage of serendipitous science
discovery, designing a fixed and efficient
data structure becomes increasingly com-
plex. This software defines and imple-
ments a new kind of data structure that can
be used for representing information that
is derived from serendipitous data discov-
ery. It allows the run-time definition of ar-
bitrarily complex structures that can adapt
at run-time as the raw science data is trans-
formed into information.

This solves the problem decision
trees can be prone to, namely how ex-
pensive they can be to execute be-
cause of the need to evaluate each
non-leaf node and, based upon its
truth, to either progress deeper into
the structure or to examine an alter-
native. This requires many machine
cycles, which can negatively affect
time-critical decisions.

This software runs on a variety of dif-
ferent platforms, including SUN, HP,
Intel, Apple Macs, Flight Processors, etc.
It can be distributed in either source
code or binary code and requires a LISP
compiler to run with a number, such
compilers being either commercially
available or found as shareware. The
software has no specific memory require-
ments and depends on the applications
that are running in it. It is implemented

as a library package and folds into what-
ever environment is calling it.

Currently, this software is a compo-
nent of the Common Automation En-
gine (CAE) that was developed for Deep
Space Network (DSN). It has been in ac-
tive use for over three years and has
been installed in a shadow mode run-
ning at Goldstone and DSN monitoring
operations at JPL.

This work was done by Mark James, Ryan
Mackey, and Raffi Tikidjian of Caltech for
NASA’s Jet Propulsion Laboratory. Further in-
formation is contained in a TSP (see page 1).

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-44546.

Core Technical Capability
Laboratory Management
System

The Core Technical Capability Lab -
oratory Management System (CT-
CLMS) consists of dynamically gener-
ated Web pages used to access a
database containing detailed CTC lab
data with the software hosted on a
server that allows users to have remote
access. Users log into the system with
their KSC (or other domain) username
and password. They are authenticated
within that domain and their CTCLMS
user privileges are then authenticated
within the system. Based on the differ-
ent user’s privileges (roles), menu op-
tions are displayed. CTCLMS users are
assigned roles such as Lab Member, Lab
Manager, Natural Neighbor Integration
Manager, Organ izational Manager,
CTC Program Manager, or Administra-
tor. The role assigned determines the
users’ capabilities within the system.
Users navigate the menu to view, edit,
modify or delete laboratory and equip-
ment data, generate financial and man-
agerial reports, and perform other CTC
lab-related functions and analyses.

High availability and detail of lab data
gives management insight into the needs
and requirements of KSC CTC-funded
labs. Comprehensive, quantitative, cur-
rent data are available in one easily acces-
sible location for Program Operating
Plan (POP) development, justification of
POP submittals, overguide requests, con-
tract renewals, and phasing of mainte-
nance and replacement requirements.
Lab health is quantitatively understand-
able. Financial and managerial reports
are generated automatically from de-
tailed data, and facilitate uniform com-

