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Assessment of Current Jet Noise Prediction Capabilities 

An assessment was made of the capability of jet noise prediction codes over a broad 

range of jet flows, with the objective of quantifying current capabilities and identifying areas 

requiring future research investment. Three separate codes in NASA’s possession, 

representative of two classes of jet noise prediction codes, were evaluated, one empirical and 

two statistical.  The empirical code is the Stone Jet Noise Module (ST2JET) contained within 

the ANOPP aircraft noise prediction code. It is well documented, and represents the state of 

the art in semi-empirical acoustic prediction codes where virtual sources are attributed to 

various aspects of noise generation in each jet. These sources, in combination, predict the 

spectral directivity of a jet plume. A total of 258 jet noise cases were examined on the 

ST2JET code, each run requiring only fractions of a second to complete. Two statistical jet 

noise prediction codes were also evaluated, JeNo v1, and Jet3D. Fewer cases were run for the 

statistical prediction methods because they require substantially more resources, typically a 

Reynolds-Averaged Navier-Stokes solution of the jet, volume integration of the source 

statistical models over the entire plume, and a numerical solution of the governing 

propagation equation within the jet. In the evaluation process, substantial justification of 

experimental datasets used in the evaluations was made. In the end, none of the current 

codes can predict jet noise within experimental uncertainty. The empirical code came within 

2dB on a 1/3 octave spectral basis for a wide range of flows. The statistical code Jet3D was 

within experimental uncertainty at broadside angles for hot supersonic jets, but errors in  

peak frequency and amplitude put it out of experimental uncertainty at cooler, lower speed 

conditions. Jet3D did not predict changes in directivity in the downstream angles. The 

statistical code JeNo,v1 was within experimental uncertainty predicting noise from cold 

subsonic jets at all angles, but did not predict changes with heating of the jet and did not 

account for directivity changes at supersonic conditions. Shortcomings addressed here give 

direction for future work relevant to the statistical-based prediction methods. A full report 

will be released as a chapter in a NASA publication assessing the state of the art in aircraft 

noise prediction. 

Introduction 

Key to the engineering of quiet aircraft is the ability to calculate the noise that a given aircraft design 

will produce prior to building it. As in most areas of engineering science, engineers must optimize 

conflicting requirements and trades between competing goals can only be made if the engineer can predict 

the impact of the potential trades to the same fidelity in each discipline. The accuracy demands must also 

be balanced by the cost of the prediction. Early in a design cycle many configurations must be evaluated 

cheaply with relatively low accuracy, while later the calculations must become increasingly more accurate 
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with higher fidelity as the design becomes finalized and as details become known. At all stages, it is 

important to know the limitations of the design tools being used, to know the uncertainty in the numbers 

being used in decision-making.  

There is also a need to understand the accuracy and limitations of codes when you are in the business 

of developing prediction methods for engineering use. Scarce resources must be applied to where codes 

are most deficient and where these deficiencies hinder the engineering process. A rigorous program of 

assessing the prediction codes will clearly show the errors and uncertainties of the codes. Exercise of the 

prediction tools on demonstration design projects, especially projects aimed at developing and evaluating 

high-risk technologies, will illuminate where the errors most impact working engineers. This is the 

motivation for the current Fundamental Aeronautics Program at NASA, and the reason for the prediction 

assessment activities being undertaken within the various projects. A comprehensive assessment of 

prediction technologies for the acoustics discipline is being made across the projects. One chapter of this 

document will cover jet noise prediction methods. This paper is an overview of this activity and of this 

chapter. 

The assessment starts by identifying families of test cases that are typical of jet noise problems, for 

which the codes are considered viable and yet stretch beyond the cases for which they were developed. 

Next, aeroacoustic theory and its embodiment in computer codes, both statistical and empirical, are 

described and their sensitivities to flow parameters are documented. Experimental data, both flow and 

noise, are obtained for these cases. Experimental uncertainty is established for the data using comparisons 

with other facilities. The prediction codes are exercised on the matrix of cases and results compared 

against the experimental data. These results have been compiled across the vast range of test cases and 

some in depth analysis done to understand the results and point to areas that require improvement. 

