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Abstract 
This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide 

samples. During ceramic specimen processing, the porosity was formed using the sacrificial template 
technique, with two different sizes of polystyrene beads used for the template. The samples were initially 
supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside 
morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 
0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus airflow is reported. 
Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the 
density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample 
sets should be supplied with samples of similar thickness and having uniform surface morphology. This 
would allow a more consistent determination of air flow versus processing parameters and the resulting 
porosity size and distribution. 

Introduction 
Porous, open cell ceramics are used in a variety of engineering, industrial and aerospace 

applications. These include hot gas and liquid filters, catalyst and sensor supports, solid oxide fuel cells 
and chemical reactors (refs. 1 and 2). A comprehensive review of the techniques used to create porous 
ceramics is found in reference 3. There are three major processing routes (1) replica template, (2) 
sacrificial template, and (3) direct foaming. 

The replica technique uses either a synthetic template or natural cellular template that is infused with 
a ceramic suspension. Upon drying/firing, the finished ceramic displays the same structure as the 
template. Templates include naturally occurring sponge, coral, and wood as well as synthetic polymer 
and carbon foams. In the second technique, a sacrificial phase is homogeneously dispersed within a 
continuous matrix of ceramic powder particles or a ceramic slip. After processing, pores remain in place 
of the sacrificial phase. Materials used for the template include polymer beads, salts, and carbon. Natural 
organic materials for templates include cellulose, sucrose, and wax. Barea et al. (ref. 4) used sacrificial 
starch to process porous mullite. Finally, liquids such as oils and freeze-dried water or camphene have 
also been used for templates. Araki and Halloran (ref. 5) used frozen camphene as the template when 
making porous alumina. The third technique introduces gaseous bubbles into a ceramic suspension. The 
resulting foam is then stabilized with surfactants to keep the foam structure intact during the firing phase. 



NASA/TM—2008-215424 2

Surfactants can be non-ionic, anionic, or cationic. Setting of the foam can be via thermosetting, sol-gel, 
or gel-casting.  

The purpose of the present study is to measure air flow properties of oxide ceramics manufactured 
using the sacrificial template technique (polymer beads). The desire was to create an open pore structure 
leading to an air-permeable material. The processing parameters used for the highest-flowing ceramics 
will be identified. The results will be used by the ceramic manufacturer to guide further processing work.  

Procedure 
Table I contains initial dimensions and weights of the ceramic specimens. The porosity was formed 

using the sacrificial template technique. Polystyrene beads were used, with the bead diameter for the PB-
1 samples (0.6 to 1 mm) twice that for the PB-2.5 samples (0.36 to 0.5 mm). The rest of the processing 
specifics remains proprietary to the originator including volume percent of beads used. Photographs of 
each specimen are contained in appendix A.  

The flow apparatus is based on one described in an unpublished report by Sims (ref. 6) The test 
equipment (figs. 1 and 2) consists of an aluminum “sample assembly”, a stainless steel tube (49.5-in. 
long, 2.350-in. ID, 0.065-in. wall) to insure uniform static pressure at the exit, a clamshell retainer ring, 
two dial-type 0-35 psig pressure gauges (Pennwalt, Wallace & Tiernan Division), two type-K 
thermocouples, and a either a 0.32-to-3.2 standard cubic feet per minute (SCFM) or 0.80-to-8.0 SCFM 
flow meter (Omega FL1501-A or FL4 611-V, respectively). The latter was needed for the three highest 
flowing specimens: PB2.5-1, PB1-2, and PB2.5-4. 

Filtered shop air is routed through the flow meter to the sample assembly. The assembly (figs. 3, 4, 
and 5) contains a flow orifice, the ceramic sample, a rubber gasket and a downstream flow orifice. Three 
flow orifices are available to use: 0.07-in., 0.125-in. or 0.250-in. inside diameter. If the samples are 
somewhat restrictive to air flow, only the largest orifice provides useful data—as was the case in this 
study.  

