

LISA Technology Development at NASA/GSFC

J.I. Thorpe

37th COSPAR Scientific Assembly

Montréal, Québec

July 16th, 2008

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- 🤏 Laser Study

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular lodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Laser Study

Laser Frequency Noise in LISA

Beyond Einstein: From the Big Bang to Black Holes

Laser frequency noise is a major potential noise source for LISA

- •Three-stage system (two active one passive) to achieve overall suppression of $\sim 10^{13}$
- Running pre-stabilization and arm-locking in series reduces gain (bandwidth) requirements on arm-locking.
- Serial arrangement *requires frequency-tunable prestabilization*

Concept: Lock phase-modulation sidebands to cavity resonance and tune central frequency by adjusting modulation frequency.

GSFC - JPL

Offset Sideband Locking with Optical Cavity

Beyond Einstein: From the Big Bang to Black Holes

• Standard PDH and sideband locking have identical noise performance

- Common technical noises limit both systems.
- Adding modulation tone does not disturb the broadband noise floor.

Combining with Arm-Locking

Arm-Locking Results

Beyond Einstein: From the Big Bang to Black Holes

• Free-running and prestabilized lasers *meet LISA requirements in band*.

 Arm-locking system behaves as predicted.
 (noise spikes at n/τ frequencies)

 Progress towards demonstration of 2/3 of LISA frequency mitigation plan.

- Spectroscopic reference provides
 Absolute reference frequency
- Laboratory study of frequency stability using two independent Nd:YAG lasers stabilized to hyperfine transition in I₂
- Slightly worse than cavities for f > 1mHz
- Better performance below 0.1 mHz

Leonhart & Camp

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular lodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Laser Study

Interferometer Testbed

Numata & Camp

- Setting LISA's inter-spacecraft interferometer on stable platforms
 - 2 optical benches with 2 independent pre-stabilized lasers
 - · Silicate bonded optical bench, heterodyne interferometer with phasemeter
 - 2 degree-of-freedom active control
 - Intended to kill unwanted ground & thermal motion.
 - PZT-based hexapod provides actuation capability.
 - Noise suppression factor: 100~500
 - Performance limited by mechanical coupling from uncontrolled other 4 DoFs.

Silica Fiber for Force Noise Test

Beyond Einstein: From the Big Bang to Black Holes

- For lowering fundamental noise limit of torsion pendulum
 - Our methodology
 - Fiber puller, coater, pendulum for loss measurement •
 - Thin coating technique development •
- Significant advantages confirmed
 - LISA requirement should be reachable with silica

Fiber puller

Test started in LISA torsion pendula in Univ. of Trento & Univ. of Washington •

Fiber coater

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular lodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- 🤏 Laser Study

KP measurements of LISA gold surface

Beyond Einstein: From the Big Bang to Black Holes

- Vibrating probe induces current proportional to surface potential
- KP limited by ADC quantization noise (recently upgraded)
- Excess low frequency voltage noise of gold surface measured with KP
- Magnitude barely OK for LISA, but cause unknown
- LISA Advantages for patch-effect problem
 - Gold coatings are non-reactive
 - Test mass kept at room temperature

Frequency[Hz]

Camp

37th COSPAR Scientific Assembly - Montreal, Quebec

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular lodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- 🤏 Laser Study

LGS Cost/Design Study of LISA laser

Beyond Einstein: From the Big Bang to Black Holes

Solution States States

- optical characterization (insertion loss and PER stability) from 5 - 70 C
- thermal screening under high power in vacuum
- temperature cycling in air

10 10 0.001

0.01

0.1 Suspended mass [kg]

Backup Slides

Three Flavors of Sideband Locking

- Simplest to implement
- Some noise coupling due to asymmetry
- Restores PDH symmetry
- Complex modulation pattern
- Simple, symmetric modulation pattern
- Requires phase modulation capability on LO

Preliminary Noise Model

- § Fundamental Noise
 - Shot noise
 - Cavity thermal noise
- 🤏 Technical Noise
 - Temperature Fluctuations
 - Servo Noise
 - Photoreceiver noise
 - RIN
 - via RFAM
 - via absorption
 - Vibration Noise/Acoustic
 - Pointing
 - ???

Arm-Locking Transfer Function

- Measured noise suppression matches expectations
- ~40dB at 100mHz