Jet Noise Case Taxonomy 

To parameterize the jet noise cases of interest, the following jet parameters were considered: 

• Bypass Ratio (BPR) 

• Mach number M = (ideally expanded jet velocity)/(local sound speed) 

• Acoustic Mach number Ma = (ideally expanded jet velocity)/(ambient sound speed) 

• Static Temperature Ratio (Ts,j/T ) 

• Flight Mach number (Mf) 

• Convergent/convergent-divergent nozzles (C/C-D) 

• Internally/externally mixed nozzles (I/X) 

• Azimuthal base periodicity  (m = azimuthal Fourier mode) 

With this chosen set of parameters, a taxonomy was established as given in Table 1. Essentially, the 

cases progress from single-stream jets (BPR = 0) to internally mixed nozzles with minimal bypass ratio, 

both subsonic and supersonic with convergent and convergent-divergent nozzles. Different internal 

splitters changed the bypass ratios from 0.1 to 1.0 and 2.0. At bypass ratios 5 and 8 the data were obtained 

from an internally mixed nozzle test with axisymmetric and lobed mixers, and from an externally mixed 

separate flow nozzle. At bypass ratio 11+ all the data were acquired at on externally mixed, separate flow 

nozzle systems with two different area ratios. Several of the jet conditions with externally mixed nozzle 

systems at BPR = 5 and above have datasets with and without forward flight. 
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Table 1 Taxonomy of test cases. 

Section BPR M = Uj/cj 

Axial 

Geometry 

Azimuthal 

Geometry Ma = Uj/c  Ts,j/T  Data Source 

A 0 0.5-1.0 Conv m=0 0.35-1.49 0.85-2.7 SHJAR, Tanna, 

Viswanathan 

B  0.5-1.0 Conv m=6 0.5-1.49 0.85-2.6 SHJARCHEV 

C  1.18-1.8 C-D m=0 1.0-2.4 0.8-1.8 SHJAR, Tanna 

0.1 0.5-1.0 internal, Conv m=0 0.5-1.3 0.85-2.4 SDF07 

 1.0-2.0 internal, Conv m=0 1.0-2.4 0.8-1.8 SDF07 

D 

 1.0-2.0 internal, C-D m=0 1.0-2.4 0.8-1.8 SDF07 

1 0.5-1.0 internal, Conv m=0 0.5-1.3 0.85-2.4 SDF07 

 1.0-2.0 internal, Conv m=0 1.0-2.4 0.8-1.8 SDF07 

E 

 1.0-2.0 internal, C-D m=0 1.0-2.4 0.8-1.8 SDF07 

2 0.5-1.0 internal, Conv m=0 0.5-1.3 0.85-2.4 SDF07 F 

 1.0-2.0 internal, Conv m=0 1.0-2.4 0.8-1.8 SDF07 

5 <1 internal, Conv m=0 0.7-1.6 2.5-3.0 LDIM05 

 <1  m=8 0.7-1.6 2.5-3.0 LDIM05 

 <1  m=20 0.7-1.6 2.5-3.0 LDIM05 

G 

 <1 external, Conv m=0 0.7-1.6 2.5-3.0 HFXF07 

8 <1 internal, Conv m=0 0.6-1.2 2.5-3.0 LDIM05 

 <1  m=12 0.6-1.2 2.5-3.0 LDIM05 

 <1  m=6 0.6-1.2 2.5-3.0 LDIM05 

H 

 <1 external, Conv m=0 0.6-1.2 2.5-3.0 HFXF07 

11 <1  m=0 0.5-1.1 2.5-3.0 HFXF07  I 

14 <1  m=0 0.4-1.0 2.5-3.0 HFXF07  

Descriptions of Prediction Codes 

Empirical Prediction Tools — Stone Jet Noise Module (ST2JET) within ANOPP 

The purpose of the NASA Aircraft Noise Prediction Program (ANOPP) is to predict noise from 

aircraft, accounting for the effects of the aircraft characteristics, its engines, its operations, and the 

atmosphere. The current jet noise module in ANOPP is ST2JET, based on the semi-empirical model 

developed by J. R. Stone of Modern Technologies Corporation. The method was developed from data 

with bypass ratios ranging from 0 (single stream) to 15 obtained from free jet facilities at NASA Glenn 

Research Center and NASA Langley Research Center as well as the anechoic free jet facilities at 

Lockheed and General Electric. The jet mixing noise and broadband shock noise components (associated 

with supersonic jets) also include corrections for forward flight effects.  

Input decks for the ANOPP code were generated from the measured conditions of the experimental 

data. The full ANOPP Level25 code was used with only the ST2JET source module invoked. 

Statistical Prediction Tools—Jet3D 

Jet3D is based on a straightforward application of Lighthill’s Acoustic Analogy (LAA) in three 

dimensions, shown solved and manipulated to give the far field mean-square acoustic pressure as a 

function of spatial observer position   
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Here, Tij = (p c2 ) ij ij + uiuj  is the Lighthill Stress Tensor, and quantities inside integrals are to be 

evaluated at a retarded time and corresponding position. By formulating the jet noise problem into an 

equivalent linear acoustics problem, LAA makes it possible to handle complex three-dimensional flows 

and arbitrary nozzle configurations with ease, thus making it a good choice for Propulsion Airframe 
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Acoustics (PAA) applications. Compared to other methods based on acoustic propagation in a refractive 

medium or third-order convective wave equation formulation, LAA does not require intensive 

computations related to the propagation effect. The tradeoff, of course, is that LAA places a much heavier 

burden on source modeling, since the sources themselves produce analogous “propagation” effects 

through temporal and spatial phasing. 

