
Preliminary Design of a Ramjet for Integration with Ground-Based Launch Assist

Emily L. Sayles NASA MUST Intern Summer 2008

Outline

- Overview of Ground-Based Launch Assist
- OTIS and Trajectory Analysis
- Ramjet Performance Software Analysis
 - Ramjet Data
 - D-21
 - Stataltex
 - LASRM
 - Engine Performance Software
 - ONX
 - GECAT
- Next Steps

Ground-Based Launch Assist

Why?

- •Reusable/Reliable
- •Combination of E/M, air-breathing, and rocket propulsion
- •Decrease in Weight=Increase in Payload
- Low Operational Costs

How?

- •Launch to Orbit in Stages
 - •Linear Induction Motors (0 to M1.5)
 - •Ramjet (M1.5 to M4)
 - •Scramjet (M4 to M10)
 - •Rocket to Orbit

Launch Assist Benefit Analysis

Initial Velocity

Total ∆V is increased with an initial velocity

> Decrease in Total Launch Weight per Payload Mass

Launch assist ΔV doesn't require on-board propellant

Coefficient of Drag

Launch assist will bypass C_{D max} in the trans-sonic range

OTIS Simulations

Theory

OTIS: Optimal Trajectory by Implicit Simulation

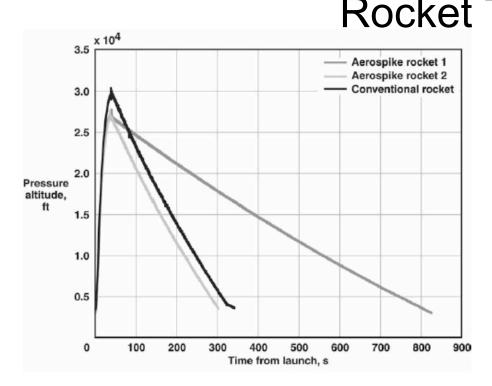
Input: Flight Parameters

Experiment

"Flight Research of an Aerospike Nozzle Using High Power Solid Rockets"

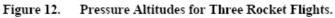
AIAA 2005-3797

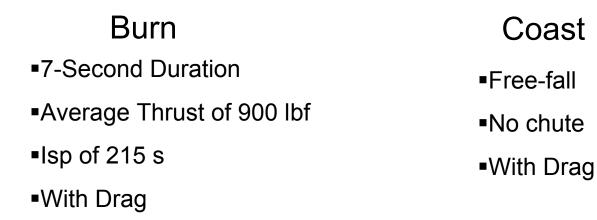
Bui, et al.

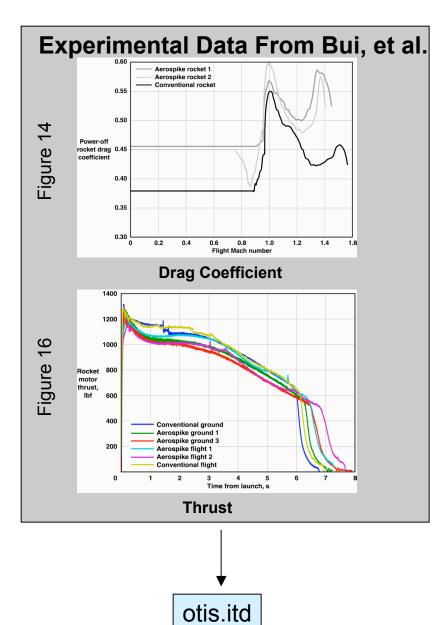

Flight Parameters: Drag Coefficient, Thrust


Flight data: Altitude, Mach Number

<u>Output</u>: Trajectory, Velocity, Drag, etc.


