Oxidation of ZrB₂ SiC TaSi₂ Materials at Ultra High Temperatures

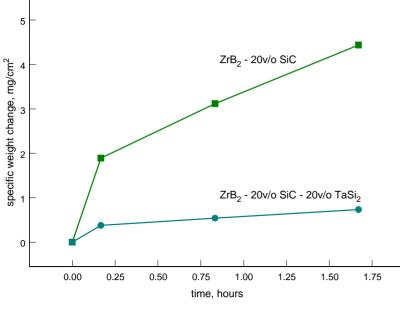
E. Opila, J. Smith, S. Levine, and J. Lorincz NASA Glenn Research Center

 $ZrB_2 - 20v\%$ SiC - 20v% TaSi₂ was oxidized in stagnant air for ten minute cycles for times up to 100 minutes at 1627°C and 1927°C. The sample oxidized at 1627°C showed oxidation resistance better than that of the standard $ZrB_2 - 20v\%$ SiC. The sample oxidized at 1927°C, however, showed evidence of liquid phase formation and complex oxidation products. The sample exposed at 1927°C was analyzed in detail by scanning electron microprobe and wavelength dispersive spectroscopy to understand the complex oxidation and melting reactions occurring during exposure. The as hot-pressed material shows the formation of a $Zr(Ta)B_2$ phase in addition to the three phases in the nominal composition already noted. After oxidation, the TaSi₂ in the matrix was completely reacted to form Ta(Zr)C. The layered oxidation products included SiO₂, ZrO_2 , Ta_2O_5 , and a complex oxide containing both Zr and Ta. Likely reactions are proposed based on thermodynamic phase stability and phase morphology.

Oxidation of ZrB₂-SiC-TaSi₂ Materials at Ultra High Temperatures

E. Opila, J. Smith, S. Levine, J. Lorincz, M. Reigel NASA Glenn Research Center Ultra-High Temperature Ceramics Conference Lake Tahoe, CA August 5, 2008

Background

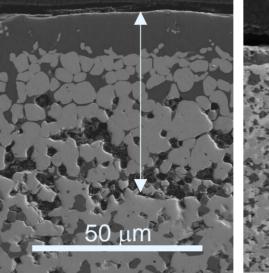


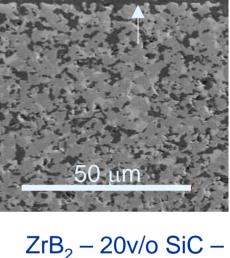
• Previous work

"Oxidation of ZrB₂- and HfB₂-based ultra-high temperature ceramics: effect of Ta additions," E. Opila, S. Levine, J. Lorincz, J. Mat. Sci. 39 [19] 5969-5977 (2004).

- Improved oxidation resistance with 20 v/oTaSi₂ additions to ZrB₂ - 20 v/o SiC at 1627°C in air up to 100 minutes
- Improved oxidation resistance attributed to Ta additions, not excess Si
- Oxidation at 1927°C resulted in excess liquid phase formation and poor oxidation resistance

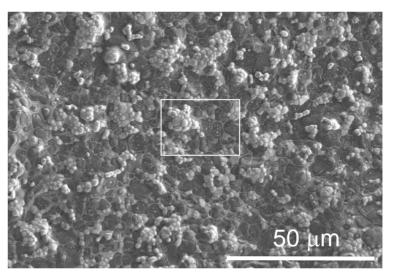
ZrB_2 - 20v/o SiC - 20v/o TaSi₂ showed improved oxidation resistance at 1627°C in air