The inside diameter of the downstream flow orifice is 1.747 in., providing an exit area of 2.397 in.2. 
The outer diameters of the flow orifices are sealed in the sample assembly with O-rings. Initial 
calibration of each flow orifice was conducted with no ceramic sample in place. The results are 
displayed in figure 6. Inlet pressure and temperature are measured upstream of the sample as shown in 
figure 3; the exit pressure and temperature is measured at the far end of the steel tube. The flow is so low 
at these measurement locations that total and static pressure are identical. 

In preparation for the test each sample is “potted” into an aluminum ring using room-temperature 
vulcanizing rubber (RTV). Figure 7 is a representative cross section of such a ring. The thicknesses of 
the available aluminum rings range from 0.11 to 0.13 in. Because of this and the fact that the backside 
morphology of the as-received samples showed various levels of porosity—or lack thereof (see Results 
section and appendix A), the backside of each sample was ground (dry) using 120 grit SiC paper. The 
resulting thicknesses are listed in table II. 

Once each sample was loaded into the flow apparatus, the upstream sample pressure was increased 
in 1 psi increments up to a maximum of 15 psi over ambient by adjusting the flow meter control knob. 
Airflow in SCFM was manually logged in a laboratory notebook. Upstream sample inlet temperature, 
downstream outlet temperature, and outlet pressure were logged at test start; these numbers did not vary 
throughout the flow test. The contribution of pressure loss by the orifice to the sample ΔP is negligible. 

Because all samples exhibited good flow throughout the 15 Δpsi pressure range, a corrected ΔP was 
calculated by taking into account the ambient air pressure and measured sample inlet temperature. The 
procedure (ref. 6) is as follows, where 
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corrected ΔP = σ x measured ΔP 
σ = ρtest/ρstp, and  
 
ρstp = 0.0765 lb/ft3 
ρtest = (Ambient atmospheric pressure + measured ΔP) × 144 

(Inlet temperature + 459.67) × 53.352 
 

Atmospheric pressure and ΔP are measured in psi and inlet temperature is measured in °F. SCFM 
versus corrected ΔP was input into a spreadsheet and graphed (appendix B). 

Results and Discussion 
The top two photographs in each appendix A figure are of the as-received material, with the side 

having the identification number designated with the front side. Note that in most cases the as-received 
backside had an inconsistent morphology with some areas exhibiting porosity and other areas seemingly 
very dense. The backside surfaces in general were also not flat. For this reason, the backside of each 
sample was ground (dry) using 120 grit SiC paper. The resulting thicknesses are listed in table II.  

Appendix B contains the air flow data for each material. None of the specimens flowed well with the 
0.125-in. flow orifice installed. Air did flow through all samples using the 0.250-in. flow orifice up to 
15 delta psi. Specimens PB1-2 and PB1-3 became cracked (the latter more than the former) at some 
point during the flow testing. These cracks were not catastrophic, but likely allowed somewhat more air 
to pass during the testing. Note the anomaly in flow for sample PB1-3 in figures 8 and 9. The crack 
appears to have occurred as the corrected ΔP was raised from 42 to 54 psid (ΔP from 4 to 5 psid).  

Figure 8 compares the sample results individually presented in appendix B. Figure 9 uses the data 
but normalizes the ΔP with the inlet pressure and divides by the sample thickness. This allows for 
comparisons of samples with thickness variations and provides some data for pressure drop estimates as 
the thickness is changed. Since the inlet pressure increases with ΔP for a sample test, both SCFM and 
mass flow will also increase. The characterization of sample ΔP with flow can better be determined if 
corrected mass flow were used. 
 

 Corrected mass flow = (mass flow) × sqrt(Inlet temperature °F+ 459.67) 
     (Inlet pressure/Pstd) × sqrt(Tstd) 
 

 where Pstd = 14.696 psia and Tstd = 518.67 R. 
 

The corrected mass flow is also divided by the flow area of the 0.250-in. orifice (0.04909 in.2). 
Figure 9 shows that the mass flow of the samples becomes constant or choked as the ΔP increases. 

