Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

NASA/TM—2008-215299 ATAA-2008-4860

Design of a Model Execution Framework:
Repetitive Object-Oriented Simulation
Environment (ROSE)

Justin S. Gray and Jeffery L. Briggs
Glenn Research Center, Cleveland, Ohio

November 2008


https://core.ac.uk/display/10546317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and

its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

*  TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

«  TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

«  CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

*  SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

»  TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

»  Access the NASA STI program home page at
http://www.sti.nasa.gov

*  E-mail your question via the Internet to help@
sti.nasa.gov

*  Fax your question to the NASA STI Help Desk
at 301-621-0134

»  Telephone the NASA STI Help Desk at
301-621-0390

e Write to:
NASA Center for AeroSpace Information (CASI)
7115 Standard Drive
Hanover, MD 21076-1320



NASA/TM—2008-215299 ATAA-2008-4860

Design of a Model Execution Framework:
Repetitive Object-Oriented Simulation
Environment (ROSE)

Justin S. Gray and Jeffery L. Briggs
Glenn Research Center, Cleveland, Ohio

Prepared for the

44th Joint Propulsion Conference and Exhibit
cosponsored by AIAA, ASME, SAE, and ASEE
Hartford, Connecticut, July 21-23, 2008

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

November 2008



This report contains preliminary findings,
subject to revision as analysis proceeds.

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

This work was sponsored by the Fundamental Aeronautics Program
at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information National Technical Information Service
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov



Design of a Model Execution Framework: Repetitive
Object-Oriented Simulation Environment (ROSE)

Justin S. Gray and Jeffery L. Briggs
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

The ROSE framework was designed to facilitate analyses of complex systems. It completely divorces
the model execution process from the model itself. By doing so ROSE frees the modeler to develop a
library of standard modeling processes such as design of experiments, optimizers, parameter studies, and
sensitivity studies which can then be applied to any of their available models.

The ROSE framework accomplishes this by means of a well defined API and object structure. Both the
API and object structure are presented here with enough detail to implement ROSE in any object-oriented
language or modeling tool.

1 Introduction

Today, state of the art systems analysis methods revolve around the ability to execute a given system model
using statistical methods and optimizers. These methods need to be repeatable and widely applicable to a
range of models, regardless of what modeling environment is used. There are many different programming
languages and as many different modeling environments currently in active use today. C++, Java, Python,
Fortran, Simulink, Model Center, iSight, and NPSS are just are just a few from the available language
and modeling environment options. With so many options, there is a need for a unifying structure to
define analysis processes and solution paths which can be easily applied in any language or modeling
environment available.

A second feature of almost any modern analysis methodology is the large case sets required to complete
them. Optimizations and statistical methods all rely on the computational power available today to exe-
cute many simulations of a given model in order to obtain the necessary information about it’s behavior.
Very often, the many individual simulations are completely independent of each other and can be executed
concurrently, assuming the necessary parallel computing resources are available. In recent years, large clus-
ters of inexpensive servers have provided an unprecedented level of parallel computing power. Similarly,
desktop workstations now come equipped with multi-core CPU’s which can make use of parallelized pro-
cesses. Any model execution framework needs to be able to seamlessly take advantage of these types of
computation resources as they become available.

The ROSE framework was designed primarily to serve the needs of a modern systems analysis method-
ology. It addresses both the issue of creating general repeatable methodologies, as well as challenges in-
volved with utilizing parallel computing resources. Presented here is a structural outline of the ROSE
framework that is detailed enough to implement it in the language and/or modeling environment of your
choice, along with an example implementation written in Python.

2 ROSE Design Philosophy

The Repetitive Object-Oriented Simulation Environment (ROSE) was designed to be simple enough to be
implemented in any object-Oriented programming language or modeling environment. Languages such

NASA/TM—2008-215299 1



as Python [7] or modeling environments such as the Numerical Propulsion Systems Simulation (NPSS) [5]
tool are both perfect examples of candidates for ROSE implementations. Analysis methods that are imple-
mented using ROSE can be easily ported to any environment where ROSE itself has been implemented.

