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System identification ormathematicalmodeling is used in the aerospace community for development of simulation

models for robust control law design. These models are often described as linear time-invariant processes.

Nevertheless, it is well known that the underlying process is often nonlinear. The reason for using a linear approach

has been due to the lack of a proper set of tools for the identification of nonlinear systems. Over the past several

decades, the controls andbiomedical communities havemade great advances in developing tools for the identification

of nonlinear systems. These approaches are robust and readily applicable to aerospace systems. In this paper, we

show the application of one such nonlinear system identification technique, structure detection, for the analysis of F-

15BQuiet SpikeTM aeroservoelastic flight-test data. Structure detection is concerned with the selection of a subset of

candidate terms that best describe the observed output. This is a necessary procedure to compute an efficient system

description that may afford greater insight into the functionality of the system or a simpler controller design.

Structure computation as a tool for black-box modeling may be of critical importance for the development of robust

parsimoniousmodels for theflight-test community.Moreover, this approachmay lead to efficient strategies for rapid

envelope expansion, which may save significant development time and costs. The objectives of this study are to

demonstrate via analysis of F-15B Quiet Spike aeroservoelastic flight-test data for several flight conditions that

1) linear models are inefficient for modeling aeroservoelastic data, 2) nonlinear identification provides a

parsimonious model description while providing a high percent fit for cross-validated data, and 3) the model

structure and parameters vary as the flight condition is altered.

I. Introduction

S YSTEM identification, or black-box modeling, is a critical step
in aircraft development, analysis, and validation for flight

worthiness. The development and testing of aircraft typically takes
many years and requires considerable expenditure of limited
resources. One reason for lengthy development time/costs is
assuming that the underlying system is linear and invariant
throughout the flight envelope. This assumption is related to having
an inadequate knowledge of an appropriatemodel type or structure to
use for parameter estimation. Selection of an insufficient model
structure may lead to difficulties in parameter estimation, giving
estimates with significant biases and/or large variances [1]. This
often complicates control synthesis or renders it infeasible. The
power of using structure-detection techniques as a tool for model
development (i.e., black-box modeling) is that it can provide a
parsimonious system description that can describe complex
aeroelastic behavior over a large operating range. Consequently,
this provides models that can be more robust and therefore reduce
development time.

Moreover, when studying aeroelastic systems, it may not be
practical to assume that the exact model structure is well known a
priori. In aerospace systems analysis, one of the main objectives is
not only to estimate system parameters but to gain insight into the
structure of the underlying system. Therefore, structure computation
is of significant relevance and importance to modeling and design of
aircraft and aerospace vehicles. Structure computation may indicate
deficiencies in an analytical model and could lead to improved
modeling strategies and also provide a parsimonious black-box
system description for control synthesis [1–3].

For linear systems modeling, a commonly used approach for
determining model structure is the minimum description length
(MDL) proposed by Rissanen [4]. MDL was specifically developed
to overcome some of the inconsistencies of Akaike’s information
criterion [5]; that is, its variance does not tend to zero for larger
sample sizes N.

Recently, the bootstrap method has been shown to be a useful tool
for structure detection of nonlinear models [6–8]. The bootstrap is a
numerical method for estimating parameter statistics that requires
few assumptions [9]. The conditions needed to apply bootstrap to
least-squares estimation are quite mild: namely, that the errors be
independent, identically distributed, and have zero mean.

In this paper, we investigate whether 1) a linear or nonlinearmodel
best represents the observed data and 2) the system is invariant during
envelope expansion (varying Mach number). The data analyzed in
this study are from the F-15B Quiet SpikeTM flight-test program,
which was a collaborative effort between Gulfstream Aerospace
Corporation (Savannah, Georgia) and NASA Dryden Flight
Research Center [10–12]. The results show that

1) Linear models are inefficient for modeling aeroservoelastic
data.

2) Nonlinear identification provides a parsimonious model de-
scription while providing a high percent fit for cross-validated
data.

3) The model structure and parameters vary as the flight condition
is altered.