Turbulent velocity correlations are separated into space and time factors and modeled using the local 

one-point correlation (related to the Reynolds stress tensor) and a combination of Gaussian-type 

exponential functions and quadratic functions. The specific form of the correlation functions is not so 

important, as discussed in [1], as long as the spatial correlation function is integrable and the temporal 

correlation function is amenable to Fourier transforms.  Generally, any reasonable correlation function 

can be used and calibrated to give good results, with the burden of noise prediction accuracy and correct 

spectrum shape falling on the CFD solution. 

Thus, the Jet3D noise prediction algorithm is based on the volume integration over a set of equations 

giving the band-integrated mean-square acoustic pressure spectrum for the shear and self noise. The 

integration is carried out for each volume element in a discretized jet flow field using data obtained from 

a CFD solution.  Within the integration routine, turbulent Reynolds stresses are computed using one of 

several linear or nonlinear anisotropic models[2], mean flow gradients are computed with a finite volume 

scheme, and local convection Mach number (Mc) is modeled empirically using correlated data trends 

from the classic Davies experiment[3]. 

Jet3D is written in FORTRAN 77/90/95 with dynamic memory allocation, and is easily ported across 

numerous UNIX/Linux platforms.  The main algorithms in Jet3D are vectorized to take advantage of 

compiler optimizations and vector processing on certain architectures.  Jet3D also implements a low level 

multi-processing capability, where noise for multiple observers can be computed in parallel.  Generally, 

noise predictions require on the order of 2-10 minutes per observer.  In addition to a prediction mode, 

Jet3D can be run in one of several diagnostic modes to output noise source maps for follow-on analysis. 

Statistical Prediction Tools—JeNo,v1 

JeNo is also based on a form of the Acoustic Analogy, more akin to that of Lilley rather than 

Lighthill’s formulation, where the effect of the mean flow has been removed from the source side of the 

equation.  Particular attention has been paid to the variable selection in linearizing the set of Euler 

equations in order to derive acoustic equations that are strictly explicit. In this formulation, laid out in 

great detail in reference 4, several approximations have been suggested for the non-radiating base flow in 

order to conclude a single higher order acoustic equation for either pressure or density fluctuations.  

However, the set of equations governing the unsteady flow variables are self-contained, and with 

appropriate modeling of the non-linear components (which are recognized as the sources of aerodynamic 

noise), they should, in principle, determine the acoustic pressure.  Approximations that lead to a single 

wave equation are strictly for computational benefits.   

The acoustic equation solved by JeNo is a third-order convective wave equation.   The operator part of 

the equation consists of non-uniformity in the mean velocity and temperature, and calculates the 

propagation filter or the Green’s function for the acoustic radiation.  The source side of the equation 

consists of non-linear terms that are the products of either fluctuating velocity/velocity, or 

velocity/temperature. For the purposes of this evaluation, it is noteworthy that the version of JeNo being 

exercised (version 1) has assumed isothermal flow; therefore terms involving unsteady temperature have 

been neglected, not because they are insignificant, but because current CFD capability of predicting 

temperature variance requires additional work. Another key element of the JeNo v1 is a non-compact 

source model. 

Like Jet3D, JeNo requires statistical modeling for the two-point space-time correlation of velocities, 

and is more particular about the choice of the statistical functions that conform to measurement. Both 

methods require three fixed constants for the amplitude, time-scale, and length-scale in their source 

modeling. 
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Statistical-based noise prediction models such as Jet3D or JeNo rely on RANS CFD solutions for their 

mean flow and turbulence information. Substantial effort has been placed on validating the CFD solutions 

against experimental data as part of the assessment exercise. Sensitivity in noise prediction as related to 

particular CFD code, or turbulence models within a single code has also been addressed. 

While Jet3D uses a free-space Green’s function, the propagation filter in JeNo is calculated 

numerically by solving the second-order compressible Rayleigh equation in a cylindrical coordinate 

system - therefore the Green’s function is theoretically applicable to axisymmetric jets only.  Most 

practical jets of interest are either axisymmetric, or become axisymmetric shortly after the exit.  In 

principle, any deviation from axisymmetry produces azimuthal variation in the sound field. A three-

dimensional calculation of the Green’s function is yet to be achieved successfully, and may require 

solving the set of linearized Euler equations in a rectangular coordinate system.  For the purpose of the 

assessment exercise, a so-called 2-1/2D approximation has been implemented within JeNo, using either 

the line-of-sight or the line-of-source methods.   