To ensure that the analysis methods developed do not become specific to any given model, any pro-
posed framework would need to completely divorce the model from the analysis method.[3] ROSE accom-
plished this, and in doing so allows the analyst to develop analysis tools without undue consideration for
the specifics of the model to be analyzed. Of course, certain model characteristics will inevitably affect the
choice of available analysis methods. For instance, complex CFD simulations are slow and can be com-
putationally unstable so it may be impossible to use one directly inside of a large optimization where it
would need to be executed thousands of times. In that situation, a surrogate model would be appropriate.
[2] However the important point is that whether the model is a surrogate or a CFD simulation of a wing
in flutter, or a 1-D turbine engine model of a high-bypass turbofan, the same optimizers and probabilistic
analysis tools developed in ROSE will still be applicable.

To help generalize the interface between a Driver and a Model, attributes are described as key-value
pairs within ROSE Models. All attributes can be described by a key representing the name of the attribute,
and a value representing the data contained by the attribute. An attribute can be nearly any data type,
and ROSE makes no specific assumption about which types will be used. This dissociation helps to further
insulate a ROSE Driver design from any single language or modeling tool. By design, an analyst can use
ROSE to generate many distinct Drivers, creating a library of possible analysis tools to choose from for any
given analysis.

3 ROSE API

ROSE provides an analyst with the ability to create any type of model execution process he or she requires.
To accomplish this a number of tools are made available to structure optimizers, parameter studies, design
of experiments studies, uncertainty studies, etc. Each model execution process defined by an analyst is
called a Driver.

3.1 Driver Structure

To build a Driver, ROSE provides five classes to use as building blocks. These 5 classes work together to
capture all the parts of an execution process. The classes are listed below along with brief descriptions of
their functions.

¢ Iterator: Provides a Driver with model input values for each simulation

¢ Outerator: Records model outputs from each simulation a Driver runs

Case: Data structure describing the inputs and outputs for a given simulation.

Operator: Responsible for communicating with whatever server or software is being used for model
simulation

¢ Conductor: Provides for communication between other ROSE classes and servers

These classes serve as a skeleton for more complex objects needed to build Drivers. They can each be
extended to create objects suited for specific tasks. For example, a simple Iterator can be created to read
off case inputs from a comma separated value file, while a different Iterator can execute the complete set of
available combinations from a set of inputs and their allowed values. Similarly, many different Operators
can exist to facilitate communication with different computer clusters. Different Outerators can produce
output in different forms, i.e. textual or database outputs.

Regardless of the particular combination of Iterator, Outerator, Conductor, and Operator employed,
all Drivers employ an iterative process to successfully complete a set of executions. Figure 1 portrays an
effective iterative process that can be used for a wide range of Drivers. Here it is clear that execution begins
in the Operator, whose Start() method will grab a ready server and pass a pointer to it to the Conductor

NASA/TM—2008-215299 2



via a call back method. The Conductor is then responsible for determining the proper action for the given
server, and utilizes the Iterator, Outerator, and Case objects to do it. Each object and its full role in any given
Driver is explained in detail in the following sections.

3.1.1 Case

A Case is a data structure which holds the input and output information for a given simulation. It provides
the following methods:

¢ setlnput(key,value): Takes in an attribute key and a corresponding value, which it then adds to the
list of key, value pairs for the case. Returns success or failure.

¢ setOutput(key,[value]): Takes in a attribute key and optional value. Allows the user to add an at-

tribute to be tracked as output, or allows user to set the value of an attribute associated with the given
key.

e getlnput(key): returns the input value associated with the prescribed key.
* getlnputs(): returns a list of all key, value pairs of inputs in a case.
¢ getOutput(key): returns the output value associated with the prescribed key.
¢ getOutputs(): returns a list of all key, value pairs of outputs in a case.
3.1.2 Iterator
An Iterator is responsible for serving up cases to the rest of a Driver. There are no restrictions placed on

how an Iterator determines which case or cases to serve or in what order they are served. It provides the
following methods:

Operator
serverReady_CB(serverPointar)

Conductor !

What is the server
ready to do?

Fun Completed

Case Successiul?

True

Ready To Run

Operator AP

rF 9
Are there any

more cases
to run? Loadandt |
initialize model
Iterator Outerator
=
==
getNextCase() =SS recordCase()
o]
° 5
o]
=
==

Figure 1: Basic Driver iterative process.

NASA/TM—2008-215299 3



e initialize(): initializes the Iterator. Can be called at any time to re-initialize. Expected to return success
or failure.

¢ getNextCase([Number]): Takes an optional argument indicating how many cases should be returned
in a list of cases, and defaults to a single case. Returns a list of pointers to Cases. It is expected to
return an empty list of pointers when there are no more cases to execute.