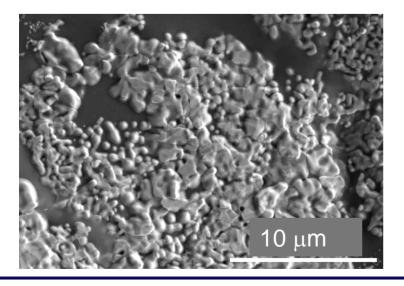


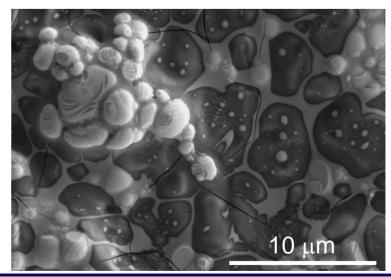

oxidized in 10 minute cycles

ZS20TS: 1, 5, and 10 cycles

20v/o TaSi₂


 $ZrB_2 - 20v/o SiC$




Surface oxide morphology, 1627°C, 100 min, air

ZS20TS

Melt formation observed after ZS20TS oxidation at 1927°C in stagnant air

ZSTS: as-fabricated and 1 cycle

Liquid phase formation a problem

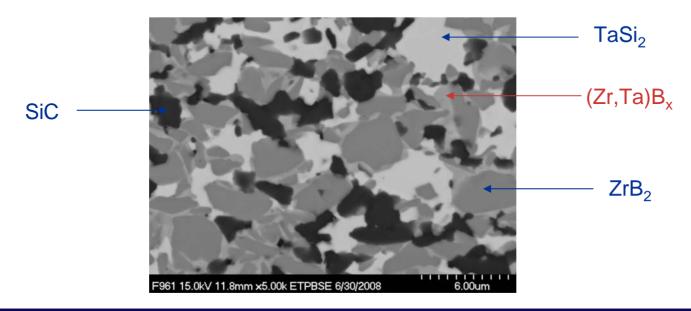
- SiO₂: T_m=1723°C
- $Ta_2O_5: T_m = 1887^{\circ}C$
- $Ta_2O_5 \cdot 6ZrO_2: T_m > 1870^{\circ}C$

ZrO₂ provides some dimensional stability

ZS: 1, 5, and 10 cycles

Questions arising from 1927°C exposure

- Ta distribution in oxidation products
 - is all Ta contributing to melt formation?
 - any Ta in solid phases?
- What is the composition of oxidation products?
- Can liquid phase formation be limited while still retaining improved oxidation resistance at 1627°C?


Additional work since previous publication

- Characterization of ZS20TS after 1927°C, 5 x 10 min cycles in stagnant air
 - WDS/microprobe: JEOL 8200
 - FE-SEM: Hitachi S-4700
- Oxidation of ZS5TS at 1627°C, 1927°C for 1, 5 and 10 ten-minute cycles in stagnant air

Characterization of ZS20TS starting material

- Desired composition: ZrB₂ 20v% SiC 20v% TaSi₂
- As hot-pressed material shows 4 phases
 - Phase 1: ZrB_2 B/Zr = 1.97
 - Phase 2: SiC C/Si = 1.08
 - Phase 3: $TaSi_2$ Si/Ta = 2.16
 - Phase 4: $(Zr,Ta)B_x$ Zr/Ta = 4.19 B/(Zr+Ta) = 1.53

Stability of TaSi₂

$\Delta G_f 1927^{\circ}C(kJ/mol) M+X_x=MX_x$

TaSi ₂	-61
TaC	-140
TaB ₂	-191
TaO _{2.5}	-615
ZrSi ₂	-141
ZrC	-180
ZrB ₂	-285
ZrO ₂	-741

- Silicides are least stable
- Zirconium compounds are more stable than tantalum compounds
- (Zr,Ta)B_x formation: TaSi₂ reacts with excess B during hot pressing?

ZrB₂ TaB₂ solid solution?

- ZrB₂ and TaB₂ both hexagonal crystal structure
- Limited phase stability info found

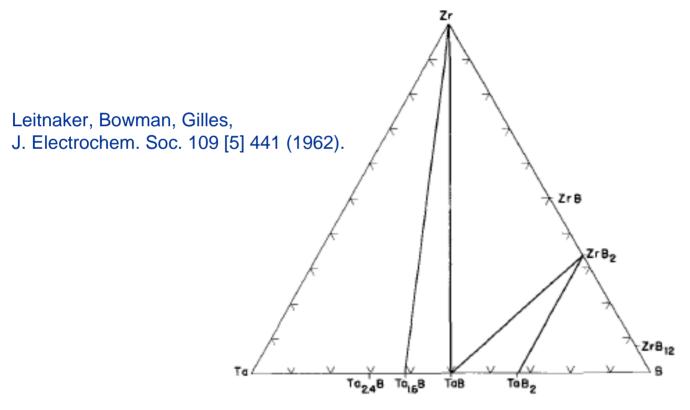
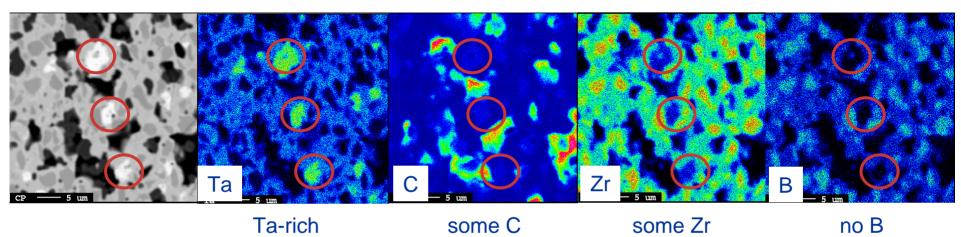
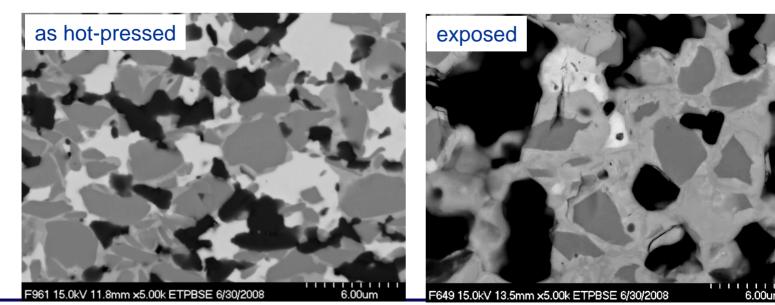