Test Facilities and Instrumentation 

Single stream jet measurements were obtained primarily from the Small Hot Jet Acoustic Rig 

(SHJAR), located in the AeroAcoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research 

Center in Cleveland, Ohio.  As a jet noise testing rig, the SHJAR was designed to minimize rig noise 

sources, incorporating suggestions of Viswanathan[5] and Ahuja[6] to achieve this goal.  The single flow 

jet rig uses 1 MPa (150psi) air supplied by several remotely located compressors.  The maximum mass 

flow rate is 2.5 kg/s (6 lbm/s) and the maximum temperature air is 1000K (1320°F). The AAPL, which 

houses the SHJAR, is a 20m (60-ft) radius geodesic dome lined with sound absorbing wedges which 

reduce sound reflection at all frequencies above 200 Hz. The jet exhaust is directed outside through a 

large door. More information on the facility and the jet rig is found in Bridges & Brown[7]. 

For dual stream test cases, data were acquired using the High Flow Jet Exit Rig (HFJER), which 

supplies air to the nozzle model at conditions similar to an aircraft engine. HFJER itself sits at the exit of 

the Nozzle Acoustic Test Rig (NATR), a 53-inch freejet that provides the forward flight airflow around 

the nozzle at speeds up to Mach 0.35. NATR in turn sits in the middle of the AeroAcoustic Propulsion 

Lab, mentioned above. Details of this facility can be found in reference [8]. 

Instrumentation 

Turbulence data were acquired using Particle Image Velocimetry to validate CFD flow fields needed 

for input to the statistical prediction codes. Details of the systems used to acquire hot jet flow fields are 

contained in previously published papers [9,10,11].  

Far-field noise was measured using 24 Bruel & Kjaer ” microphones with Bruel & Kjaer Nexus™ 

amplifiers, sampled by a DataMAX digital recorder at 200kHz for 8 seconds, simultaneously with all rig 

parameters. The microphones were located on an arc over 50 diameters from the nozzle exit over an 

angular range of 50° to 165°. Microphone calibrations were maintained according to manufacturer’s strict 

specifications.  

Determination of Experimental Uncertainty 

As a point of nomenclature, when determining the total experimental uncertainty, two source of 

uncertainty were considered: measurement uncertainty and facility dependence. The former can be 

determined by bookkeeping source of error in instrumentation and calibration procedures. The latter 

requires more effort, including direct comparisons of data from different, high-quality facilities. 

Measurement uncertainty in acoustic measurements 

Careful consideration of the instrumentation errors is critical to determining the experimental 

uncertainty band, needed for proper assessment of the prediction codes. Table 2 is a compilation of 
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instrumentation errors and an analysis of how they contribute to the uncertainty of the far-field noise 

measurements used in the assessment. 
Table 2 Estimation of Measurement Uncertainty 

Source 

dB @ low 

freq 

dB @ 

med freq 

dB @ 

high freq Comments 

atmos atten 0.00001 0.001 0.1 1°C, 2%RH->0.1dB at 80kHz 

distance 0.04 0.04 0.04 0.5inch error in SHJAR (100inch) 

setpoint 0.17 0.17 0.17 0.5% error in Uj 

pistonphone 0.15 0.15 0.15 B&K 4220 spec 

spectral 

calibration 0.27 0.17 0.27 B&K cal lab spec 

1/3 octave avg 0.33 0.1 0.01 chi-square analysis of  1/3 octave integration at 90% confidence 

-or-     

Narrowband avg 0.61 0.61 0.61 chi-square analysis of 150 averages at 90% confidence 

Total 0.96 0.73 0.74 1/3 octave SPL (dB) 

 1.24 1.24 1.34 Narrowband power spectral density (dB) 

Facility dependence of acoustic measurements 

The other source of uncertainty in experimental data is facility dependence. Details of the internal rig 

noise, anechoic chamber, free-jet size, aspiration and exhaust, and subtle differences in test procedure not 

captured in the measurement uncertainty above are sources of error [12]. Furthermore, there are 

significant differences in the noise produced by different nozzles that have the same basic geometric 

parameters, such as diameter. To estimate this source of uncertainty we compared results from the rigs 

used in the assessment with high quality published data, and in some cases with data acquired on the same 

nozzle at the NASA Langley Jet Noise Lab.  

Figure 1 shows one such comparison for three cold flow conditions (Ma=0.5, 0.7. 0.9) and processed to 

remove all known facility differences such atmospheric conditions, microphone calibrations and 

microphone locations. Data from the facility comparison work of Viswanathan [13] are replotted in the 

figure along with the current dataset. The NASA SHJAR rig data lie between that of the other two rigs 

except at the highest frequencies where it dips below them both. We take the spread as an estimate of the 

experimental uncertainty, which is larger than the measurement uncertainty, especially at high 

frequencies.  