¢ cleanUp(): called at the end of a driver execution to allow the Iterator to perform any necessary
operations such as releasing file resources or closing databases.

3.1.3 Outerator
An Outerator records the specified output from a given case. It provides the following methods:

e initialize(): initializes the Outerator. Can be called at any time to re-initialize. Expected to return
success or failure.

e recordCase(caseName): Takes a pointer to a Case as an argument and records the output from that
Case. Expected to return success or failure.

e cleanUp(): called at the end of a drive execution to allow the Outerator to perform any necessary
operations such as releasing file resources or closing databases.

3.1.4 Operator

An Operator is an object which acts as a translation layer between the other objects in a Driver and the
server (or servers) which that Driver must communicate with. By abstracting the communication between
the other Driver objects and Servers, the Operator class provides a simple way to switch between compu-
tational resources without changing the rest of a Driver or the underlying analysis processes. In Figure 2
the abstraction is evident.

Operators are a unique class because they handle event driven sections of an analysis process. With
an array of available servers the Operator will initiate a given simulation, using a call back function to a
Conductor, when any server is ready to handle a simulation. An Operator should issue call backs based on
servers becoming available until it is told to stop by an associated Conductor.

Once the call back has been issued, a Conductor will make use of a set of function provided by the Oper-
ator. These functions make up the Operator AP, and they provide Conductors the means to communicate
with models through the Operator. All of these functions must be non-blocking to ensure that execution
does not need to wait for any particular model. All of these functions may return success or failure, but that
determination should only be relative to the act of communicating with a particular server or model. In
other words, if the Operator can not communicate with a particular server or a particular model on a par-
ticular server, then these API calls should return Failure. If the call was issued to the proper server and/or
model successfully, then the API functions return Success.

Operators provide the following methods:

e inijtialize(): called to initialize the Operator. Can be called at any point to re-initialize. Should open
connections to all servers and verify functional connection. Expected to return success or failure.

¢ setConductor(conductorpointer): Specifies which Conductor to issue call backs to. Must be set before
a start() is called.

e start(): initiates the call backs to the paired Conductor. Expected to return success or failure.

e cleanUp(): called at the end of a drive execution to allow the Operator to perform any necessary op-
erations such as closing connections to servers or releasing system resources such as shared memory.

* loadModel(serverpointer): Conductor issued call to load a model to the specified server. This function
will instantiate a model on the server and initialize it. After a model is loaded, it is expected to be
ready to execute cases. Expected to return success or failure.

NASA/TM—2008-215299 4



Operator Conductor Iterator Case Outerator

1 1
serverReady CB("serveri™ !

load_model("server1™)

-
|
1 serverReady_CB("server1”)

getnextCase() _ D <<create==

model Set("server1” "x", 1.5}

=

serverReady_CB("server1™)

modelExec("server1”}

|——1+‘L

serverReady CB("server1") 1

EndelSuccess("serveﬂ " locatio n)r

serverReady_CB("server!") _

rﬂodelSuccess("serveﬂ " locatio n)r

M

I
serverReady_CB("server1”) |

F— -1

setOutput("y",3)

recordCase(case Ojbect) -

l getOutput('y")

serverReady_CB("server1”) _ | !
modelCleanUp("server1™) rL—J I

- True L
1
|

|:]+------------.‘-u

Figure 2: Sequence diagram describing a simple communication example between the elements of a driver.

NASA/TM—2008-215299 5



The Operator API consists of:

¢ modelSet(serverpointer, key, value): Call to be used before a execution to set the value of the specified
model attribute. Is not called during model execution.

¢ modelGet(serverpointer, key, storage): Call to be used before or after model execution. It is not called
during model execution. The argument ”storage” provides the function with a location to put the
retrieved value.

* modelExec(serverpointer): Call to initiate the execution of a model.

* modelSuccess(serverpointer, storage): Call to test for successful execution of a model. The argument
“storage” is used to tell the function where to put the result of the function call.

¢ modelCleanUp(serverpointer): Call used after a model execution has been completed to perform any
necessary clean up operations on the model. This function can release system resources, close files, or
do nothing.

3.1.5 Conductor

A Conductor provides a means of communication between all the other objects in a Driver. By using a
Conductor to tie together the Iterator, Outerator, Operator, and Case objects it becomes simple to swap out
components without needing to change the rest of the logic that ties a Driver together.