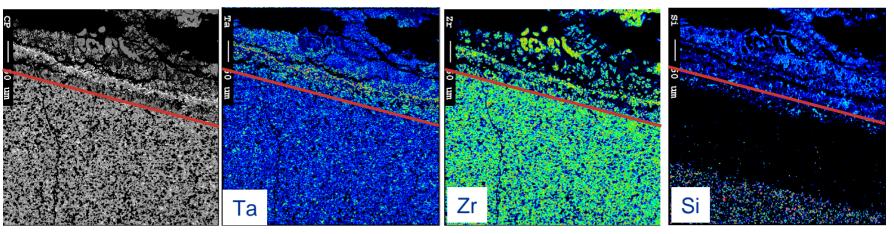
Fig. 1. Schematic phase diagram for the Ta-Zr-B system for a temperature of 1500°C.


Characterization of ZS20TS after 1927°C oxidation

- Extensive melt formation
- Characterizing phase formation after cooling
- Not necessarily equilibrium phase formation

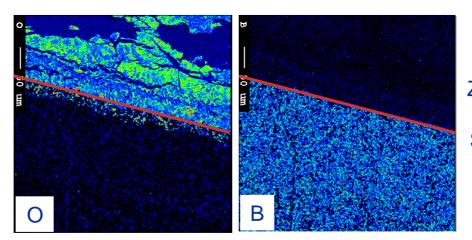
Characterization of ZSTS(20) after oxidation at 1927°C: matrix phases


- $TaSi_2$ is gone. $T_m TaSi_2 = 2200^{\circ}C$ (HSC, Kosolapova)
- Four phases observed:
 - Phase 1: ZrB_2 B/Zr = 1.98
 - Phase 2: SiC C/Si = 1.05
 - Phase 3: $(Zr,Ta)B_x$ Zr/Ta = 3.47 B/(Zr+Ta) = 1.43
 - Phase 4: $(Zr,Ta)C_x$ Zr/Ta = 0.56 C/(Zr+Ta) = 1.42



Evolution of matrix after oxidation

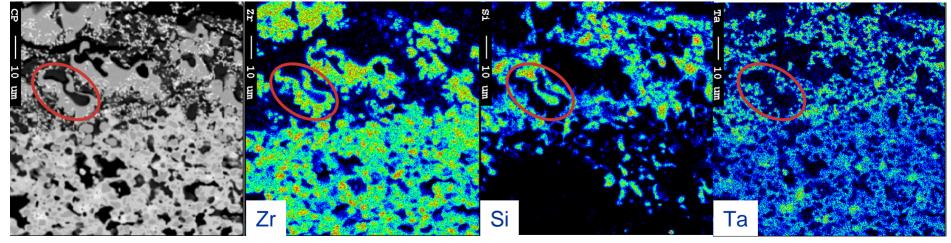
- Loss of TaSi₂, appearance of TaC
 - Active oxidation of TaSi₂ leaving Ta?
 - TaC more stable than SiC
 - $TaSi_2 + SiC + 1.5 O_2(g) = TaC + SiO(g) \Delta G_{rxn} = -79kJ/mol$
- Change in phase distribution
 - Decrease of ZrB₂, SiC
 - (Increase of Zr,Ta) B_x