II. NARMAX Model Form

The dynamic behavior of many nonlinear systems can be
represented as a discrete polynomial that expands the present output
value in terms of present and past values of the input signal and past
values of the output signal [13–15]. A systemmodeled in this form is
popularly known as aNARMAX(nonlinear autoregressive,moving-
average exogenous) model and is linear in the parameters.

Recently, Kukreja and Brenner [16] showed that NARMAX
identification iswell suited to describing aeroelastic phenomena. The
NARMAX structure is a general parametric form for modeling
nonlinear systems [14]. This structure describes both the stochastic
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and deterministic components of nonlinear systems.Many nonlinear
systems are a special case of the general NARMAX structure [17]. In
this paper, we focus on a special class of NARMAX models:
nonlinear polynomial models. The polynomial NARMAX structure
models the input–output relationship as a nonlinear difference
equation of the form

z�n� � fl�z�n � 1�; . . . ; z�n � nz�; u�n�; . . . ; u�n � nu�; e�n
� 1�; . . . ; e�n � ne�� � e�n� (1)

where f denotes a nonlinear mapping, l is the order of the
nonlinearity,u is the controlled or exogenous input, z is themeasured
output, and e is the uncontrolled input or innovation. This nonlinear
mapping may include a variety of nonlinear terms, such as terms
raised to an integer power, products of present and past inputs, past
outputs, or cross terms. In general, the nonlinear mapping f can be
described by a wide variety of nonlinear functions such as sigmoids
or splines [17,18]. This system description encompassesmany forms
of linear and nonlinear difference equations that are linear in the
parameters.

Identifying a NARMAX model requires two things: 1) structure
detection and 2) parameter estimation. Structure detection can be
divided intomodel-order selection and selectingwhich parameters to
include in the model. We consider model-order selection as part of
structure detection because, theoretically, there are an infinite
number of candidate terms that could be considered initially.
Establishing the model order, then, limits the choice of terms to be
considered. For the NARMAXmodel, the system order is defined to
be an ordered tuple as

O �: � nu nz ne l � (2)

wherenu is themaximum lag on the input,nz themaximum lag on the
output, ne the maximum lag on the error, and l is the maximum
nonlinearity order. Note that for nonpolynomial NARMAXmodels,
l may be simply replaced by a nonlinear mapping of some specified
class. In this paper, we assume that the system order is known.

III. Structure Detection

The structure-detection problem is that of selecting the subset of
candidate terms that best describe the output. Therefore, the
parametrization of a system is still further reduced by determining
which of the components are required. A binomial coefficient is
defined as

n
k

� �
� n�n � 1� � � � �n � k� 1�

k!
� n!

k!�n � k�!

where k! is the factorial of k, k! � 1 � 2 � 3 � . . . � �k � 1� � k. The
maximumnumber of terms in aNARMAXmodel with nz, nu, andne
dynamic terms and lth-order nonlinearity is

p� nu � nz � ne � 1� l
l

� �
(3)

As a result, the number of candidate terms becomes very large for
even moderately complex models, making structure detection
difficult. We define the maximum number of terms p as the number
of candidate terms to be initially considered for identification.
Because of the excessive parameterization (the curse of
dimensionality), the structure-detection problem often leads to
computationally intractable combinatorial optimization problems.

IV. Time Series

The data considered in this paper are time series because the input
signal u�n� is assumed to be zero or constant. Time-series analysis is
used when inputs are not available to the experimenter or when it is
unclear which signals are inputs and which are outputs [19]. Models
arising from times-series data can have several unique forms

[1,20,21]. In our treatment of the data, the ARMA and NARMA
model classes are of practical significance.

This special case of the general NARMAXmodel [Eq. (1)] can be
written as

z�n� � fl�z�n � 1�; . . . ; z�n � nz�; e�n � 1�; . . . ; e�n � ne��
� e�n� (4)

where we redefine the model order for this model set as

O� � nz ne l � (5)

The maximum number of candidate terms in a model [Eq. (4)] with
nz and ne dynamic terms and lth-order nonlinearity is

p� nz � ne � l
l

� �
(6)

Note that ARMAmodels can be estimated using the Yule–Walker
equations or the instrumental variable estimator to avoid estimating
theMA part [1,20,21]. This is the approach taken in this paper. For a
NARMA model, the NMA part must be modeled. For nonlinear
systems, output additive noise can produce multiplicative terms
between input, output, and itself. To compute unbiased parameter
estimates, a noise model (i.e., NMA) needs to be estimated [22].

