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Extensive research is being done toward the development of ultra-low-emissions combustors for 
aircraft gas turbine engines. However, these combustors have an increased susceptibility to 
thermoacoustic instabilities. This type of instability was recently observed in an advanced, low 
emissions combustor prototype installed in a NASA Glenn Research Center test stand. The 
instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full 
power operation. The instability behavior makes the combustor a potentially useful test bed for 
research into active control methods for combustion instability suppression. The instability behavior 
was characterized by operating the combustor at various pressures, temperatures, and fuel and air 
flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior 
vs. operating condition have been identified and documented. A simulation developed at NASA 
Glenn captures the observed instability behavior. The physics-based simulation includes the 
relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, 
includes simplified reaction equations, and provides time-accurate results. A computationally 
efficient method is used for area transitions, which decreases run times and allows the simulation 
to be used for parametric studies, including control method investigations. Simulation results show 
that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates 
the experimentally observed instability trends vs. operating condition. Future plans are to use the 
simulation to investigate active control strategies to suppress combustion instabilities and then to 
experimentally demonstrate active instability suppression with the low emissions combustor 
prototype, enabling full power, stable operation. 
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Outline

• Background
– Motivation:  Low emissions combustors for aircraft gas 

turbine engines
– NASA's combustor research
– Thermoacoustic instability => Active control

• Current Effort
– Identify a low emissions combustor concept with 

thermoacoustic instability
– Experimentally characterize the instability behavior 
– Develop a simulation that captures the combustion instability
– Validate the simulation against experimental data

• Future Plans
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Effect of Fuel Injection Schemes on NOx Emission
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Example 7-point LDI Layout, Research Interests

Single element configurations
Swirl numbers, radial vs. axial
Venturi contraction
Downstream recirculation zones
Laminate and machined assembly
SiC fabrication

Multi-element interactions

Recessed Pilot
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1. Higher performance fuel injectors => more turbulence
2. No dilution air => reduced flame holding
3. Reduced film cooling => reduced damping
4. More uniform temperature distribution => acoustically homogeneous
5. Shorter combustor => higher frequency instabilities

Multiple injection points allow temporal and spatial fuel/air control

Lean-Burning, Ultra-Low-Emissions Combustors 
Are More Susceptible to Thermoacoustic Instabilities
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Low Emissions Combustor Prototype with 
Observed Instability

Range of Combustor Operating Conditions
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Trend in Instability Amplitude vs. FAR
Multiple Test Runs
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Trend in Instability Frequency vs. FAR
Multiple Test Runs
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• Successful active control design requires accurate modeling and 
simulation.
–The essential physical phenomena should be correctly captured 

• (e.g. self-excitation).
–Characterization and control design necessitate rapid simulation

• (i.e. relative simplicity).
–Simulation must lend itself to implementing a variety of sensing and 

actuation strategies.

• The developed simulation method must achieve these goals for 
combustor configurations:
– in which the potential instabilities propagate axially
– that contain abrupt changes in cross sectional area

Motivation for Combustion Instability Simulation
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• One-Dimensional
• Perfect Gas

Within Each Sector:

Sector 2

Sector 3

Injector Region

Combustor Region

Sector 1

Simulation Features

• Time-accurate
• Physics-based, Reacting, Sectored 1-D

- Computationally efficient area transitions
• Upstream and Downstream boundary conditions modeled to match rig
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Low Emissions Combustor Instability Model Development
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0.04 seconds of simulation data
with f/a=0.029

0.04 seconds of rig data
with f/a=0.029

• Self-sustained instability simulated
• Instability frequency and amplitude closely match experimental values

Combustion Instability Simulation Results
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Combustion Instability Simulation Results for Multiple 
Operating Conditions – Amplitude Trend Replicated
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Combustion Instability Simulation Results for Multiple 
Operating Conditions – Frequency Trend Replicated
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Simulated Instability Amplitude is Highly Dependent 
on Exit Blockage Ratio (Water Spray)
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• Status
– A near-term low-emissions combustor prototype has been 

identified for active combustion control research

– The combustor's instability behavior has been characterized
• Trends in instability amplitude and frequency have been quantified

– A simulation of the combustion instability behavior has been 
developed
• Reasonably matches the combustor experimental behavior

– Characterization and simulation provide physical insights that aid 
control development

Concluding Remarks
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Concluding Remarks

• Future plans
– Utilize the simulation to develop active combustion instability 

control methods

– Integrate control methods with appropriate sensors and 
actuators to demonstrate combustion instability suppression in 
the combustor prototype

– Incorporate NRA technologies into combustion control 
approaches

– Utilize these tools/techniques as part of the long term plan to 
develop multi-point LDI combustors with extremely low 
emissions throughout the engine operating envelope
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