A Conductor is designed to respond to call backs from an Operator. An Operator relies on a Conductor
to indicate whether or not there are any more cases to run, and whether or not to continue to issue call
backs. In Figure 2 this sequence is illustrated. The process begins at start, and runs until the Operator
returns False for a serverReady_CB() call.

A Conductor also provides the capability of a ROSE Driver to execute independent cases concurrently.
It abstracts the asynchronous software requirements away from the rest of a Driver by maintaining relevant
information about which server is doing what actions. Hence, when a Conductor receives call backs from
an Operator, it is always given a pointer to the server that triggered the call back. Then it is the Conductor’s
responsibility to decide what to do with the server via the Operator APL

Conductors provide the following methods:

e inijtialize(): prepares the conductor to begin executing cases. Expected to return success or failure.
After return, if successful, a conductor is considered ready to begin executing cases.

¢ setOperator(operatorpointer): indicates which Operator the Conductor is currently paired to. Must
be called before any call backs can be issued.

¢ setlterator(iteratorpointer): identifies which Iterator a Conductor should communicate with. Must be
called before any call backs can be issued.

¢ setOuterator(outeratorpointer): identifies which Outerator a Conductor should communicate with.
Must be called before any call backs can be issued.

¢ serverready_CB(serverpointer): call back issued by the Operator indicating that the server, whose
pointer is passed as the argument, is ready and waiting for the Conductor work with it. Returns a
boolean: True if the Operator is to continue issuing call backs for that server, False if the Operator is
to stop issuing call backs for that server.

4 Implementation Example

4.1 Overview

To demonstrate the viability of the ROSE framework, an example implementation was developed using
Python 2.5 [7]. Python was chosen because it provided a well developed and powerful scripting language

NASA/TM—2008-215299 6



along with a set of powerful extension modules for matrix manipulations [6] and 2-D or 3-D data plotting
[4]. A generic ROSE Driver was developed which allowed a Design of Experiments(DOE) to be executed
on an arbitrary Numerical Propulsion Systems Simulation (NPSS)[5] model. This Driver was then used in
conjuction with a DOE designed specifially for a complex model of a medium-bypass mixed flow turbojet,
to facilitate a complex system level optimization of a supersonic business jet.

The system level optimization contained a large number of design variables, resulting in a large number
of simulations required by the optimizer to converge on a design. While NPSS is a powerful and flexible
cycle analysis tool, it is also a fairly computationally intensive tool. A single case can take more than ten
seconds to execute. Consequently using NPSS directly inside the aircraft optimization was not feasible.

To conquer this issue, the ROSE DOE Driver executed the specified DOE (over 20,000 cases) on the given
NPSS model, and the resulting data was used to build a fast executing meta model using response surface
equations. The large case set was chosen to better illustrate the ROSE DOE Driver’s capability. Though the
execution of all 20,000 cases took about three days, the resulting metamodel could then be run many 10,000’s
of times in only minutes, thus drastically reducing the computational load of the engine calculations in the
larger aircraft optimization.

A B &
Fan_Pressure_Ratio Owerall_Pressure_Ratio Bypass_Ratio

2 1.2 20 ]
3 1.2 25 ]
4 1.3 20 5
5 1.3 25 8
6 14 20 8
¥ 14 25 8
8 1.2 20 6.5
8 1.2 25 6.5
10 1.3 20 6.5
" 1.3 25 6.5
12 1.4 20 6.5
132 1.4 25 6.5

Figure 3: Simple DOE created with Spreadsheet software.

4.2 TIterator Design

The first step in executing a DOE was to read in cases from that DOE. A comma separated value (CSV)
file was chosen as the DOE format. The first row was used as a header row indicating the model attribute
referred to in each DOE column. Successive DOE rows contained the attribute values to be used for each
case. This format is simple to generate in an any spreadsheet program. Using this format, any extra model
attributes that were needed for a simulation would simply be added by creating extra columns in the DOE.
Similarly, any extra cases could be added by simply appending extra rows to the DOE.

As an example, for the mixed flow turbo fan model, Figure 3 is a very simple DOE that would run
12 simulations representing a simple study of the effects of fan pressure ratio, overall pressure ratio, and
bypass ratio on engine performance.

To read this DOE the Iterator parsed rows from the CSV file, and placed the data into a Case objects,
whenever the getNextCase() method was called by a Driver.

4.3 Outerator Design

The data produced by a simulation gets recorded when the Case object containing the information for that
simulation is passed to the recordCase() method of an Outerator.