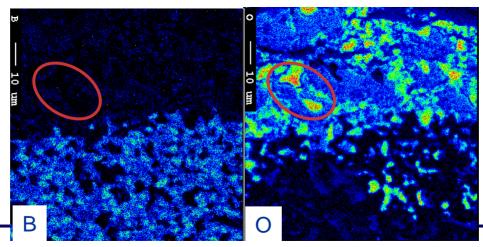

General characteristics of oxide layers ZS20TS 1927°C 50 minutes air

Ta concentrated near initial interface, but present throughout scale Zr forms discrete oxide particles

Silica is present in most of scale, Si depletion layer below oxide

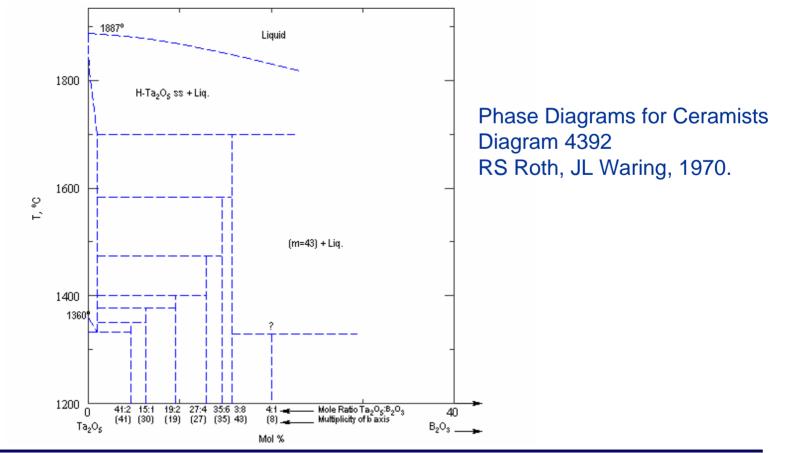
Oxides found below interface, silica?



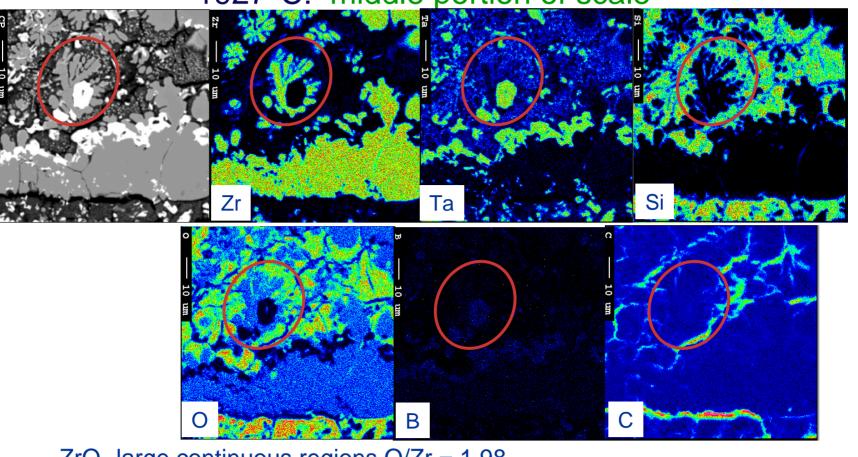

ZrB₂ and SiO₂ coexist in layer below interface. Some B in near surface oxide layer?

Characterization of ZS20TS after oxidation at 1927°C: oxide phases adjacent to matrix

 $ZrO_2 O/Zr = 1.96$ SiO₂ O/Si = 1.96 Ta(Zr)B(O) Ta/Zr = 7.49 B/O = 2.16 (B+O)/(Ta+Zr) = 1.36, not Ta₂O₅

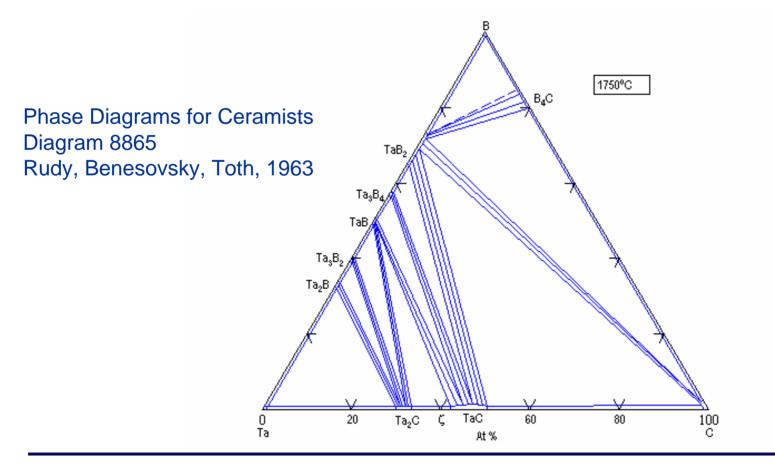


(Ta,Zr)(B,O)?