Verification of Simulation by Flight Data



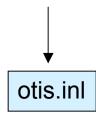

2-Phase Model

Max Velocity: ~1750 ft/s (M1.57); Max Altitude: ~27500 ft

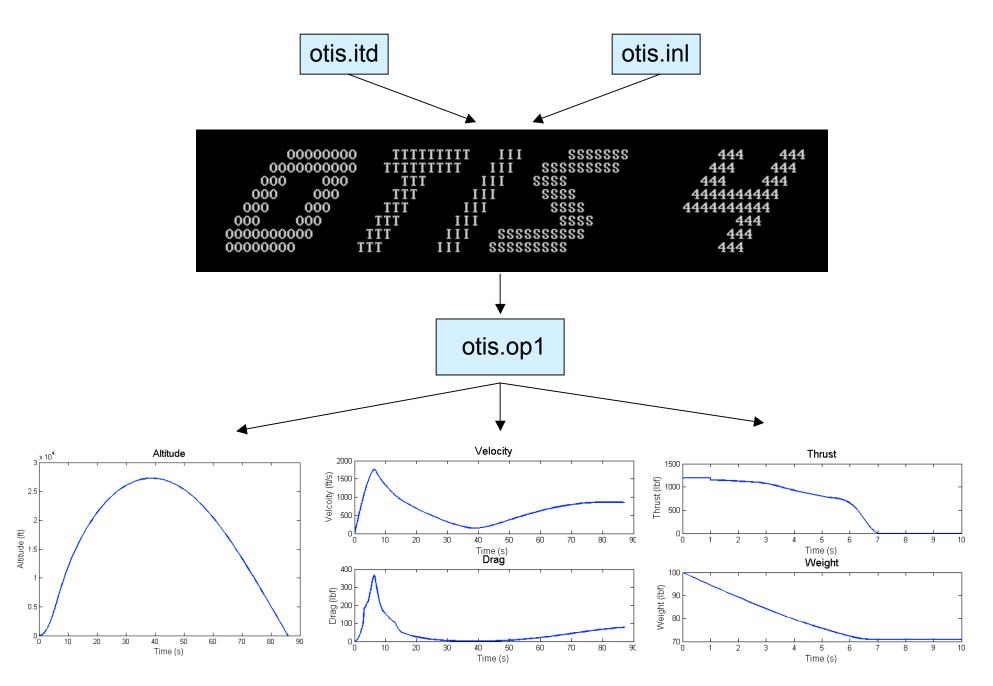
OTIS Input Files

Specific Initial Conditions

 $(V_0, h_0, \gamma, weight)$


Atmospheric Model

1976 US Standard Atmosphere


Engine Model

Thrust, Isp

Timing of Phases

OTIS Flowchart

Rocket Equation

In a Vacuum In an Atmosp	$\Delta V = Isp * g_0 * \ln\left(\frac{m_0}{m_{bo}}\right)$	$-g_{0} * t_{bo} - d$
F	Rocket Parameters	Numerical Values From Bui, et al.
ΔV	Change in velocity (V _f -V ₀)	1694 ft/s
lsp	Specific Impulse	215 s
m ₀	Initial Mass	(100 lbs) / g ₀
m _{bo}	Mass at Burn Out	(71 lbs) / g ₀
t _{bo}	Burn Time	7 s
g ₀	Gravitational Acceleration	32.2 ft/s ²
d	Drag Effects	Varies with time

Verification of Drag Effect's Existence

Comparison Between OTIS and Theory

Correction Term: d

Comparison Within OTIS

"Turning off" the Atmosphere:

Removal of atmospheric model from otis.inl

Offset between ΔVs from OTIS and rocket equation at burn out

d = 497 ft/s

Compute Offset between 2 OTIS models:

With Drag

Without Drag

=
$$\Delta V_{\text{no drag}} - \Delta V_{\text{with drag}} =$$

2.4% Difference

d

Values from both comparisons agree

→ OTIS is accurate in predicting the drag term

Method of Comparison:

Using the Concept of "Virtual Isp"

Different Scenarios Input to OTIS

Drag, Initial Velocity

OTIS Outputs a ΔV

Comparison of ΔVs

Rocket Alone vs. Combined System

Rocket Equation Translate Change in ΔV to an Isp Gain

$$\Delta(\Delta V) = Isp_{gain} * g_0 * \ln\left(\frac{m_0}{m_{bo}}\right) - g_0 * t_{bo}$$

"Virtual Isp" = Normal Isp + Isp Gain

Launch Assist Benefit Analysis

Initial Velocity Total ΔV is increased with an initial velocity

Decrease in Total Launch Weight per Payload Mass

Launch assist ΔV doesn't require on-board propellant

Coefficient of Drag

Launch assist will bypass C_{D max} in the trans-sonic range

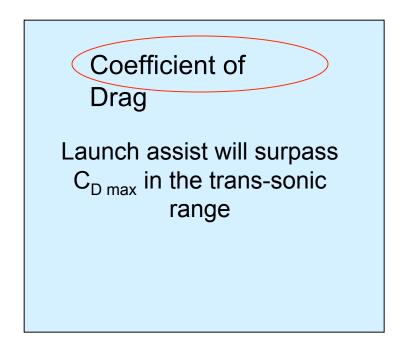
Initial Velocity Advantage

Variable Speed Launch Assist in a Vacuum

	Case	Drag	V ₀ (ft/s)	Virtual Isp (s)	% Increase
Only	1	Vacuum	0	225	0
stem	2	Vacuum	440 (300 mph)	265	17.8
Combined System	3	Vacuum	880 (600 mph)	306	36
Combi	4	Vacuum	1563 (M1.4*)	390	73.3