Low speed, cold jets are challenging to measure primarily because the internal velocities are relatively 

high compared to the external jet velocity; internal rig noise will show up here where jet noise is very 

low. The other problem highlighted by Viswanathan [5] is one of scale, or Reynolds number 

independence. Smaller nozzles often have exit boundary layers that are not independent of Reynolds 

number, giving rise to high frequency noise sources that are anomalous. With heating, the Reynolds 

number becomes smaller for a given jet velocity, and the problem is exacerbated. Figure 2 shows how 

current data compare with published data for hot jets of different nozzle sizes. Not surprisingly, it agrees 

best with that of a similar size nozzle. The second plot in the figure, depicting detailed differences 

between the SHJAR third octave data and the published Boeing data, is another measure of the 

experimental uncertainty band in the jet noise data being used in this assessment. 

 In the interest of grounding current data against well-known datasets, Figure 3 and Figure 4 show one-

third-octave spectra obtained on SHJAR against that of Tanna [14] at Ma = 0.5 and 0.9 respectively at 

three different temperature ratios. Discrepancies are limited to high frequencies around StD = 10, where 

both possibly suffer from low Reynolds number effects, and at the peak frequencies of 90°, as was shown 

in Figure 1. 

For dual-stream jets, experimental uncertainty and data validity were established by comparing against 

data acquired using the same nozzle hardware at the NASA Langley Jet Noise Lab. These comparisons 

confirmed our models of the internal rig noise for the dual stream rig, and data at those frequencies and 

angles were removed from the validation datasets. The comparisons also supported the estimate of rig-to-

rig spectral variability to be between 1 and 2 dB for all observer angles.  
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Uncertainty in jet flow field statistics 

Because the statistical jet noise prediction codes relied on CFD input of mean and turbulent quantities, 

experimental data from several Particle Image Velocimetry (PIV) tests were used to ascertain the error in 

this input stream. Figure 5 shows a typical dataset consisting of two or three component measurements of 

mean and mean square velocity statistics over the first 20 or so jet diameters. The measurements of mean 

and mean square velocity have previously been validated against other datasets [9]; an example is given 

in Figure 6. These studies showed that turbulent velocity statistics, such as rms of velocity, from the first 

1-2 jet diameters was not correct due to the small shear layer. Excluding data from the first two diameters, 

the mean velocities were within 1% of other, conventional measurements, and the rms values were within 

5%. This was sufficiently accurate to estimate the errors in the mean velocities and turbulent kinetic 

energy of the CFD solutions used as input to the statistical prediction codes.  

Uncertainty in CFD input to Statistical codes 

A detailed evaluation of three different turbulence models available within the NASA RANS code 

“Wind”, namely the standard Chien
 
k model, Mentor shear stress model (SST), and a variable diffusion 

model, was made by Georgiadis et al.[15]. There were significant differences in the mean centerline 

decay rate, and turbulent kinetic energy predicted by the different turbulence models varied by as much 

40%. When two of the flow solutions with variations of 10% in turbulent kinetic energy were used on a 

low Mach number, cold jet, the error in noise prediction caused by the variation in the flow input was 

determined to be less than 1dB, as seen in Figure 8 

Results 

Data presentation 

In the assessment of prediction codes, the primary metric used was the 1/3 octave SPL spectra at angles 

of 90° and 150° relative to the inlet axis. The effect of atmospheric attenuation was removed from the 

data, the data were transformed to an arc of radius 100 jet diameters, and normalized to Strouhal number 

scaling. In addition to the spectral shape, the ability to predict the overall sound pressure level (OASPL) 

over all angles may be considered as a measure to predict the strong directivity of jet noise, and so the 

OASPL vs polar angle and its deviation from experimental data were also computed for each case. As a 

summarizing metric, the average and variance in the OASPL difference was calculated; the average 

difference gives a measure of how well the prediction code calculates overall sound power over the range 

of jet conditions, and the variance measures how well the code predicts directivity. 

Empirical prediction code--ANOPP 

For brevity, only a smattering of detailed spectral directivity results will be shown in this paper. First, 

consider Figure 9, showing a plot of 1/3 octave SPL at two polar angles measured from the upstream axis. 

In the figure are data and ANOPP predictions for a single, Ma = 0.5 cold jet. To better quantify the error 

in the prediction relative to experimental uncertainty, the difference between data and prediction has been 

calculated and plotted in the righthand plot, along with two curves that indicate the uncertainty band 

associated with measurement error. In this example, the difference between prediction and data exceeds 

the uncertainty by several dB, especially near the peak frequency and at higher frequencies at 150°. At 

90° the difference only slightly exceeds the uncertainty of the measurement.  