V. Structure-Detection Methods

With the model types defined for the flight-test data available for
analysis, we describe two approaches applicable to these model
classes. The first is appropriate for autoregressive (AR) models and
the second is appropriate for NARMA models.

A. Minimum Description Length

A commonly used technique in linear system identification to
determine model structure is MDL [4]. MDL was specifically
developed to overcome some of the inconsistencies of Akaike’s
information criterion [5]; that is, its variance does not tend to zero for
larger sample sizes N.

The number of parameters necessary to reproduce an observed
sequence fz1; . . . ; zNg of a time series depends on the model and
parameters assumed to have generated the data [4]. The MDL
technique finds the model that minimizes the description length and
thereby computes an estimate of model order [4].

Binary prefix codes are used to encode data strings. These data
strings can be made up of symbols, parameters, numbers, etc. It is
known that the average length of a code word is bounded by
Shannon’s theorem [4]. Therefore, it is possible to write [4]X

x

p�x�L�x� 	 �
X
x

p�x� logp�x� (7)

where L�x� is the length of the code word (i.e., length of parameter
vector �), and p�x� is the probability of x. It is also possible to write

L�zjx; �� � � logp�zjx; �� (8)

where L�zjx; �� is known as the log-likelihood function (to be

maximized). Let �̂ denote the value of the parameter that maximizes
the likelihood and thus minimizes the parameter vector length (i.e.,

code-word length) L�zjx; ��. Because �̂ can only be encoded up to a
certain precision, the code-word length L�zjx; �� becomes longer

than the desired minimum L�zjx; �̂�, given noise considerations. Let
the precision be �� 2�q, where q is the number of bits used for
encoding the parameter. It is possible to save on the code-word length
if q is small. However, the result is a loss in precision. The optimal
precision depends on the size of the observed data via � log ��
0:5 logN and hence the total code-word length for k parameters is
given by the MDL:

MDL �k� � � log�maximized likelihood� � 1
2
k logN (9)
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which, for an AR�nz� model, gives

MDL �nz� � log�maximized likelihood� � nz
N
logN (10)

B. Bootstrap

Recently, the bootstrap has been shown to be a useful tool for
structure detection of nonlinear models [8]. The bootstrap is a
numerical method for estimating parameter statistics that requires
few assumptions [9]. The conditions needed to apply bootstrap to
least-squares estimation are quite mild: namely, that the errors be
independent, identically distributed, and have zero mean.

The bootstrap is a technique to randomly reassign observations
that enables reestimates of parameters to be computed. This
randomization and computation of parameters is done numerous
times and treated as repeated experiments. In essence, the bootstrap
simulates a Monte Carlo analysis. For structure computation, the
bootstrap method is used to detect spurious parameters: those
parameters for which the estimated values cannot be distinguished
from zero.

Application of an appropriate ‘2 estimator to measured data gives

the model response Ẑ, residuals "̂, and parameter estimate �̂. The
bootstrap assumes that these residuals "̂� �"̂1; "̂2; . . . ; "̂N � arise from
an unknown distributionD. By randomly resampling these residuals,
with replacement, it is possible to generate a resampled version of the
prediction errors "̂
 � �"̂
1 ; "̂
2 ; . . . ; "̂
N �, for which the distribution
estimates D. The resampling procedure for each "̂
i involves
randomly selecting from "̂ with an equal probability associated with
each of theN elements. For example, a possible resampled version of
the errors for N � 5 is "̂
 � �"̂4; "̂1; "̂4; "̂2; "̂3�. The star notation
indicates that "̂
 is not the calculated error "̂, but rather a resampled
version of it. These resampled errors are added to themodel response
to generate a bootstrap replication of the original data:

