
Aromatic Diimides – Potential Dyes for Use in 
Smart Films and Fibers 

 
 
 
 

New aromatic diimide fluorescent dyes have been prepared with potential 
for use as chemical sensors and in chromogenic polymers.  These dyes 
have been designed to utilize excited state electron transfer reactions as 
the means for sensing chemical species.  For example, an aniline end-
capped anthryl diimides functions effectively as an “on-off’ sensor for pH 
and the detection of phosphoryl halide based chemical warfare agents, 
such as Sarin.  In the absence of analytes, fluorescence from this dye is 
completely quenched by excited state electron transfer from the terminal 
amines.  Reaction of these amines inhibits electron transfer and activates 
the fluorescence of the dye.  Another substituted anthryl diimide is 
presented with the capability to detect pH and nitroaromatic compounds, 
such as TNT.  Films prepared by doping small amounts (less than 0.1 
weight percent) of several of these dyes in polymers such as linear low 
density polyethylene exhibit thermochromism.  At room temperature, these 
films fluoresce reddish-orange. Upon heating, the fluorescence turns 
green.  This process is reversible – cooling the films to room temperature 
restores the orange emission.   
  

https://ntrs.nasa.gov/search.jsp?R=20080047424 2019-08-30T05:48:35+00:00Z
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Polymers Branch Overview

Propulsion Materials
•

 

High use temperature 
polymers and composites

•

 

Material concepts for fan 
containment

•

 

New polymers and composites 
for COPVs

Thermal Control Materials
•

 

High conductivity polymers and 
composites for radiators and heat 
exchangers

• Durable, lightweight insulation
•

 

Low permeability, microcrack

 
resistant polymers and composites

Nanostructured

 

Materials
• Nanocomposites (clay, graphene)
• Nanotube based composites
• Durable, polymer cross-linked aerogels

Functional Polymers
• Adaptive polymers
• Fluorescent sensors
• Conductive membranes

Enable:
• Reduced Mass
• Enhanced Performance
• Improved Durability
• Reduced Cost

Design

ProcessingSynthesis

Characterization
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Organic Materials for Molecular Sensors
Technology Background

Fluorescence based methods are 
highly sensitive for the detection of 
chemical and biological species and 
can be used for the determination of 
strain and/or degradation in materials.

Fluorescent dye enhanced 
photomicrocraph

 

of Alfalfa 
Root

Fluorescence based strain 
sensors –

 

courtesy CWRU

NASA Applications

•

 

Astronaut Health 
Management

•

 

Air & Water Quality 
Monitoring

•

 

Integrated Vehicle 
Health Management

Research and Results

Developed route to novel diimide

 

materials 
with potential use in molecular sensors, 
electronics and electroluminescent devices

Tyson, Ilhan

 

and Meador Journal of the American Chemical Society 2006, 128, 702-703 
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Fluorescent Sensor for pH and Chemical Warfare 
Agents

Ilhan, Tyson and Meador Chemisty of Materials 2004, 16, 2978-80
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Perylene

 

Crystals

Perylene

 

Doped 
Polystyrene 

Perylene

 

in 
Solution

Novel Perylene

 

Diimide

 

Has Potential as Strain Sensor

Red Luminesence

 

in Solid State Due to Exciplex
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Photoenolization
 

of o-Methylphenyl
 

Ketones
CH3

Ph

O CH2

Ph

OH 3*

CH2

OH

Ph
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Ph
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hν

isc
isc

E
HO Ph

E

EE

Z

E

o-MeBP

Porter, G.; Tchir, M. J. Chem. Soc. A 1971, 3772
Yang, N.C; Rivas, C.J. J. Am. Chem. Soc. 1961, 83, 2213

•

 

Clean, high yield route to fused 
6-membered rings

Regio- and stereospecific
• Not applied to polymer synthesis
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Diels-Alder Trapping of Bis(o-xylylenol)s
 is Versatile
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Chemical Yields for Bisadduct
 

Formation are 
High
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Reaction Progess

 

Can Be Monitored by 
1H nmr
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Mono-

 

and Bisadduct

 

Quantum Yield Effected by Extent of

 Diketone

 

Conversion 
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Maximum theoretical quantum yield 
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formation is 0.5 
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Bisadducts
 

are Readily Converted into 
Anthracenes
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Versatile Route to Arenes

CH3

O

Ph

H3C
O

Ph

Ph Ph

Ph Ph

NN

O

O

O

O

R R

Ph

Ph

N

N

O

O

R

O

O

R

Ph

Ph

N

N

O

O

R

O

OR

N

N

Ph

Ph

O

O

O

O

R

R

Ph

PhPh

Ph
N N

NN

O R R O

OO

O

O
O

O

R R

N

N N

O

O

R

O

O

R

O

R O

N
OR

O Ph

Ph

Ph

Ph

J. Am. Chem. Soc. 2006, 128, 702-703 Org. Lett. 2006, 8,  577-80.



11

National Aeronautics and Space Administration

www.nasa.gov

New Approaches to Perylene
 

Diimides
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•

 

Perylene

 

diimides are used in a wide array of materials, including electron 
transfer systems, liquid crystals, photovoltaics, and fluorescent sensors.