Rocket

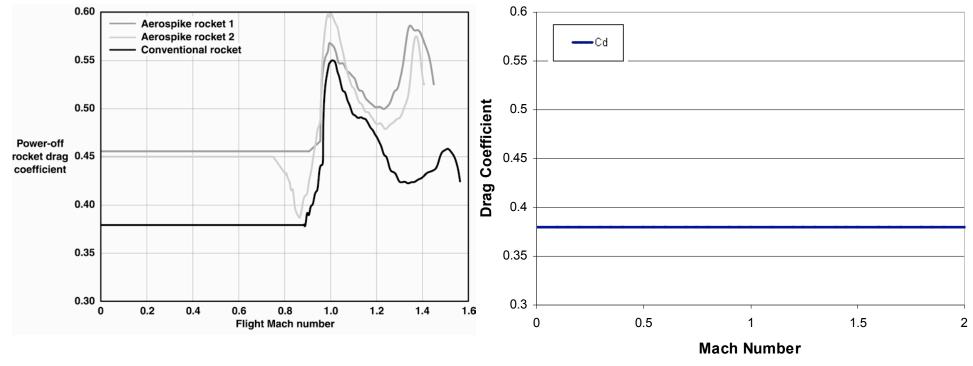
*at sea level


Launch Assist Benefit Analysis

Initial Velocity

Total ∆V is increased with an initial velocity

> Decrease in Total Launch Weight per Payload Mass


Launch assist ΔV doesn't require on-board propellant

Drag Coefficient Models

"Conventional"

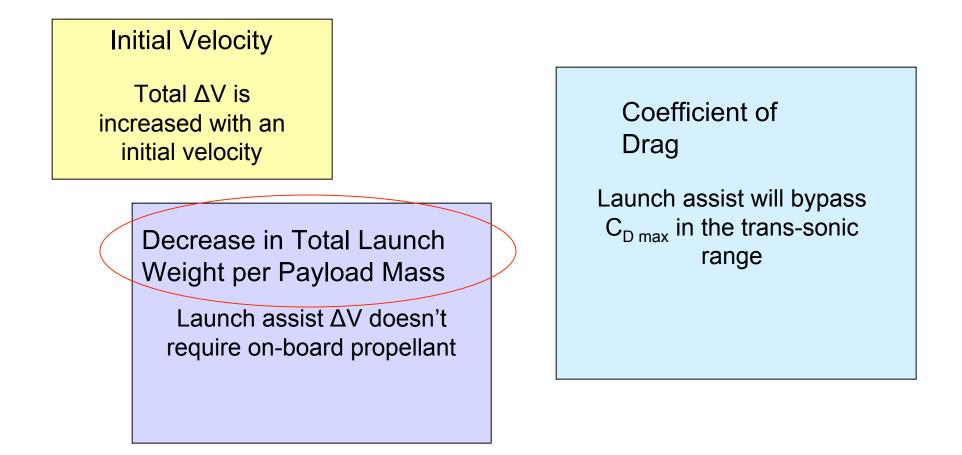
Transonic peak

 $D = \frac{1}{2} C_D A \rho V^2$

Drag force is directly proportional to coefficient of drag

Drag Coefficient Advantage

Case	Drag	V ₀ (ft/s)	Virtual Isp (s)	% Increase
1	Conventional C _D	0	215	0
2	Constant C _D	0	243	13


Indicates possible gains from surpassing transonic peak

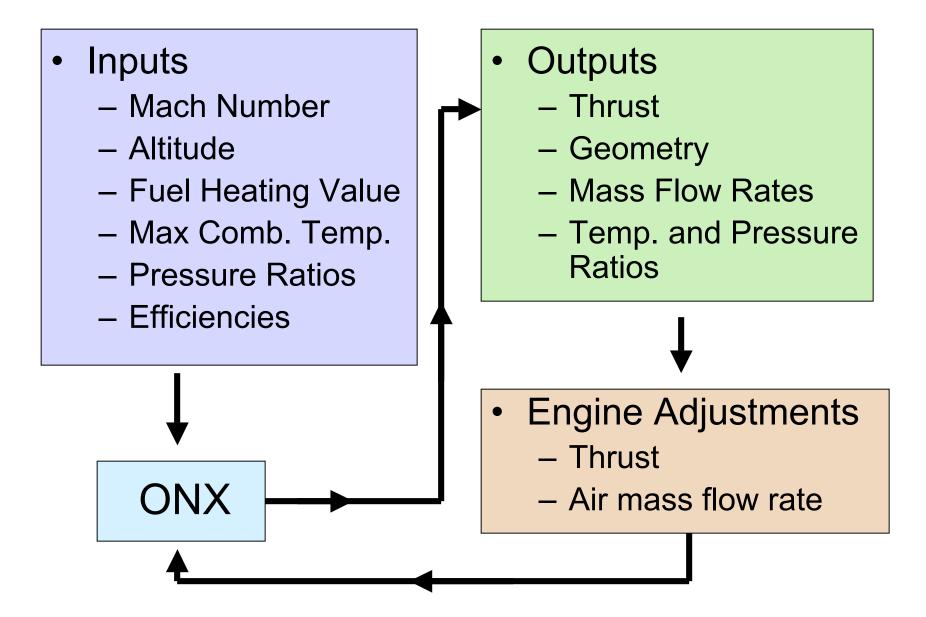
Variable Speed Launch Assist in Atmosphere

	Case	Drag	V ₀ (ft/s)	Virtual Isp (s)	% Increase
Rocket Only	1	Conventional C _D	0	215	0
System	2	Conventional C _D	440 (300mph)	227	5.6
	3	Conventional C _D	880 (600mph)	248	15.3
Combined	4	Conventional C _D	1563 (M1.4*)	278	29.3

*At sea level

Launch Assist Benefit Analysis

Motivation: Launch Assist can provide supersonic speeds thus allowing ignition of ramjet without an onboard compressor. This means a further reduction in total launch weight.