Agreement between ANOPP prediction and data remains consistent when the jet flow is heated, as 

typified in the subsonic single flow hot jet shown in Figure 10. Likewise, for shock-free jets, such as the 

ideally expanded isothermal M=1.8 case presented in Figure 11, the ANOPP prediction of jet noise is 

very close to the experimental uncertainty. When the jet has dual streams, such as a separate flow nozzle 

operating with a hot core flow and cool fan stream as given in Figure 12, the agreement is also nearly 

within experimental uncertainty. 

NASA/TM—2008-215275 7



 

 

ANOPP’s ability to predict jet noise from non-axisymmetric configurations was evaluated by applying 

it to a single-flow nozzle with somewhat aggressive chevrons. ANOPP has a parameter, the wetted 

perimeter, which is intended to capture the impact of such nozzle features. This was developed for 

chevrons on core nozzle of separate flow nozzles. When applied to external shear layer chevrons, as done 

in Figure 13, the results are disastrous. The predicted suppression of low frequencies is off by 10dB or 

more. 

A common element in many of the cases is a high frequency hump that is not found in the data. Using 

the jet noise component controls for the ST2Jet module, the various model sources are turned on and off 

to discern the cause of this high frequency hump within the code. The three main components for a shock-

free jet are OUTSTRM, INSTRM, and MERGSTRM, intended to model the noise from the highest 

frequency initial (outer stream) shear layer, the intermediate-frequency (inner stream) shear layer, and the 

low-frequency (fully merged) jet respectively. These components are shown separately in Figure 14. Note 

that in this example we are applying ANOPP to a single-stream jet, e.g. the parameter STREAM set to 1, 

indicating a single stream jet. The high frequency hump at Strouhal = 10 is caused by the OUTSTRM 

source component, intended to capture the high frequency noise from the initial portion of the outer shear 

layer. 

Figure 15 presents the OASPL directivity and error in predicting OASPL for the Ma=0.5, cold flow 

case using ANOPP. Here, thanks to summation over one-third octave bands, the prediction is within the 

uncertainty band except for the peak angle, where it overpredicts the OASPL.  

To summarize the ability of the empirical code to predict jet flows from a wide array of situations (see 

Table 1) the OASPL error data were further processed to compute the average  and rms  of the OASPL 

error over all N angles.  

 

μ =
1

N
(OASPLANOPP OASPLExp )

N

=
1

N
OASPLANOPP OASPLExp( )

N

μ

2  

Figure 16 presents the mean error in ANOPP-predicted OASPL for each of the 258 cases studied while 

Figure 17 presents the deviation in error across the polar angles for all the cases. The table of conditions 

for these cases, not shown here, proceeds roughly in the order of Table 1, with the different sections A–I 

given in the Table differentiated in the plot. Of note is the very poor result for cases in section B, which 

were single-flow jets with chevrons. The capability of ANOPP to predict the effect of chevrons clearly is 

limited to applications on core streams of separate flow nozzle systems, not on outer nozzles. Otherwise, 

the error in ANOPP is seen to be fairly uniform across a wide array of jet flows, in keeping with its utility 

as a low-fidelity tool for systems analysis.  

Statistical prediction code--Jet3D 

A subset of jet cases were used in the assessment of statistical prediction codes, primarily single jet 

cases. When applied to the Ma=0.5, cold jet case, Jet3D does not fare well, as shown in Figure 18. 

Spectral errors exceed 6dB at 90° near the peak of the spectrum. Errors are greater for the 130° angle. The 

agreement was comparable for all the subsonic flow cases assessed. With heating, the error was 

somewhat less in spectral amplitude, although the peak frequency was off by a factor of 3-5 or more, as 

demonstrated in Figure 19, a comparison made at Ma = 0.9, Ts,j/T  = 2.7. When compared on a fully 

expanded supersonic hot jet, the agreement at 90° was much better. This case, a M=1.4, Ts,j/T =2.2 jet 

shown in Figure 20, was the case for which the Jet3D code was first developed. The code does not, 

however, capture the directivity, underpredicting the noise at the downstream angle of 150° in both 

amplitude and peak frequency. 

Of the cases examined with the Jet3D statistical jet noise code, spanning subsonic cold and hot jets and 

fully expanded hot supersonic jets, Jet3D is within experimental uncertainty only for the high 
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temperature, high speed case at the observer angle of 90°. There are substantial discrepancies, both in 

amplitude and peak frequency, for all other flow cases and observer angles. 