Z 
 ��z"�̂� "̂
 (11)

A new bootstrapped parameter estimate �̂


is obtained from this

bootstrapped dataZ
. This procedure is repeatedB times to provide a
set of parameter estimates from the B bootstrap replications:

�̂ 
 �
h
�̂


1 ; . . . ; �̂



B

i
(12)

Parameter statistics can then be easily computed from �̂


by forming

percentile intervals at a chosen level of significance �.
Two methods related to the bootstrap are genetic algorithms and

particle filters. They are both resampling procedures for which the
goal is to estimate model parameters and distribution, mainly for the
nonlinear and non-Gaussian case.

Genetic algorithms are related to subset selection that may be
loosely considered a type of Monte Carlo approach. However, as
with subset selection, genetic algorithms fail to produce an optimal
model set. Genetic algorithms are known to be computationally
demanding, can lead to premature convergence on poor solutions,
and have a tendency to converge toward local optima (and in some
cases to arbitrary points) [23–26].

Particle filters implement a resamplingmethod that tries to achieve
the same goal as the genetic algorithm of estimating a sequence of
hidden parameters based only on observed data. Particle filtering has
been useful in a variety of areas but is difficult to implement for
problems such as regressor selection, due to computational
complexity leading to intractable problems for moderately complex
full-model forms [27–30].

Structure detection can provide useful process insights that can be
used in subsequent development or refinement of physical models.
Therefore, in the sequel, we investigate the applicability ofMDL and
the bootstrap to experimental aircraft data. Specifically, MDL and
bootstrap methods are used as structure-detection tools to assess
whether the 1) underlying data are best described by a linear time-

invariant or nonlinear model and 2) model structure is invariant
during envelope expansion.

VI. Experimental F-15B Quiet Spike Data

The MDL and bootstrap technique were applied to experimental
flight-test data from the F-15B Quiet Spike project by Gulfstream
Aerospace Corporation (Savannah, Georgia) and NASA Dryden
Flight Research Center [10–12]. The data analyzed for this study
used the structural accelerometer response output of the Quiet Spike
boom tip when fully extended.

In this study, we only analyzed data from cases in which theMach
number was varied to be able to quantify whether model structure
and parameters vary as the flight condition parameter is altered. If
data were analyzed from cases in which more than one flight
condition parameter was altered, one could not assess whether the
dynamics and nonlinear effects vary due to Mach number or a
combination of conditions.

A. Procedures

Flight data were gathered during subsonic, transonic, and
supersonic flutter clearance of the F-15B Quiet Spike (see Fig. 1).
This paper considers accelerometer data measured during pilot-
induced pitch raps at Mach 0.85, 0.95, and 1.40 at 12,192 m (40,
000 ft). The output was taken as the response of an accelerometer
mounted near the Quiet Spike boom tip (see Fig. 2). Data were
sampled at 400 Hz. For analysis, the recorded flight-test data were
decimated by a factor of 2, resulting in a final sampling rate of
200 Hz.

For identification of a linear model, an arbitrarily large AR model
of fiftieth order (nz � 50) was posed for estimation and the MDL
technique was used to determine the optimal linear model. For
identification of a nonlinear model, a model order with fourth-order
output and error dynamics and second-order nonlinearity,
O� �4; 4; 2�, was used. A model with fourth-order dynamics was
selected because it has been observed that aeroservoelastic structures
are well defined by a fourth-order linear time-invariant system [31–
33]. The nonlinearity order was chosen as second-order because
empirical results showed that models of higher nonlinear order were
not efficient to describe the data sets available for analysis. This gave
a full-model description with 45 candidate terms. The nonlinear
model was identified by applying the bootstrap approach. For the
bootstrap method, B� 100 bootstrap replications were generated to
assess the distribution of each parameter. For all three techniques,
each parameter was tested for significance at the 95% confidence
level.

For both linear and nonlinear identification, Table 1 shows the
number of data points available for each flight condition. The
estimation data sets were from accelerometer response measure-
ments of the primary sensor on the boom tip and the cross-validation
data sets were of the backup sensor at the same location.