Outline

- Overview of Ground-Based Launch Assist
- OTIS and Trajectory Analysis
- Ramjet Performance Software Analysis
 - Ramjet Data
 - D-21
 - Stataltex
 - LASRM
 - Engine Performance Software
 - ONX
 - GECAT
 - Next Steps

Outline of Ramjet Study

- Gather data from past, operational ramjets
 - LASRM
 - D-21
 - Stataltex
- Calculate missing parameters, if necessary
 - Mass Flow Rates
 - Pressure Recovery
- Input data to engine simulation software
 - ONX
 - GECAT
- Verify software outputs with real data
 - Geometry
 - Thrust

Structure of ONX Simulations

Verification of ONX with Holloman Sled Track Data

Experiment: "Feasibility of Ramjet Engine Test Capability on The Holloman AFB Sled Track" McTaggart, 1973

Theory: ONX

Inputs from McTaggart:

- Mach number
- •Diffuser Pressure Ratio
- •Fuel and Air Mass Flow Rates
- •Fuel Heating Value
 - **Points of Verification**
 - •Geometry
 - Mass Flow Rates

Low Altitude Short Range Missile (LASRM) US Air Force, 1964-1967

Allows for direct input of thrust

Comments

Does not allow for direct input of geometry

Intermediate Conclusions: Not enough LASRM data (no flight test thrust values)

Indications that the ONX program is not sufficient to meet our needs

D-21 Data

Known Parameters

•Geometry:

Inlet Area

Nozzle Areas

Combustion Area

•Mach Numbers (Mach 3)

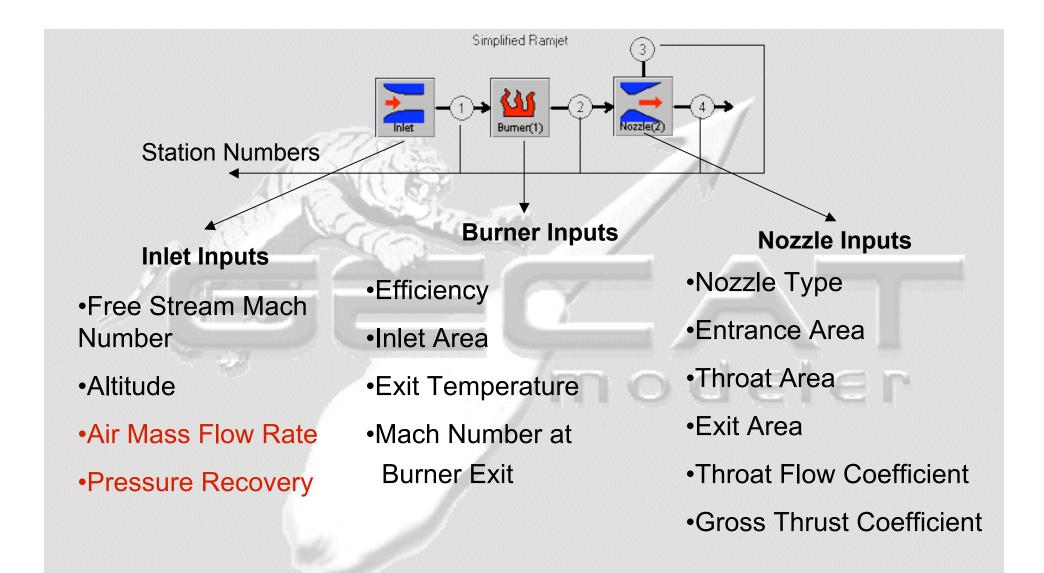
Altitudes

- •Thrust (1500 lbs)
- •Specific Fuel Consumption
- •Fuel Heating Value

Calculated Parameters

Mass Flow Rate

•Pressure Recovery



Conclusions: ONX is not sufficient to meet our needs because of difficulty in entering and interpreting area data (unable to enter specific area data for each station)

GECAT Simulation Architecture

Known Parameters

•Geometry

Inlet Area

•Nozzle Areas

- •Fuel Heating Value
- •Mach Numbers (Mach 3 to 5)
- Altitudes
- •Thrust (max 4500 lbs)
- Combustion Temperatures
- Combustor Efficiency
- Inlet Efficiency

Calculated Parameters

- •Pressure Recovery
- •Air Mass Flow Rate

02

05 06 . moving histor

+ laccelero.