Statistical prediction code--JeNo,v1 

A similar set of plots, this time using the statistical code JeNo,v1, is given in Figure 21. Here the 

prediction is within the experimental uncertainty at 90° except at the highest frequencies. At 130° the 

predictions lie right on the edge of the uncertainty band, but could be said to fall within the experimental 

uncertainty. This level of agreement, near or within the experimental uncertainty for all angles, was found 

to hold for all subsonic cold jets. With the addition of heat, the agreement begins to fail, particularly at aft 

angles as seen in Figure 22 where the peak amplitude of the spectra is underpredicted by 10dB at 140° 

and peak frequency underpredicted by a factor of 2. The peak amplitude at 90° is underpredicted by 4dB, 

with a mismatch in the frequency. Increasing the jet velocity, predictions were made on a fully expanded 

cold supersonic jet of M=1.8 as shown in Figure 23. Here the amplitudes are predicted within 2dB, 

although the peak frequency at 130° to the upstream axis is off by a factor of 4. 

Of the cases examined with the JeNo,v1 statistical jet noise code, spanning subsonic cold and hot jets 

and fully expanded code supersonic jets, JeNo is within experimental uncertainty at all angles for cold 

subsonic jets. JeNo,v1 fails to account for the addition of heat, especially at large angles to the upstream 

axis. Supersonic jets up to M=1.8 are only predicted near to experimental uncertainty for 90°, being 

approximately correct in amplitude at large angles, but with a factor of 2 error in peak frequency. 

Discussion 

The real value in statistical prediction codes is not in their superiority in predicting the absolute spectral 

directivity of a round jet. The parametric variations of round jets can be culled to a limited number of 

cases and an empirical code made to capture the salient physics across the parametric space. This is the 

role of empirical codes, such as ANOPP, and to within the quality of the data used in their construction 

they do a very good job at predicting the noise of round jets. The true utility of statistical prediction codes 

is in their ability to predict the impact of geometric variations whose impact on the flow can be captured 

by a Reynolds-averaged Navier-Stokes solver. To that end, several cases of non-axisymmetric jets were 

explored using the JeNo code to assess its accuracy in predicting the change in noise relative to a 

comparable round jet.  

The ability of statistical codes to accurately handle non-axisymmetric nozzle configurations depends 

upon the azimuthal order of the noise field. Since a full three-dimensional Green’s function solver does 

not presently exist for the JeNo, one of two approximations must be made, a ‘line of sight’ assumption, or 

a ‘line of source’ assumption. The first assumes that the propagation of sound within the jet in a given 

azimuthal direction is constant for all azimuthal variations in source, leading to a prediction that varies 

with azimuthal angle. The second assumes that the far field is an average of all azimuthal variations in 

both source and propagation. This leads to an axisymmetric sound field. Jet flow fields with azimuthal 

modes below order 2 are capable of non-axisymmetric sound fields and should be handled by the line of 

sight approximation. Above this azimuthal mode, the noise field produced is statistically axisymmetric, 

making the line of source approximation more appropriate.  

As an example of a low azimuthal mode jet, dual flow jets with an offset core stream was explored. 

The JeNo,v1 code was assessed to see if it could pick up the azimuthal variation produced.  

Figure 24 shows the spectral directivity on the near and far sides of a wedge diverter placed in the fan 

stream of a separate flow nozzle. Predictions and data are shown for an axisymmetric nozzle at the same 

flow conditions as well. JeNo predicted the increase in noise at 90° above 1kHz and the axisymmetry of 

the noise at broadside angles. It also predicted a strong increase in noise at high frequencies for the side 

toward the wedge, an effect found in the experimental data. 

As this example demonstrates, while the statistical method still require further refinement and 

development, it bears the promise of predicting the impact of noise reduction concepts. 

NASA/TM—2008-215275 9



 

 

Conclusions 

Jet noise prediction codes currently in practice fall into two categories, empirical and statistical. 

Examples of both were evaluated over a broad range of round and nearly round jet flows against validated 

datasets. The empirical prediction code, ANOPP, was found to have a margin of error in OASPL of 

roughly 2dB for most of the conditions investigated. Of the two statistical codes, JeNo,v1 was found to be 

very accurate, nearly within experimental uncertainty, for subsonic cold jets, but was clearly missing the 

mark for hot jets at all angles, and for supersonic jets at far aft angles. The other statistical code, Jet3D, 

adequately predicted jet noise spectra for hot supersonic jets for broadside observers, but had large 

discrepancies at subsonic conditions, requiring more investigation. 

Figures 

 
Figure 1 Comparison of SPL at 90° for different jet speeds, Ma=0.5, 0.7, 0.9: current data (SHJAR), 

Tanna (1977) and of Viswanathan (2004). Figure from Viswanathan[5]. 
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Figure 2 Comparison of hot jet SPL for different nozzle diameters, current data (SHJAR) and 

Vishwanathan (2005). Spectra acquired at 90° M=0.7, Total temperature ratio = 3.2, normalized to 

standard day at 15 feet. 
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Figure 3 Comparison of SPL between SHJAR and Tanna (1977), Ma=0.5 for three static temperature 

ratios: (a) 0.86 (cold), (b) 1.76, (c) 2.27. Each pane shows spectra at 90° (lower curve) and 150° (upper 

curve). 