Figure 10 presents the pressure drop data for constant levels of corrected airflow as a function of the 
sample density. Figure 11 takes estimates of the maximum or choked corrected airflow from figure 9 and 
are plotted against sample density. As the density of the ceramic material increases, the maximum 
corrected flow decreases rapidly. 

The ranking of the specimens in order from those allowing the highest flow rate at 15 psi ∆P to the 
lowest is listed in table III. Also listed are the initial and final sample thicknesses, as well as the change 
in thickness due to grinding. Note that the sample that exhibited the most cracking (PB1-3) was the 
second lowest flowing specimen. The pressure build-up causes such cracks to form.  

Conclusion 
The PB2.5 processing route results in more-porous specimens that flow greater amounts of air than 

those processed via PB1. It should be noted that any future sample set should be supplied with each 
specimen in the batch having the same thickness. A uniform backside morphology with a consistent 
porosity is also highly desired. Eliminating these variables would allow a more consistent determination 
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of air flow versus processing parameters/porosity size/distribution. The nonuniformity of the sample 
density/surface, combined with the small flow orifice, likely caused variations in the reported data. More 
consistent results could be achieved with a larger orifice.  
 
 
 

TABLE I.—INITIAL (THICK) SAMPLE WEIGHT/DIMENSION/DENSITY 
  Wgt, 

g 
Wgt, 

lb 
Thickness, 

in. 
Dia.,
in. 

Vol.,
in.3 

Density,
lb/in.3 

Thickness, 
cm 

Dia., 
cm 

Vol., 
cc 

Density,
g/cc 

PB1-1 10.49 0.023 0.200 1.98 0.62 0.038 0.508 5.03 10.1 1.04 

PB1-2 10.41 0.023 0.197 1.99 0.61 0.037 0.500 5.05 10.0 1.04 

PB1-3 8.30 0.018 0.146 1.98 0.45 0.041 0.371 5.03 7.4 1.13 

PB1-4 8.87 0.020 0.152 1.98 0.47 0.042 0.386 5.03 7.7 1.16 

PB2.5-1 10.18 0.022 0.200 1.98 0.62 0.036 0.508 5.03 10.1 1.01 

PB2.5-2 10.59 0.023 0.190 1.98 0.58 0.040 0.483 5.03 9.6 1.10 

PB2.5-3 7.83 0.017 0.138 1.98 0.42 0.041 0.351 5.03 7.0 1.12 

PB2.5-4 8.03 0.018 0.153 1.98 0.47 0.038 0.389 5.03 7.7 1.04 

 
 
 

TABLE II.—AS-TESTED (GROUND THICKNESS) SAMPLE WEIGHT/DIMENSION/DENSITY 
 Wgt, 

g 
Wgt, 

lb 
Thickness, 

in. 
Dia., 
in. 

Vol.,
in.3 

Density,
lb/in.3 

Thickness, 
cm 

Dia., 
cm 

Vol., 
cc 

Density,
g/cc 

PB1-1 7.22 0.016 0.132 1.98 0.41 0.039 0.335 5.03 6.7 1.08 

PB1-2 6.62 0.015 0.129 1.99 0.40 0.036 0.328 5.05 6.6 1.01 

PB1-3 7.12 0.016 0.121 1.98 0.37 0.042 0.307 5.03 6.1 1.17 

PB1-4 7.94 0.018 0.135 1.98 0.42 0.042 0.343 5.03 6.8 1.17 

PB2.5-1 6.66 0.015 0.133 1.98 0.41 0.036 0.338 5.03 6.7 0.99 

PB2.5-2 7.56 0.017 0.135 1.98 0.42 0.040 0.343 5.03 6.8 1.11 

PB2.5-3 6.29 0.014 0.116 1.98 0.36 0.039 0.295 5.03 5.9 1.07 

PB2.5-4 6.06 0.013 0.116 1.98 0.36 0.037 0.295 5.03 5.9 1.04 

 
 

TABLE III.—RANKING OF HIGHEST FLOW AT ∆15 psi 
  Flow Initial thickness As-ground thickness Delta thickness 
  SCFM lb/min in. cm in. cm in. cm 