40

↓ 𝟸 (daN)

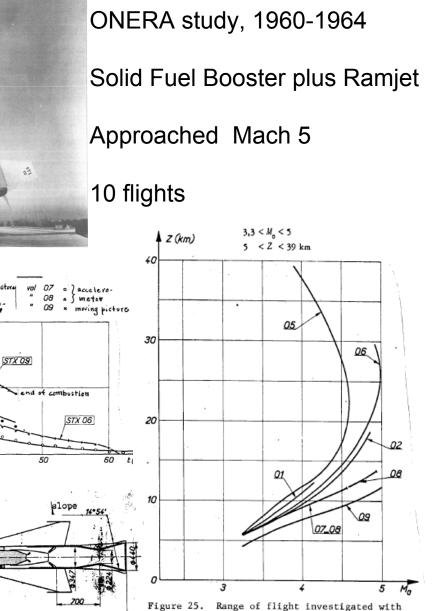
STX 02

20

REP 293

STX 05

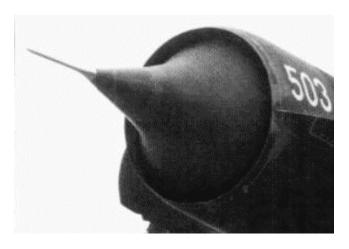
.30


slope 0.0075

pport vane

2000

1000


Air intske

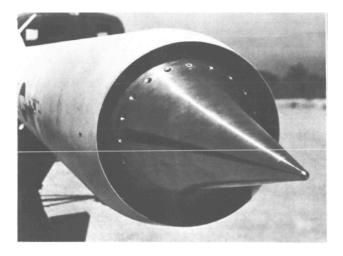
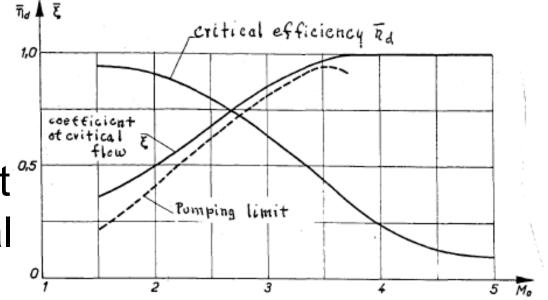

ramjet propulsion.

Figure 5. Internal geometry.

Calculation of Mass Flow Rates


Stataltex

- Focus on Air Intake
 - Free-stream Mach number, altitude give densities and temperatures
- Isentropic Compression Along Spike
 - Prandtl-Meyer
 Compression Waves
- Normal Shock at Inlet
 - Normal Shock Relations give Mach number, density, temperature after the shock

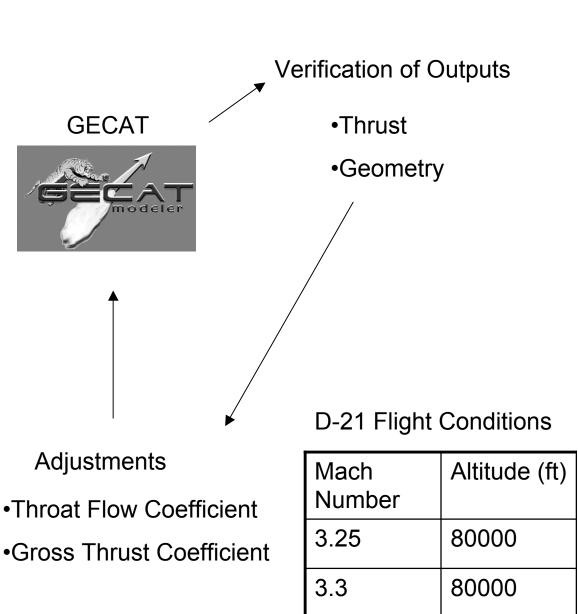
$$\mathbf{m} = \rho A V$$

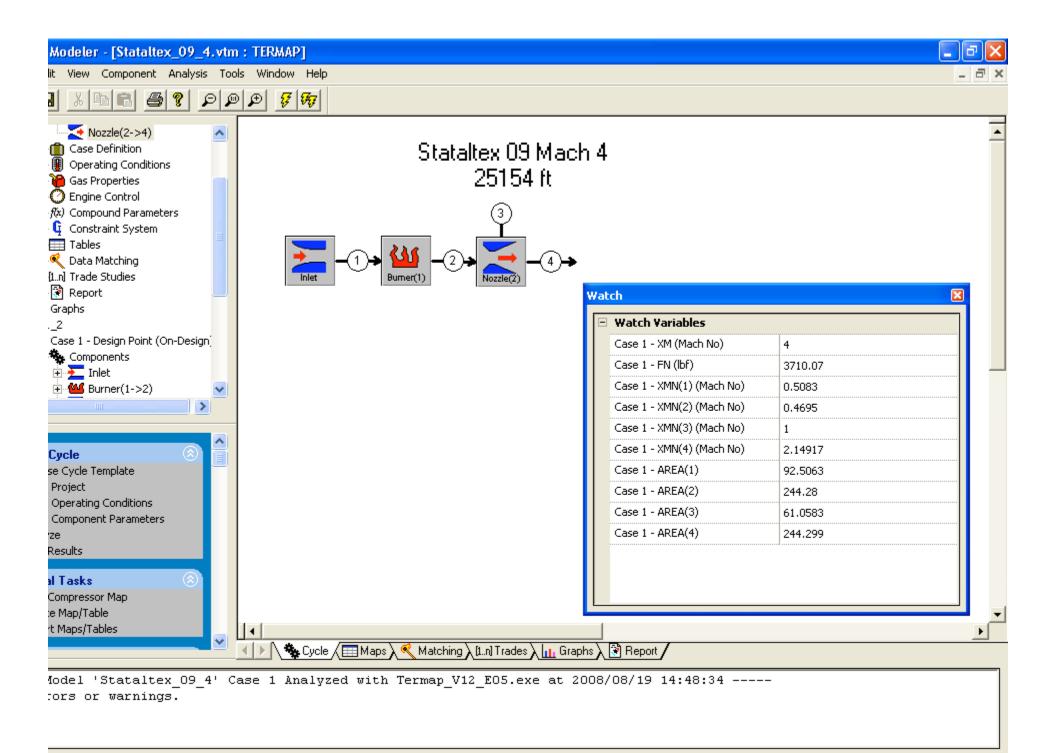
Calculation of Pressure Recovery (r_i)