 

Figure 4 Comparison of SPL between SHJAR and Tanna (1977), Ma=0.9 for three static temperature 

ratios: (a) 0.86 (cold), (b) 1.76, (c) 2.27. Each pane shows spectra at 90° (lower curve) and 150° (upper 

curve). 
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Figure 5 Typical flow field data provided by PIV for validating RANS CFD solutions being used as 

input to statistical noise prediction codes. 
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Figure 6 Comparison of PIV data used in assessment and LDV data of Lepicovsky. Ma = 0.9, Ts,j/T  = 

2.7; y/D=0 (centerline). 

 

Figure 7 Comparisons of turbulent kinetic energy predictions from PAB3D and Wind codes with PIV 

data for Ma = 0.5, Ts,j/T  = 1.67 single stream jet flow.  
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Figure 8 Effect of a particular turbulence model on predicted spectral density of Ma=0.9, cold jet: 

Chien k model (red); SST model (Blue); variable diffusion model (dark).  

NASA/TM—2008-215275 12



  

f D
j
/ U

j

1
/3

o
c
t

S
P

L
(d

B
)

10
-1

10
0

10
1

45

50

55

60

65

70

75

80

85
SHJAR 003 = 90°

ANOPP 003N = 90°

SHJAR 003 = 150°

ANOPP 003N = 150°

Case 003N; NozID: SMC000
M = 0.51; Ma = 0.500; T

j
/T

a
= 0.955

f D
j
/ U

j

A
N

O
P

P
-E

x
p

t
(d

B
)

10
-1

10
0

10
1

-10

-5

0

5

10

= 90°

= 150°

uncertainty

Case 003N; NozID: SMC000
M = 0.51; Ma = 0.500; T

j
/T

a
= 0.955

 
Figure 9 Comparison of ANOPP prediction of axisymmetric Ma=0.5 cold jet with experimental data—

1/3 octave band SPL at 90° and 150°. Spectra transformed to 100Dj radius, with no atmospheric 

attenuation (left); Difference between prediction and data with experimental uncertainty bands (right). 

 

Figure 11 Same as Figure 9 but for axisymmetric ideally expanded nozzle with M=1.8, isothermal jet 

(Ts,j/T =1.0). 

Figure 10 Same as Figure 9 but for axisymmetric Ma=0.9, hot jet (Ts,j/T =2.7). 
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Figure 12 Same as Figure 9 but for separate flow nozzle with Ma=1.0, Tj,s/T =2.46 core flow and 

Ma=0.82, Tj,s/T =1.12 fan flow. 

 

Figure 13 Same as Figure 9 but for nozzle with six chevrons with 5° penetrations. 

 

Figure 14 ANOPP source component breakdown for Ma=0.5 cold jet at 90° to jet axis. 
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Figure 15 Comparison of ANOPP Prediction of single-stream Ma=0.5 cold jet—OASPL vs polar angle 

from upstream axis. Data transformed to 100Dj radius, with no atmospheric attenuation (right); 

Difference between prediction and data with experimental uncertainty band (left). 
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Figure 16 Average error in OASPL across all angles 50°-165° for all jet cases assessed, along with 

experimental uncertainty bars. 
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Figure 17 RMS of error in OASPL across all angles 50°-165° for all jet cases assessed, along with 

experimental uncertainty bars 

 

Figure 18 Comparison of Jet3D prediction of Ma=0.5 cold jet—1/3 octave band SPL at 90° and 130°. 
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Figure 19 Comparison of Jet3D prediction of Ma=0.9, hot jet (Tj,s/T =2.7) with experimental data—

1/3 octave band SPL at 90° and 130°. 
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Figure 20 Comparison of Jet3D prediction of M = 1.4 hot jet (Yamamoto single-stream jet) 
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Figure 21 Comparison of JeNo prediction of Ma=0.5 cold jet with experimental data—1/3 octave band 

SPL at 90° and 130°.  
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Figure 22 Comparison of JeNo prediction of Ma=0.9, hot jet (Tj,s/T =2.7) with experimental data—1/3 

octave band SPL at 90° and 140°. 

 

Figure 23 Comparison of JeNo prediction of M=1.8 cold jet with experimental data—1/3 octave band 

SPL at 90° and 130°.  
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Figure 24 Lossless third-octave spectral density for an offset Fan-Wedge concept and comparisons 

with the base 5BB geometry at indicated inlet angles on a 80.24-ft arc: (a) and (b) predictions with the 

line-of-sight method; (c) and (d) NATR data. 
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