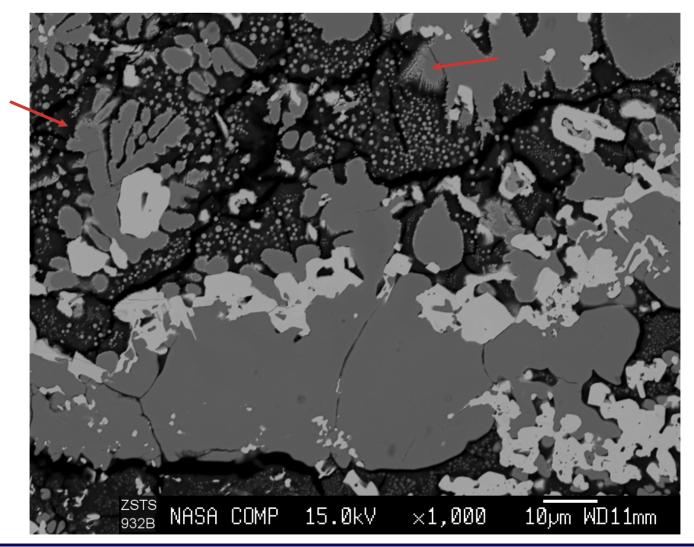
- TaB₂ sampling ZrO₂ underneath small Ta-rich particles?
- Ta oxyboride?
 - Oxynitrides and oxycarbides known to exist
 - Ta O B phase diagram

Characterization of ZS20TS after oxidation at 1927°C: middle portion of scale

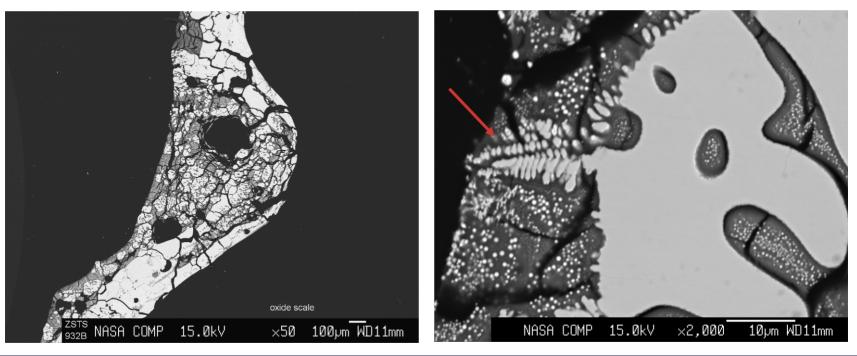


 ZrO_2 large continuous regions O/Zr = 1.98 SiO_2 O/Si = 2.39? some Ta 1.6at% Ta(B,O) B/O = 1.71 (O+B)/Ta = 0.73 phase separated in silica Ta(C,B) not expected: C/B = 1.34 (C+B+O)/Ta = 1.00 Additional phase not analyzed by microprobe

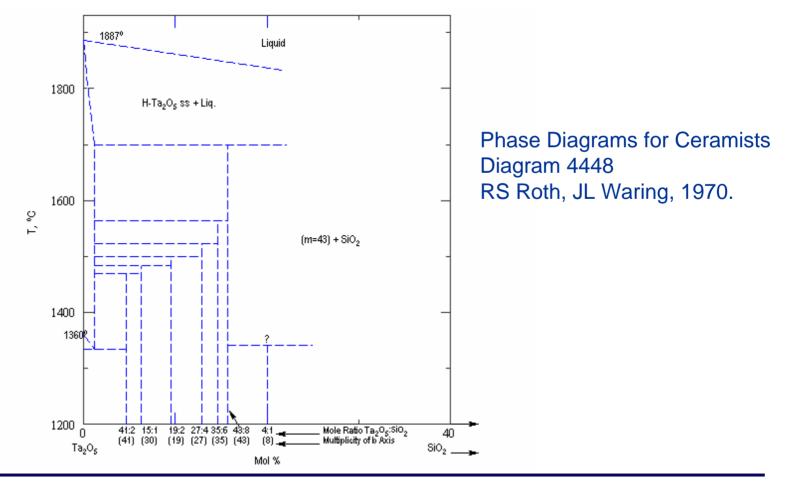
Ta(C,B)?