PB2.5-1 4.40 0.330 0.200 0.508 0.133 0.338 0.07 0.17 
PB1-2 3.90 0.293 0.197 0.500 0.129 0.328 0.07 0.17 
PB2.5-4 3.70 0.278 0.153 0.389 0.116 0.295 0.04 0.09 
PB2.5-3 2.73 0.205 0.138 0.351 0.116 0.295 0.02 0.06 
PB1-1 2.69 0.202 0.200 0.508 0.132 0.335 0.07 0.17 
PB2.5-2 2.66 0.200 0.190 0.483 0.135 0.343 0.06 0.14 
PB1-3 1.86 0.140 0.146 0.371 0.121 0.307 0.03 0.06 
PB1-4 0.92 0.069 0.152 0.386 0.135 0.343 0.02 0.04 
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Figure 1.—Complete flow apparatus. 
 
 
 

 
 

Figure 2.—Pressure gauges and flowmeter. 
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Figure 3.—Sample assembly in place. 
 

 
 

Figure 4.—Flow orifices: 0.07, 0.125, 0.250 in. 
(L to R). All disc ODs = 2.495 in. 

 

 
 

Figure 5.—Sample insertion order: flow orifice, potted 
sample (RTV faces upstream), gasket, downstream 
orifice. 

TC 
Air in 

P tap 

Flow straightening tube 
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Figure 6.—Air flow rate (SCFM) versus delta pressure (psid) for each flow orifice 
alone (no sample loaded).  

 

 
 

Figure 7.—Test set-up cross-section. 
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Figure 8.—Sample comparisons, pressure drop versus airflow. 
 

 
 

Figure 9.—Sample corrected pressure drop over inlet pressure per sample thickness versus corrected 
mass flow per orifice flow area.  
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Figure 10.—Cross-plot of figure 9 showing corrected pressure drop per inch at constant corrected mass  
flows per area versus sample density.  

 

 
 

Figure 11.—Estimated choked corrected mass flow per unit area from figure 9 versus sample density. 
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Appendix A 
 

Macrographs 
(1) Front side (with ID); 
(2) Backside as-received; 
(3) Backside ground 

 
 

PB1-1 
PB1-2 
PB1-3 
PB1-4 

 
PB2.5-1 
PB2.5-2 
PB2.5-3 
PB2.5-4 
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Figure 12.—Sample PB1-1 (front and back as-received; back 
as-sanded). 
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Figure 13.—Sample PB1-2 (front and back as-received; back 
as-sanded). 
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Figure 14.—Sample PB1-3 (front and back as-received; back 
as-sanded). 
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Figure 15.—Sample PB1-4 (front and back as-received; back 
as-sanded). 
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Figure 16.—Sample PB2.5-1 (front and back as-received; back 
as-sanded). 
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Figure 17.—Sample PB2.5-2 (front and back as-received; back 
as-sanded). 
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Figure 18.—Sample PB2.5-3 (front and back as-received; back 
as-sanded). 
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Figure 19.—Sample PB2.5-4 (front and back as-received; back 
as-sanded). 
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Appendix B 
 

SCFM versus corrected ΔP 
 
 

PB1-1 
PB1-2 
PB1-3 
PB1-4 

 
PB2.5-1 
PB2.5-2 
PB2.5-3 
PB2.5-4 
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Δpsi Flow, 
SCFM 

Meas Corr 0.250 in. Data 
0 0.00 0.00 0.00 
1 1.05 4.77 0.63 
2 2.23 5.80 0.97 
3 3.54 6.49 1.20 
4 4.98 7.06 1.41 
5 6.56 7.46 1.59 
6 8.27 7.79 1.74 
7 10.11   1.89 
8 12.08   2.01 
9 14.18   2.12 

10 16.42   2.22 
11 18.79   2.31 
12 21.29   2.41 
13 23.93   2.52 
14 26.69   2.60 
15 29.59   2.69 