To make the data easily accessible once it has been stored the CSV format was reused. Once again,
the header row represented the attribute name being tracked and each row contained the value from that

NASA/TM—2008-215299 7



output attribute for that simulation. Additionally, it was useful to have the appropriate input information
available in the same output, so the Outerator will store that data along with the case outputs in each row.

4.4 Conductor Design

Besides communications between all the other ROSE objects, the Conductor handles all the asynchronous
simulation scheduling requirements that come along with concurrent executions. To accomplish this the
Conductor utilizes a series of state tables to determine the proper action to take for any given server-
Ready_CB() from an Operator. Each callback provides a pointer to the server that triggered it. The Con-

Complete

Ready

(a) State Machine for Servers (b) State Machine for Cases

Figure 4: State machines for the server and case tracking

ductor then checks which state that server is currently in. Using these state machines, a Conductor tracks
the progress of an arbitrary number of Cases executing on an arbitrary number of servers. If the number
of available servers just happens to be one, then the system will execute each Case successively. However,
should more than one server become available the very same Conductor can orchestrate the execution of
many Cases simultaneously, assuming that none of the calls in the Operator API are blocking. The Driver
does not know, nor does it matter, a priori how many servers will be available for a given execution. The
issue of concurrency then lies completely within the implementation of the Operator.

There are four possible states: Empty, Ready, Complete, and Error. All servers enter the system in the
Empty state, and move between states according to the rules of the state machine, shown in in Figure 4(a).
The conductor will try to load a model into an empty server and initialize it, utilizing the ROSE API. If that
action succeeds, the server moves to the Ready state. For a server in the Ready state, the Conductor sets
some action executing on that server and then the server moves to the Complete state. When a callback is
received for a server in the complete state, the Conductor will perform the necessary steps to re-initialize
the model and return the server to the ready state. Also, at any point if there is some sort of communication
error and the server is unavailable the Server can be moved into the Error State. From the Error state, it can
be moved back to the empty state if communications can be re-established.

Each time a ServerReady_CB() is made for a server the Conductor refers to a table that provides it with
the particular Case running on that server. Then it utilizes that cases state machine, shown in Figure 4(b),
to determine the proper action to be taken. Cases have five possible states: Un-Run, Running, Run Success,
Run Failure, Re-Run. All cases start in the Un-Run state, when a server is free a case can be loaded into it,
and moved to the running state. From there the case can either move to the Run Success or Run-Failure

NASA/TM—2008-215299 8



states. Also, if some kind of communication error happens not related to the model itself, the case can be
moved to the Re-Run state. A case could also move the Re-Run state from the Run-Failure if necessary.

Having a separate state for the Re-Run cases was not strictly necessary, as the Un-Run state could have
been used. But having a separate state for the Re-Run cases allowed for some special scheduling routines
to be used to limit the impact of large numbers of Re-Run cases on execution time.

4.5 Operator Design

The Operator serves as the communication layer between the Conductor and the computational resources
available to it. By design, the implementation of the conductor determines the amount of concurrent ex-
ecution a Driver will handle. By swapping out one Operator for another, a single Driver could possibly
utilize vastly different computational resources. For this implementation a simple single server Operator
was written. A second Operator was also written which utalized the Python module Parallel Python to
enable concurrent execution of multiple cases simultaneously if sufficicent resources are available.

To achieve the greatest level of code portability, an extra layer of abstraction was used to allow a single
Operator to communicate with a wider variety of models. The Conductor communicates with the Operator
via the API. This operator in turn defines its own API, which allows it to communicate with any model
class implementing that API. Constructing the Operator in this manner allowed it to communicate with
both native Python models, as well as NPSS models wrapped in a special class which conformed to the
model APL.

The advantage of this approach is obvious when considering the generation of new, more powerful,
concurrent Operators. In this situation using the model API none of the work put into interfacing external
codes with Python is wasted. In this case, the object which wraps NPSS and implements the model API
will just as easily communicate with any Operator that utilizes the same API.

4.5.1 Model Interface

The following documents the model interface mentioned above. This interface provides a lower level API
between the Operator and the model itself. Models written using Python could be implemented with a
given model object while models written in Matlab or some other modeling code could use their own
model objects.

A Model provides the following methods:

¢ set(key,value): This method is used to set attributes of the model. The method is passed a key, pointing
to a specific model attribute, and a value to set the attribute to. It is expected to return success or
failure.

¢ get(key): This method is used to retrieve the value of a model attribute identified by the given key. It
is expected to return the specified value, or a failure.