- Measure of inlet
 performance
- Ratio of total pressure after inlet^{as} to free stream total pressure

Stataltex Inlet Efficiency (η_i) as a Function of Free Stream Mach Number

$$r_i = \eta_i \left(1 - 0.075 (M - 1)^{1.35} \right)$$


Verification of GECAT with Stataltex and D-21 Data


Input Parameters

- •Geometry
- •Flight Conditions
- •Air Mass Flow Rate
- •Fuel Heating Value
- Efficiencies
- •Combustion Temperature

Stataltex Flight Conditions

Flight Number	Mach Number	Altitude (ft)
06	4	32808
06	5	85630
09	4	25154
09	5	38278

Modeler - [D21_2.vtm : TERMAP] lit View Component Analysis Tools Window Help R 3 ? 7 F7 3 * Data Matching < ^ [1...n] Trade Studies D-21 Mach 3.3 🔞 Report 80000 ft Graphs

Burner(1)

🍓 Cycle 🖉 🖽 Maps 🔪 🍕 Matching 🔪 [1...n] Trades 🔪 📊 Graphs

3

Nozzle(2)

		Inlet	Burner(1)	Nozzle(2)
Case Definition				
🛞 Operating Conditions				
🔞 Gas Properties				
🕐 Engine Control				
f(x) Compound Parameters	-			
🔓 🕻 Constraint System				
Tables	~			
		-		
	~			
Cycle 📀	T.			
se Cycle Template				
Project				
Operating Conditions				
Component Parameters				
ze				
Results				
al Tasks 📀				
Compressor Map				
:e Map/Table				

Inlet

._2

t Maps/Tables

🍓 Components 🕀 🚬 Inlet 🗄 🚾 Burner(1->2) 🏹 Nozzle(2->4)

Case 1 - Design Point (On-Design)

Case 1 - XM (Mach No)	3.3
Case 1 - FN (lbf)	1549.96
Case 1 - XMN(1) (Mach No)	0.61212
Case 1 - XMN(2) (Mach No)	0.6121
Case 1 - XMN(3) (Mach No)	0.999999
Case 1 - XMN(4) (Mach No)	2.23801
Case 1 - AREA(1)	260.79
Case 1 - AREA(2)	1018
Case 1 - AREA(3)	254.342
Case 1 - AREA(4)	1018.08

_ 0

_ 8 ×

.

Model 'D21_2' Case 1 Analyzed with Termap_V12_E05.exe at 2008/08/19 ors or warnings.

1 ~

Comments on Software Analysis

	ONX	GECAT
Pros	✓ Direct input of thrust	 ✓ Specification of Geometry ✓ Ability to Override Idealizations ✓ Matching Capability ✓ View Properties at Every Station
Cons	 Geometry is calculated, not specified Limited selection of inputs 	Issues with Nozzle Exit Area Input >D-21 model was not geometrically accurate

•Not enough data to model the LASRM

•D-21 GECAT model at 2 points

•Successful Stataltex GECAT model at 4 points

Next Steps

Create GECAT model of launch assist ramjet

Adjust geometry to produce desired thrust

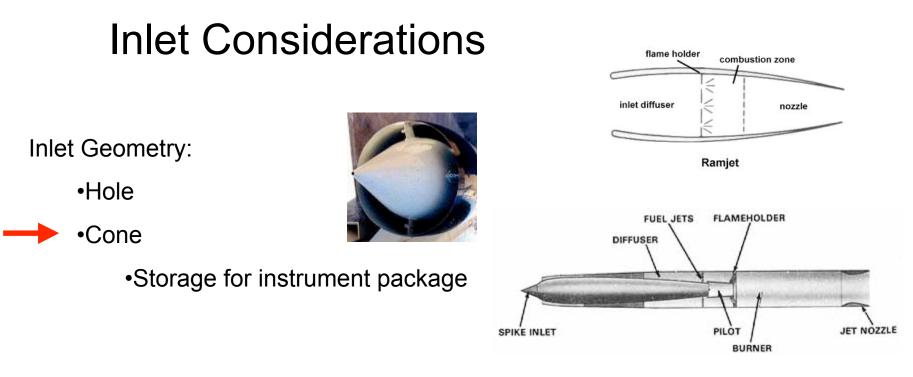
•Survey ramjet's performance over a range of Mach numbers