 
Δpsi Flow, 

SCFM 
Meas Corr 0.250 in. Data 

0 0.00 0.00 0.00 
1 1.05 4.77 1.00 
2 2.23 5.80 1.47 
3 3.54 6.49 1.80 
4 4.98 7.06 2.08 
5 6.56 7.46 2.30 
6 8.27 7.79 2.50 
7 10.11   2.68 
8 12.08   2.82 
9 14.18   3.00 

10 16.42   3.15 
11 18.79   3.30 
12 21.29   3.45 
13 23.93   3.60 
14 26.69   3.75 
15 29.59   3.90 
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Δpsi Flow, 

SCFM 
Meas Corr 0.250 in. Data 

0 0.00 0.00 0.00 
1 1.05 4.77   
2 2.23 5.80 0.40 
3 3.54 6.49 0.56 
4 4.98 7.06 0.77 
5 6.56 7.46 0.82 
6 8.27 7.79 0.93 
7 10.11   1.06 
8 12.08   1.16 
9 14.18   1.27 

10 16.42   1.36 
11 18.79   1.47 
12 21.29   1.59 
13 23.93   1.68 
14 26.69   1.78 
15 29.59   1.86 

 
 

Δpsi Flow, 
SCFM 

Meas Corr 0.250 in. Data 
0 0.00 0.00 0.00 
1 1.05 4.77   
2 2.23 5.80   
3 3.54 6.49   
4 4.98 7.06 0.35 
5 6.56 7.46 0.41 
6 8.27 7.79 0.45 
7 10.11   0.51 
8 12.08   0.57 
9 14.18   0.63 

10 16.42   0.69 
11 18.79   0.74 
12 21.29   0.79 
13 23.93   0.83 
14 26.69   0.89 
15 29.59   0.92 
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Δpsi Flow, 

SCFM 
Meas Corr 0.250 in. Data 

0 0.00 0.00 0.00 
1 1.05 4.77 1.24 
2 2.23 5.80 1.72 
3 3.54 6.49 2.20 
4 4.98 7.06 2.40 
5 6.56 7.46 2.65 
6 8.27 7.79 2.85 
7 10.11   3.05 
8 12.08   3.22 
9 14.18   3.40 

10 16.42   3.60 
11 18.79   3.70 
12 21.29   3.88 
13 23.93   4.05 
14 26.69   4.25 
15 29.59   4.40 

 
 

Δpsi Flow, 
SCFM 

Meas Corr 0.250 in. Data 
0 0.00 0.00 0.00 
1 1.05 4.77 0.60 
2 2.23 5.80 0.95 
3 3.54 6.49 1.19 
4 4.98 7.06 1.39 
5 6.56 7.46 1.56 
6 8.27 7.79 1.71 
7 10.11   1.86 
8 12.08   1.98 
9 14.18   2.09 

10 16.42   2.20 
11 18.79   2.30 
12 21.29   2.39 
13 23.93   2.48 
14 26.69   2.57 
15 29.59   2.66 
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Δpsi Flow, 

SCFM 
Meas Corr 0.250 in. Data 

0 0.00 0.00 0.00 
1 1.05 4.77 0.66 
2 2.23 5.80 0.98 
3 3.54 6.49 1.23 
4 4.98 7.06 1.42 
5 6.56 7.46 1.59 
6 8.27 7.79 1.74 
7 10.11   1.89 
8 12.08   2.02 
9 14.18   2.13 
10 16.42   2.24 
11 18.79   2.35 
12 21.29   2.45 
13 23.93   2.55 
14 26.69   2.64 
15 29.59   2.73 

 
 
 
 

Δpsi Flow, 
SCFM 

Meas Corr 0.250 in. Data 
0 0.00 0.00 0.00 
1 1.05 4.77 0.90 
2 2.23 5.80 1.35 
3 3.54 6.49 1.63 
4 4.98 7.06 1.97 
5 6.56 7.46 2.20 
6 8.27 7.79 2.40 
7 10.11   2.55 
8 12.08   2.70 
9 14.18   2.90 

10 16.42   3.03 
11 18.79   3.15 
12 21.29   3.30 
13 23.93   3.40 
14 26.69   3.53 
15 29.59   3.70 
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