¢ initialize(): This method is called only once, immediately after model instantiation, for any given
model instance. It is here that any initialization a model requires can occur. It returns a success or
failure.

¢ exec(): This method is called when a model is ready to execute. It will execute a model. It is expected
to return nothing

¢ setup(): This method is called each time just prior to the run() method, but after any set() calls are
made to specify case inputs. It is designed to allow the modeler to create model reactions to inputs,
as well as ensure that a model is prepared to execute properly before a run() is called. It is expected
to return success or failure of the initiation

e succeeded(): This method is called after run() returns. It is used to test the model for successful
completion. It returns a success or failure.

e cleanUp(): This method is used to perform any actions necessary to prepare a model for removal.
This includes releasing of any system resources the model holds and no longer needs.

NASA/TM—2008-215299 9



5 Results

The ROSE framework discussed above was used to execute over 20,000 cases on a mixed flow turbojet
engine model. The Driver reported the data in the CSV format defined the by the outerator used. Response
surface equations (RSE’s) were generated using the R statistical analysis toolkit [8]. R is capable of reading
in the CSV format output by the Driver directly. The RSE’s provided a very valuable tool for studying the
design space of the engine model. Because they are so fast to execute, being simple semi-log expressions,
the performance of any group of points in the design space were instantly accessible with a reasonable
degree of accuracy.

5.1 Engine Model Inputs and Outputs

The engine model provided six parametric inputs, however only two of the inputs were design inputs. The
remaining four inputs were operational settings which determined the flight condition and nozzle setting
of the engine.

Though the model contained only two degrees of freedom with respect to the design variables, the
remaining four operational variables represented a massive operational envelope for any single design
configuration.

There were six RSE’s generated: gross thrust, ram drag, fuel burn rate, nozzle exit static temperature,
nozzle exit static pressure, and total engine weight. Resulting calculated values included net thrust, and
thrust specific fuel consumption.

5.1.1 Inputs

e top-of-climb thrust: (design variable:TOCT hrust) specified in lbs force, the engine gets designed to
produce the specified amount of thrust at the top of climb flight condition.

¢ fan pressure ratio: (design variable:FanP Rdes) specified as a ratio of the entrance pressure to the
exit pressure, the fan was designed to produce the specified pressure ratio at the top of climb flight
condition.

¢ nozzle underexpansion factor: (operational variable: Knoz) specified as a fraction less than or equal to
one, this setting determined the amount of under expansion the variable nozzle area would achieve.

¢ altitude: (operational variable:alt) specified in feet, this is the flight altitude the engine is operating at

¢ mach: (operation variable:M N) specified as Mach number, this is the flight Mach number the engine
is operating at

* power code: (operational variable: PC) specified as a number between 10 and 50, this represents the
power setting of the engine with 50 being the maximum thrust level of the engine at the current flight
condition.

51.2 Outputs

gross thrust:
IOg(Fg'r'oss) =

8.542—alt*4.560x 10+ M N*1.395+ PCx.01845+TOCT hrustx1.618x10™*— Fan P Rdes*.3889+ K noz*.5299
)

ram drag:

10g(Dyam) = 6.901 — alt x 4.41e — 5+ VMN % 4.163 + TOCThrust * 1.618 x 10~* — FanPRdes  .6189 (2)

NASA/TM—2008-215299 10



fuel burn rate:

log(Wryer) = 2.932+log(Fg)*.5304—alt*2.462x 10~ 5+ M N %.5397+ PC'*.01595+TOCT hrust+7.597x 105
(©)

net thrust:
Fnet = Eqross - Dram (4)

nozzle exit static temperature:

log(nozzleExitTy) = 5.294—alt+5.553x 10~ %+ M N%.008531+ PC*.004705+ Fan P Rdes*.1603+ Knoz+.8210

©)
nozzle exit static pressure:
log(nozzleExitP,) = .8419 — alt x 4.427 x 10~° — FanP Rdes * .008796 + Knoz * 1.945 (6)
thust specific fuel consumption:
TSFC = quel/Fnet (7)
weight:
log(weight) = 7.826 + 3.506/ FanP Rdes® + TOCThrust x 1.454 x 1074 (8)
nozzle weight:
Wiossle = weightFanPRdes/Z (9)

5.1.3 RSE Analysis

The RSE’s provide a rapid and simple method of examining the effect of design changes on engine per-
formance. Figure 5(a) shows the change in thrust lapse and fuel consumption for a series of different fan
pressure ratios. As Mach number increases, the thrust of each of the engines drops. This data is examined
with an assumed flight profile presented in figure 6.