Fig. 1 Flight-test article in extended configuration.
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B. Results

The results of identifying the F-15B Quiet Spike data are
presented. Figure 3 shows the output data sets used for this analysis.
The data represent structural accelerometer response (primary sensor
boom tip) used to compute the system structure.

Equations (13–15) depict the model structure computed by the
bootstrap method:

Mach 0:85; altitude 40; 000 ft �12; 192 m�;

z�n� � �̂1z�n � 1� � �̂2z�n � 2� � �̂3z�n � 3� � �̂4z2�n � 4�

� �̂5"�n � 1� � �̂6"�n � 2� � �̂7"�n � 3�

� �̂8z�n � 4�"�n � 4� � �̂9"2�n � 4� � "�n� (13)

Mach 0:95; altitude 40; 000 ft �12; 192 m�;

z�n� � #̂1z�n � 1� � #̂2z�n � 2� � #̂3z�n � 3�

� #̂4z�n � 3�z�n � 4� � #̂5z
2�n � 4� � #̂6"�n � 1�

� #̂7"�n � 2� � #̂8"�n � 3� � #̂9z�n � 3�"�n � 4�

� #̂10z�n � 4�"�n � 3� � #̂11"�n � 3�"�n � 4�

� #̂12z�n � 4�"�n � 4� � #̂13"2�n � 4� � "�n� (14)

Mach 1:40; altitude 40; 000 ft �12; 192 m�;

z�n� � �̂1z�n � 1� � �̂2z�n � 2� � �̂3z�n � 3�

� �̂4z�n � 1�z�n � 4� � �̂5"�n � 1� � �̂6"�n � 2�

� �̂7"�n � 3� � �̂8z�n � 1�"�n � 4� � �̂9z�n � 4�"�n � 1�

� �̂10"�n � 1�"�n � 4� � "�n� (15)

Equations (13–15) represent the computed model structure for flight
conditions Mach 0.85, 0.95, and 1.40, respectively. The computed
model structures are represented by a combination of linear and
nonlinear lagged-output terms and contain 9, 13, and 10 terms for
Mach 0.85, 0.95, and 1.40, respectively. Hence, the bootstrap
technique successfully produced a parsimonious model description
from the full set of 45 candidate terms.

For AR (linear) model identification using MDL to compute
structure, the estimated models were of order nz � 42, 44, and 46 for
Mach 0.85, 0.95, and 1.40, respectively. Thesemodels are not shown
because they are simply a dynamic expansion of the output up to the
order stated. However, for cross-validation data, we show the model

fit of these linear models compared with the cross-validation fit
obtained with the NARMA models (see Fig. 4).

Figure 4 shows the predicted output for the cross-validation data
sets for the identified structures; Fig. 4a displays Eq. (13) and
AR�nz � 42�, Fig. 4b displays Eq. (14) and AR�nz � 44�, and
Fig. 4c displays Eq. (15) andAR�nz � 46�). Each panel displays the
full time history of the predicted output of the linear and nonlinear
models superimposed on top of the measured output. For Mach 0.85

Fig. 2 Quiet Spike sensor locations.

Table 1 Data points available at each flight condition

Altitude 12,192 m (40, 000 ft)

Mach number 0.85 0.95 1.40
Estimation data 572 400 504
Validation data 572 400 504
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Fig. 3 Estimation data: recorded structural accelerometer response to

stick raps.

1582 KUKREJA



(Fig. 4a), the predicted outputs of the linear and nonlinear models
account for over 91 and 95% of the measured output variance,
respectively. For Mach 0.95 (Fig. 4b), the predicted output of the
linear and nonlinear models account for over 92 and 97% of the
measured output variance, respectively. ForMach 1.40 (Fig. 4c), the
predicted output of the linear and nonlinear models account for over
91 and 96% of the measured output variance, respectively.