Learned Solidworks

Linear Motor Research and Development

Phase 1 Motors Embry-Riddle-159 mph

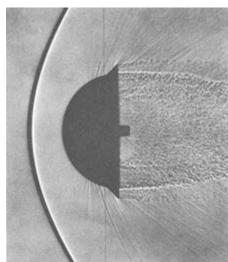
Phase 2 Motors

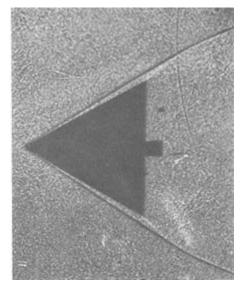

Phase 2 Motors-Manufacturing

Phase 2 Motors-Testing Fall 2008

Launch Assist Ramjet

- Assumptions/Requirements
 - Sea level to 10,000ft operation
 - Mach Number 1.5 to 2
 - 2-5 seconds burn time
 - Gross wet weight between 50 and 100lbs
 - Detection limits 1-10g out of 500g
 - Type of Fuel? JP/kerosene




Shock Wave Model

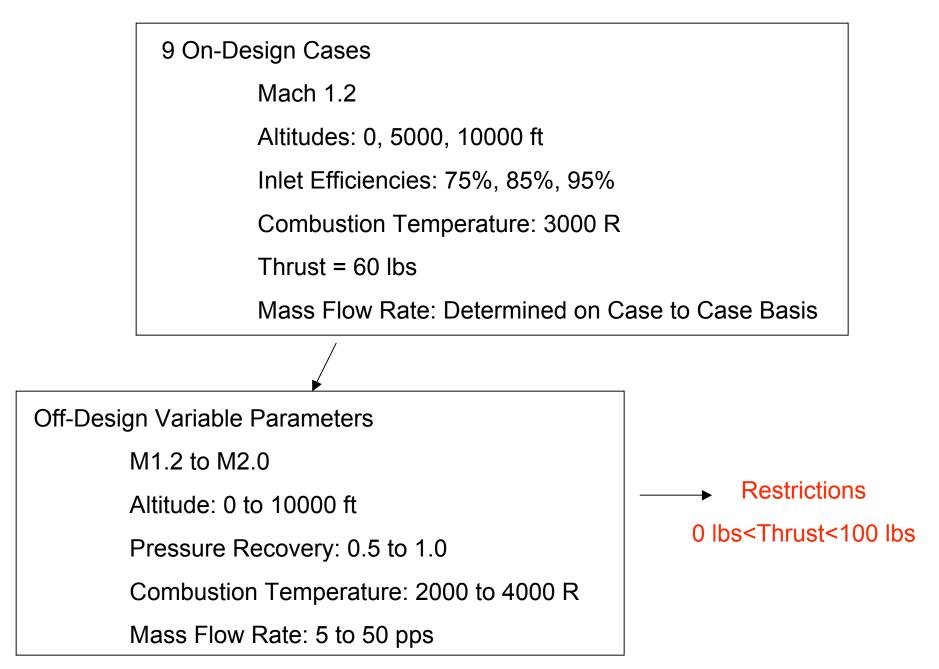
•Oblique

Normal

- •Detached Bow Wave
 - •Low supersonic speeds
 - •Cone half-angle

Preliminary Calculations

- •Acceleration: 3-5 g's
- •Burn Duration: 3-5 sec
- •V₀ = M1.2
- • $V_f = M1.6-M1.9$
- •Propellant Mass Fraction: 1/3
- •Total Ramjet Weight: 20 lbs
- •Net Thrust: 60 lbs
- •Fuel Density: 50 lbs/ft³
- •Fuel Volume (JP-4): 30-50 in³


Trade Studies

	Variable Parameters	Restrictions				
	•Flight Mach Number	 Cross-Sectional Areas 				
	 Inlet Efficiency 	 Inlet Area 				
	•Altitude	 Nozzle Throat Area 				
	•Air Mass Flow Rate		 Nozzle Exit Area 			
	 Combustion Tempera 	ature	•Net Thrust (0 – 100 lbs)			
What:	Start with Basic Cases	Change Parameters in Cases	Simulate Changing Flight Conditions			
	On-Design>	Design Points —	 Off-Design 			