•

 

Conventional synthetic routes to perylene

 

dimides

 

focused on linear 
derivatives –

 

commercial availability of dianhydride.
• New approach provides route to Z-shaped perylene

 

bisimides
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Absorption and Emission Spectra of Various 
Z-shaped Perylene

 
Diimides
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Perylene

 

Diimide

 

Exhibits 
Excimer

 

Fluorescence in the Solid State

Perylene

 
Crystals

Perylene

 
Doped 

Polystyrene

Perylene

 
in Solution

•

 

Difference in emission color due to the formation of excited state complexes 
(exciplexes) in which perylenes

 

form stacks
•

 

Potential to use this phenomenon in the design of thermo-

 

and 
mechanochromic

 

polymers
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Preparation of N-Octyl

 

Benzo[e]pyrene

 

Diimide
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Absorption and Emission of Phenanthrene

 

and 
Benzo[e]pyrene

 

Bisimides

 

and Benzo[e]pyrene
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Synthesis of Anthracene Diimides
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Synthesis of Tetraaryl
 

Diimides –
 

Trapping Unaffected 
by Steric
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Substituent
 

and Solvent Effects on Photophysics
 

of 
Anthryl

 
Diimides
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Substituent
 

and Solvent Effects on the 
Photophysics

 
of Diimides
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Twisting of N-Aryl Group Inhibits Charge Transfer 
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Low Temperature Emission Spectra 
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Reducing temperature:
•

 
Reduces rotational 
motion

•
 

Inhibits charge 
transfer
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and Electronic Effects Regulate Excited State 
Photophysics
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Anthracene Diimide
 

Provides Platform for Charge 
Transfer Mediated Fluorescent Sensors 
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interact with 
given analyte

Tune absorption 
and emission



24

National Aeronautics and Space Administration

www.nasa.gov

New Anthracene Diimide
 

Molecular Sensor

• Charge Transfer from NH2

 

quenches fluorescence
•

 

Protonation

 

or acetylation

 

of the NH2 prevents charge transfer, activates 
fluorescence

• Potential use as:
sensor for pH, chemical agents (nerve gas)
polymer cure monitoring

Ilhan, Tyson and Meador Chem. Mater. 2004
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Sensor Effective for Both Liquids and 
Vapors
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Anthracene Diimide
 

Provides Platform for Charge 
Transfer Mediated Fluorescent Sensors 
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Anthracene Dianhydride
 

is Key to Tailoring Sensor 
Specificity
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Enables attachment of substituents to imide N that might be photosensitive, 
e.g., pyridyl groups



29

National Aeronautics and Space Administration

www.nasa.gov

Absorption and Emission Spectra
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Diimide
 

Fluoresence
 

Shows 
Solvatochromic Behavior

Effect of Solvent Polarity on Emission Spectra
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Stern Volmer Quenching with 2,4-DNT
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Fluorescence Quenched by  
Nitroaromatics

Excited state charge transfer from dye to 
nitroaromatics

 

quenches fluorescence
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Fluorescence Inhibited by Addition
 of Acids
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Aggregate Formation in Solid State is Evident
 in X-Ray
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Increased Loading Levels Lead to Red Shifted 
Emission

Emission Spectra in Polystyrene
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Suggests formation of dye aggregates in the polymer
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TPAA Doped Films Exhibit Thermochromic
 Behavior

Effect of Temperature on Emission Spectra of Dye Doped LLDPE
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• Aggregation disrupted at higher temperatures –

 

blue shift
• Process is reversible
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Mechanochromic
 

and Themochromic
 

Polymers
 

Crenshaw, B.R. and Weder, C. Macromolecules 2003, 15, 4717-24
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Polymer Films and Nanowires
 

for Field Effect 
Transistors
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Applications:
•Small size, power-efficient flexible electronic circuitry for space exploration applications
•Communications and data storage circuitry that can be interwoven

 

into clothing and other    
surfaces

•Active matrix light emitting diodes, RF identification cards

Technology development requires
interdisciplinary collaboration

Nano-metrology

Device
Characterization

Materials
Optimization

AFM image of polyaniline/
polyethylene nanofiber

Current-

 

voltage characteristics 
of nanofiber FET

SEM image of nanofiber 
Deposited on metallized 

SiO2

 

/Si substrate

Point of Contact:
Dr. Félix A. Miranda, 
RCA
216-433-6589

The electrical conductivity of
bulk polyaniline can be varied
From 10-10

 

to 6x103

 

siemens 
per centimeter

Antenna, Microwave and Optical Systems Branch (RCA); Polymers Branch (RMP)
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Electrospun Pentacene/PEO Fiber (vacuum)
20 August 2007
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grown 
by Prof. Nicholas Pinto, U of Puerto 
Rico-

 

Humacao
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Twistacenes
 Wudl, F. et al Org. Lett. 2003, 5, 4433-36

•

 

Addition of pendant phenyls adds steric

 bulk-enhances photooxidative

 

stability, 
prevents quenching 

•

 

Addition of perylene

 

endgroups

 

enhances 
Φf
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Twistacenes

Effect of added TBH on intensity of 
PL and EL of poly(fluorene

 

films)

C8H17
C8H17

Xu, Q.; Duong, H.M.; Wudl, F.; Yang, 
Y. Appl. Phys. Lett.  2004, 85, 3357-59
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Beyond Anthracenes
 

and Perylenes

•

 

Increasing number of 
benzene rings 
(conjugation) makes the 
molecule more 
polarizable

•

 

Adding pendant groups 
improves stability and 
solid state fluorescence 
efficiency

•

 

Flexible chemistry 
enables tailoring of 
electronic properties

•

 

Potential for use in 
photovolatics, molecular 
electronics and 
photonics
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Summary

•
 

Developed new route to highly substituted aryl 
diimides
–

 

Anthracenes
–

 

Perylenes
–

 

Pyrenes
–

 

Higher homologues
•

 
Exploited excited state behavior to develop 
fluorescent sensors
–

 

Chemical species
–

 

Warfare agents
–

 

Temperature
•

 
Incorporation of these dyes into polymers has the 
potential for making “smart”

 
films, fibers, and 

composites
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