The results demonstrate that although the AR models contain
many more terms to explain the underlying process, they still offer a
lower percent fit compared with the nonlinear model at the cost of
model complexity (higher order), which often leads tomore complex
control synthesis. The nonlinearmodels contain only a few terms and
were capable of explaining a larger percent of the output variance.
For these data sets, the results show that linear models are inefficient
for accurate modeling of aeroservoelastic data. These results show
that a nonlinear identification approach offers a parsimonious system
description while providing a high percent fit for cross-validated
data. Moreover, the results illustrate the need to vary model structure
for different flight conditions.

VII. Discussion

Experimental results demonstrate that structure computation as a
tool for black-box modeling may be useful for the analysis of
dynamic aircraft data. The bootstrap successfully reduced the
number of regressors posed to aircraft aeroelastic data, yielding a
parsimonious model structure for each data set. Additionally, these
parsimonious structures were capable of predicting a large portion of
the cross-validation data collected on a backup sensor at a similar
location. However, for linear analysis, the MDL approach was not
able to reduce the model order (structure) as well and yielded a more
complex system description. Although these linear models have
higher complexity (degrees of freedom), they provided a model-
predictive capability that explained a smaller percent of the observed
output variance. This find indicates that a linear model may not be
appropriate to describe aeroservoelastic data. A higher percent fit
offered by the parsimonious nonlinear models suggests that the
identified structures and parameters explain the data well. Using
percent fit alone as an indicator of model goodness could lead to
incorrect interpretations of model validity. Nevertheless, in many
cases, for nonlinear models, this may be the only indicator that is
readily available.

In this work, the results show that although the linear dynamics
remained invariant for all flight conditions available for analysis, the
nonlinear dynamics changed as the Mach number increased. For
Mach 0.85, the model [Eq. (13)] displayed a mildly nonlinear
process, which physically makes sense because the airflow is mainly
subsonic. When the Mach number was increased to 0.95, the model
[Eq. (14)] demonstrated a richer nonlinear dynamic description,
which is likely due to embedded shock formations in the transonic
regime. For Mach 1.40, the model [Eq. (15)] displayed a mildly
nonlinear process again, which physically makes sense, because in
this regime, the shocks become fixed. It is difficult to make definitive
comments on the underlying physics responsible for this behavior
without extensive analysis of different flight conditions. The
important points to note are that this study suggests that

1) Nonlinear models are appropriate to describe the dynamics
behavior of advanced aircraft.

2)Models describing aircraft dynamics vary with flight condition.
This suggests that nonlinear modeling may afford a robust and

parsimonious system description compared with a larger operating
regime and that models used for prediction (e.g., control) should not
be invariant for all flight conditions.

For this study, only a polynomial mapping with fourth-order
output and error lag was used as a basis function to explain the
nonlinear behavior of the F-15B Quiet Spike data. Clearly, different
basis functions and a higher dynamic order (lag order) should be
investigated to determine if another basis can produce accurate
model predictions with reduced complexity. Moreover, further
studies are necessary to evaluate whether the model structure is
invariant under different operating conditions, such as altitude, and
model parameterizations.

This study illustrates the usefulness of structure detection as an
approach to compute a parsimonious model of a highly complex
nonlinear process, as demonstrated with experimental data of aircraft
aeroelastic dynamics. Moreover, analysis of flight-test data can
provide useful process insights that can be used in subsequent
development or refinement of physical models. In particular,
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Fig. 4 Cross-validation data: predicted linear and nonlinear model
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morphological models are based on assumptions (e.g., these effects
are important and those are negligible), which may be incorrect
[34,35]. A structure computation approach to model identification
may help uncover such surprises.

VIII. Conclusions

Results show that linear models are inefficient for modeling
aeroservoelastic data and that nonlinear identification provides a
parsimonious model description while providing a high percent fit
for cross-validated data. Moreover, the results demonstrate that
model structure and parameters vary as the flight condition varies.
These results may have practical significance in the analysis of
aircraft dynamics during envelope expansion and could lead to more
efficient control strategies. In addition, this technique could allow
greater insight into the functionality of various systems dynamics by
providing a quantitative model that is easily interpretable.
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