As the engines approach the top of climb flight condition, their thrusts all converge at around 6000 Ibs.
This behavior of the RSE’s confirms that they exhibit the proper thrust trends, as the engine data used to
generate the RSE’s was all sized at the top of climb condition. However, the actual accuracy of the RSE’s
can be better examined in figure 5(b) where only the super sonic part of the flight profile is shown. Here it
is clear that the engines do not all produce exactly 6000 lbs of thrust. Although the trends in the data are
correct, the accuracy of any single data point may as much as 20%, such as the data for fan pressure ratio of
1.5.

The utility of RSE’s in engineering design and optimization problems is well established [9]. What they
can provide in terms of computational speed can often be at the expense of accuracy. The accuracy of the
RSE’s needed to calculate net thrust are further considered in figures 5(a) through 9. Figure 8(a) shows how
well the gross thrust was prediced by the F,.ss RSE. The RSE performs very well at the higher altitudes,
but is much less accurate at lower altitudes. Figure 8(b) shows the accuracy of the D,.,,, RSE. This RSE
is much more accurate throughout the whole altitude and mach number regime considered. These two
RSE'’s together combine to predict the net thrust of any given engine at any given flight condition. Hence,
there errors would be additive for net thrust. The residual plot in figure 9(b) shows that the errors for gross
thrust predictions are well distributed across all thrust levels. Similarly figure 9(a) indicates that the RSE
has better accuracy at the lower gross thrust levels than it does at higher ones.

NASA/TM—2008-215299 11



Thrust & TSFC vs Mach

—e—Fnl5 —m—Fn20 —A—Fn20  —x—Fn30  —x—Fn35 —e—Fn40
- -TSFC15 - -TSFC20 --i-TSFC25 - -TSFC30 - % -TSFC35 --O - TSFC40
40000 T2
fod
35000 - ,O T 18
5
4 p
30000 1.6
\\.\ ¢
/A/\ - A
25000 = El 14
§ /
= 20000 12
Lf -2
15000y g7 & X NA\\ o g a B e B 28
o 00 O S
OO T - KK
10000 o —— = 08
LK X_,_X.-X___ .zg__:
-'EZZA--'AZI@::@-"
5000 ::W—:B:'g" $ 06
Hlo-
0 -+ T T 0.4
0 0.5 1 15 2
Mach
(a) Full Mach Range
Thrust vs Mach (supersonic only)
‘ —4—PR15 B PR20 -4 PR25 —x-PR3.0 - PR35 —-PR4.0
8000
7500
7000
6500
0
Ke)
<= 6000 -
L
5500 1
5000 -
4500
4000 T T T T T T
0.8 1 12 14 1.6 18 2 22

Figure 5: Thrust vs flight Mach number is shown on the right axis. TSFC vs flight Mach number is shown

on the left axis.

NASA/TM—2008-215299

Mach

(b) Supersonic Mach Range

12

TSFC (Ib/lb/hr)



Altitude vs Mach Flight Profile

60000

50000 -

40000 -

30000

Altitude (ft)

20000 -

10000

Mach

Figure 6: Assumed Mach vs Altitude flight profile used to generate performance data over the flight enve-
lope.

Engine Size & Weight per TOC Fn=6000 lbs

30000.0
25000.0
20000.0
15000.0

5000.0

Propulsion Weight (Ibs)

0.0

15 20 25 3.0 35 4.0
FPR

Figure 7: Engine weight with and without a noise supressing nozzle

NASA/TM—2008-215299 13



50000 —+-alt 0 data
-#-alt 0 model
45000 1 alt 10k data
40000 - alt 10k model
—-alt 20k data
35000 1 ~e-alt 20k model
30000 1 / ——alt 30k data
@ 25000 /| —alt 30k model
> alt 40k data
% 20000 - alt 40 model
—=alt 53k data
15000 - / —+alt 53k model
10000 -
/
5000 - /
0 T T T
0 0.5 1 15 2
MN

(a) Gross Thrust

Figure 8: Comparisons for gross thrust and ram drag between the RSE predictions and NPSS model data