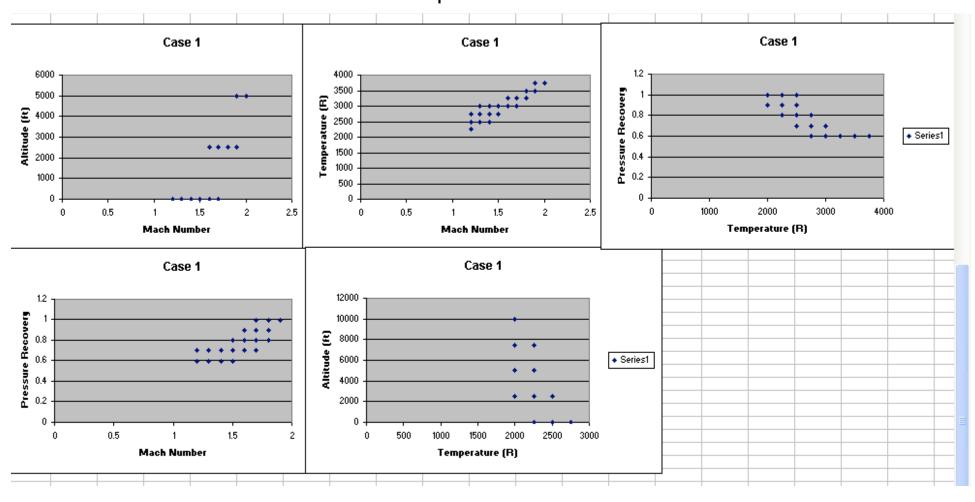
Why:

Find 60 lbs thrust cases

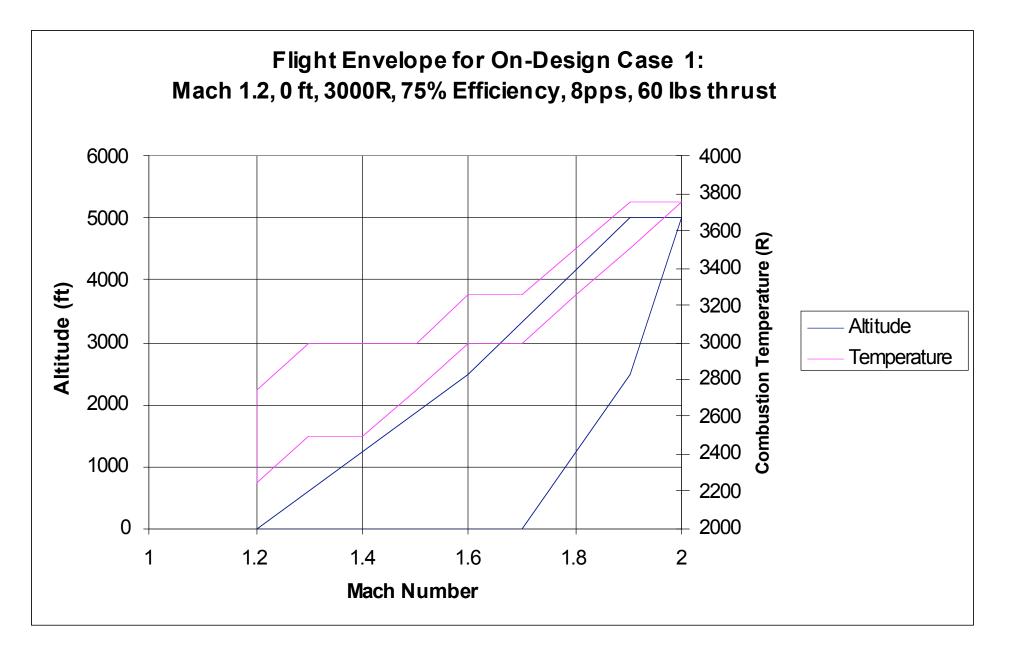
Examine Performance at Non-Ideal Conditions

Determination of Acceptable Flight Regimes Red denotes either

Green denotes


0 lbs<Thrust<100 lbs

Thrust >100 lbs or Thrust <0 lbs


A	В	С	D	E	F	G	Н	I	J	К	L	M	N	0	Р
		Mach Number									Altitude				
		1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	0	2500	5000	7500	1000
Mach Number	1.2														
	1.3														
	1.4														
	1.5														
	1.6														
	1.7														
	1.8 1.9														
	1.9														
Altitude	2														
Alacade	2500														
	5000														
	7500								S						
	10000								0,						
Mass Flow Rate	5							(e S S						
	10							-0							
	15							C_{0}							
	20							U							
Temperature	2000														
	2250							•							
	2500		_												
	2750					C	γ								
	3000					-0,									
	3250 3500														
	3500				. (\mathbf{N}									
	4000				X'										
Pressure Recovery	0.5				ef.										
	0.6														
	0.7														
	0.8														
	0.9														
	1														

Determination of Acceptable Flight Regimes (cont'd)

Data points represent green areas from previous slide

Flight Envelope Graphs

Future Studies

- Continue/Complete Design of Launch
 Assist Ramjet for Existing Linear Motors
- Launch Assist Trajectory Analysis Including Air-Breathing Ramjet
- Big Air-Breathing Ramjet (BARJ)
 100,000 lbs of thrust

Acknowledgments

Kurt Kloesel Shari Olson Jonathan Pickrel Interns/co-ops **Tiffany Scott Krista Shipley Softball Buddies**