- TaC and TaB₂ both significantly less stable than oxide phase
 - ZrO_2 more stable than Ta_2O_5 (Ellingham diagram)
- Unexpected phase formation: TaC cubic, TaB₂ hexagonal
 - Artifact of sampling volume?



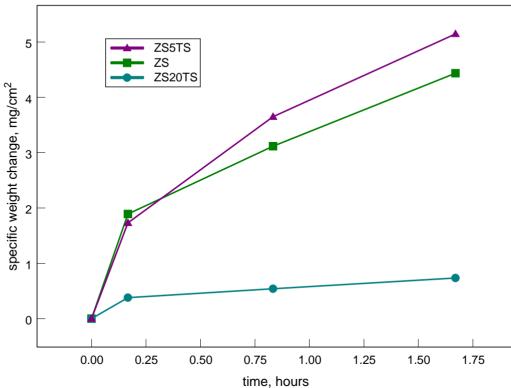
TaZrO phase morphology on ZrO_2 suggests surface reaction, Phase V?

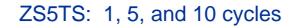

Characterization of ZSTS(20) after oxidation at 1927°C: loose outer portion of scale ZrO_2 O/Zr = 2.07 dendrites observed $SiO_2(Ta)$ O/(Si+Ta) = 2.917 (Zr,Ta)O phase separated in silica Zr/Ta = 1.92, not Phase V, Zr/Ta= 5.5 to 6 O/(Zr+Ta) = 2.47, expected ratio for Ta₂O₅

Ta Si O

- WDS results suggest Ta-O in solution with SiO₂
- Available phase diagram suggests ordering is possible

Summary of observations for ZSTS(20) oxidation at 1927C


- Zr- and Ta-borides form solid solution
- TaSi₂ is not stable after exposure at 1927°C, about 300°C<T_m
- Possible active oxidation of TaSi₂ resulting in SiO(g) and TaC formation
- Oxidation microstructure is fine near matrix interface, coarse at outer surface
- Ta(C,B) appears to remain unoxidized amidst ZrO₂ scale
- Unexpected formation of Ta(C,B) in scale?
- Melt formation: $ZrO_2 SiO_2 Ta_2O_5$ all in solution
 - Ta(B,O) phase separated in silica rich areas
 - Si(Ta)O
 - Dendritic structure of Phase V (?) on surface of ZrO₂, Ta(C,B)
 - Dendritic structure of ZrO₂ in outer scale


Optimization of TaSi₂ additions

Oxidation of ZS5TS at 1627°C in air

ZS20TS: 1, 5, and 10 cycles

Oxidation: 10 minute cycles at 1927°C in stagnant air

ZS5TS: 1, 5, and 7 cycles

ZS20TS: 1 cycle

ZS20TS: 5 cycles

ZS: 1, 5, and 10 cycles

Summary of oxidation results for ZS5TS

- 5 volume % addition of TaSi₂ to ZS is not enough to promote improved oxidation behavior at 1627°C
 - Oxidation weight gain and appearance similar to ZS (no TaSi₂ additions)
- 5 volume % addition of TaSi₂ to ZS still results in extensive melt formation and undesirable scale morphology during oxidation at 1927°C
- Oxidation behavior of ZS can not be improved at both 1627°C and 1927°C with TaSi₂ additions

Conclusions: ZrB₂-SiC-TaSi₂

- 20 v%TaSi₂ additions to ZrB₂ SiC result in formation of phase separated glass and improved oxidation resistance at 1627°C
- At 1927°C excessive melt formation prevents dimensional stability of oxides formed from ZrB₂ -SiC -TaSi₂
- TaSi₂ reacts to form (Zr,Ta)B_x, Ta(C,B) as well as melt solution phases containing Ta, Zr, Si, O, B
- TaSi₂ additions can not be optimized to form both phase separated glass at 1627°C and oxides with dimensional stability at 1927°C.
- More phase stability work needed in UHTC systems

Acknowledgments

This work was made possible by:

- NASA Next Generation Launch Technology Program, Airframe Technology Project (2004)
- NASA Fundamental Aeronautics Program, Hypersonics Project (2008)