NPSS data vs. parametric model for gross thrust

model
10000 20000 30000 40000 50000 60000

0
I

T T T T T T T
0 10000 20000 30000 40000 50000 60000

data

(a) 45 degree

30000

25000

20000

15000

Dram (lbs

10000

5000

model residuals

1
—+-alt 0 data
-#-alt 0 model
alt 10k data
alt 10k model
- alt 20k data
-e-alt 20k model
—+alt 30k data
—alt 30k model
alt 40k data
alt 40 model
—=-alt 53k data
— alt 53k model

00 0.1 02 03 04

0.1

-0.2

0.5 1
MN

(b) Ram Drag

15

NPSS data vs model residuals for gross thrust

8.0 8.5 9.0 9.5 10.0

log(data)

(b) Residual

10.5 11.0

Figure 9: A 45 degree plot and a residual error plot for the gross thrust response surface

NASA/TM—2008-215299

14




6 Conclusion

Using Python, a ROSE implementation was generated which followed a strict adherence to the ROSE API
defined here. The result was a ROSE Driver that could execute an arbitrary DOE on an arbitrary model.
Using the parallel python, package concurrent execution of individual cases was possible. This Driver
was able to efficiently execute over 20,000 simulations of the computationally expensive NPSS model and
provide the results in a manner which allowed efficient generation of the RSE’s.

The creation of two distinct Operators displayed the power of adhearing to the ROSE API. Each operator
interfaced with the other Driver objects only through the API, and hence to the rest of the Driver did not
change. However, one Operator was utilizing only a single server and offered no concurrent capability.
The other Operator enabled conccurent execution, and hence offered a more powerful computation tool for
large case sets. Similarly any Driver object could be replaced in the system to change the behavior of the
driver. New Iterators and Outerators can be made and better Conductors can be created.

Further use of the powerful Python modules available in the open source community could quickly
result in Optimizers and statistical analysis Drivers which could provide capabilities similar to the Design
Analysis Kit for Optimization and Terascale Applications (DAKOTA)[1], but with greater flexibility and
extensibility.

References

[1] Mike Eldred. DAKOTA Developer’s Manual. Sandia National Laboratories.

[2] M.S. Eldred and D.M. Dunlavy. Formulations for surrogate-based optimization with data fit, multifi-
delity, and reduced-order models. AIAA, 2006.

[3] Anthony A. Giunta. Use of data sampling, surrogate models, and numerical optimization in engineer-
ing design. AIAA, 2002.

[4] John Hunter and Darren Dale. The Matplotlib Users Guide, May 2007.

[5] NASA Glenn Research Center. NPSS User Guide, NPSS_1.6.4 REV:AC edition, August 2007.

[6] Travis Oliphan. Numpy Home Page, 2007.

[7] Python Software Foundation. Beginner’s Guide to Python, Python for Programmers, August 2007.

[8] R Development Core Team. The R Manuals, 2008.

[

9] Gerhard Venter, Raphael T. Haftka, and James H. Starnes Jr. Construction of response surface approxi-
mations for design optimization. AIAA Journal, 36(12), December 1998.

NASA/TM—2008-215299 15



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-11-2008 Technical Memorandum

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Design of a Model Execution Framework: Repetitive Object-Oriented Simulation

Environment (ROSE)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Gray, Justin, S.; Briggs, Jeffery, L.

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 599489.02.07.03.09.02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
National Aeronautics and Space Administration REPORT NUMBER
John H. Glenn Research Center at Lewis Field E-16568

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORS
National Aeronautics and Space Administration ACRONYM(S)
Washington, DC 20546-0001 NASA; AIAA
11. SPONSORING/MONITORING

REPORT NUMBER
NASA/TM-2008-215299; ATAA-2008-
4860

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 31 and 61

Available electronically at http://gltrs.grc.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The ROSE framework was designed to facilitate complex system analyses. It completely divorces the model execution process from the
model itself. By doing so ROSE frees the modeler to develop a library of standard modeling processes such as Design of Experiments,
optimizers, parameter studies, and sensitivity studies which can then be applied to any of their available models. The ROSE framework
accomplishes this by means of a well defined API and object structure. Both the API and object structure are presented here with enough
detail to implement ROSE in any object-oriented language or modeling tool.

15. SUBJECT TERMS
Complex systems; Sensitivity; Object oriented programming; Simulation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

ABSTRACT OF STI Help Desk (email:help@sti.nasa.gov)
a. REPORT b. ABSTRACT c. THIS PAGES 19b. TELEPHONE NUMBER (include area code)
U U [PJAGE UU 21 301-621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18











