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The engineering design and analysis of air-breathing propulsion systems

relies heavily on zero- or one-dimensional properties (e.g. thrust, total pres-

sure recovery, mixing and combustion efficiency, etc.) for figures of merit.

The extraction of these parameters from experimental data sets and/or

multi-dimensional computational data sets is therefore an important as-

pect of the design process. A variety of methods exist for extracting per-

formance measures from multi-dimensional data sets. Some of the infor-

mation contained in the multi-dimensional flow is inevitably lost when any

one-dimensionalization technique is applied. Hence, the unique assump-

tions associated with a given approach may result in one-dimensional prop-

erties that are significantly different than those extracted using alternative

approaches. The purpose of this effort is to examine some of the more

popular methods used for the extraction of performance measures from

multi-dimensional data sets, reveal the strengths and weaknesses of each

approach, and highlight various numerical issues that result when mapping

data from a multi-dimensional space to a space of one dimension.

Nomenclature

A area

F generic function

f flux function

h enthalpy

k turbulent kinetic energy

ṁ mass flow rate
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1 of 33

https://ntrs.nasa.gov/search.jsp?R=20080040795 2019-08-30T05:34:31+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/10545515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�n unit normal vector

P pressure

R gas constant

s entropy

T temperature

u, v, w velocity components

�v velocity vector

w weighting function

x, y, z spatial coordinates

Ym mass fraction of species m

β shock angle

γ ratio of specific heats

η distortion parameter

θ flow turning angle

ρ density

φ generic flow property

ω specific turbulence dissipation rate

Subscripts

energy energy flux index

entropy entropy flux index

m species index

mass mass flux index

max maximum value

min minimum value

momentum momentum flux index

n generic index

ref reference value

tke turbulent kinetic energy flux index

◦ total condition

Superscripts

m species index

ns number of species in the mixture
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Introduction

The design and analysis of high-speed air-breathing propulsion systems has historically

relied heavily on modular 1, 2 or quasi-one-dimensional 3 cycle analysis codes for perfor-

mance assessment. Examples from this class of tools include the RamJet Performance Anal-

ysis (RJPA) 4 code, the GASL1D 5 code, and the SRGULL 6 code. The high-end parallel

computing capabilities that exist today, coupled with the maturation of algorithms for the

integration of partial differential equations, have significantly reduced the turn-around time

required for high-fidelity Reynolds-Averaged Navier-Stokes simulations. These advances,

accompanied by the parallel development of advanced grid generation and flow visualiza-

tion tools, have allowed the use of multi-dimensional analysis for a variety of scramjet engine

components. The current state-of-the-art processes for high-speed propulsion component de-

sign and analysis involves a combination of one-dimensional and multi-dimensional analysis

approaches. This scenario necessitates the need to reduce (or increase) the dimensionality

of the analysis results where an exchange of data between the various approaches is re-

quired. The reliance on multi-dimensional approaches in the design and analysis of engine

components will inevitably increase as high-performance computing capabilities continue to

improve. The need to extract performance estimates, however, will still require an ability to

relate the multi-dimensional flowfield to an equivalent one-dimensionalized representation.

This paper compares a variety of one-dimensionalization techniques commonly employed

for internal flows. The various strengths and weaknesses of each approach are highlighted for

a variety of flowfields ranging from purely analytical solutions to realistic scramjet flowpaths.

The goal of this paper is not to suggest that one procedure be employed in lieu of another.

Instead, the various characteristics of each approach are presented with detailed discussions

describing why significant differences often appear between one-dimensionalized properties

obtained from different methodologies. Suggestions for dealing with key numerical issues are

also discussed, when appropriate.

One-Dimensionalization Techniques

In general, one-dimensionalization techniques can be categorized as either a weighted

or flux-based approach. The weighted approaches are easy to implement, tend to yield

uniform properties that “visually” mimic the original multi-dimensional data, and tend to

maintain the qualitative physical features of the parent multi-dimensional flow (e.g. non-

decreasing entropy changes). The dilemma with these approaches is that fluxes reconstructed

from the weighted variables will, in general, not match those obtained from the multi-

dimensional data set. As a result, this averaging approach is not well suited for coupling
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a multi-dimensional analysis with one-dimensional engineering analysis tools. Flux-based

approaches attempt to address this deficiency by formulating a set of one-dimensional flow

properties that precisely reproduce some specified set of fluxes from the multi-dimensional

data set. Three different flux-based approaches are considered in this effort: the Conserved

Mass/Momentum/Energy (CMME) method (sometimes referred to as the stream-thrust

average), the Conserved Mass/Momentum/Energy approach with the Langley distortion

methodology, 7 and the Conserved Mass/Energy/Entropy (CMES) method (referred to as the

thermodynamic state average in Refs. 8, 9). The mapping of the multi-dimensional flowfield

to a one-dimensional representation is realized by applying a given one-dimensionalization

approach to a family of computational surfaces (or lines in two dimensions) as illustrated in

Fig. 1. The surfaces of interest will generally correspond to the cross-flow planes.

Bulk Flow
Direction

Figure 1: Surface/Line of integration and the unit normal for one-dimensionalization

Weighted Average

Weighted approaches are generally expressed as,

φ =

∫
φ w dA∫
w dA

(1)

where φ is the property to be one-dimensionalized, w is the weighting function, and A is the

area over which the average is being performed. Popular choices for the weighting factor are

w = 1 (area-weighting) and w = ρ(�v · �n) (mass flux-weighting). Other weighted approaches,

particularly those designed for experimental data sets that are often incomplete, are discussed

elsewhere. 10, 11 The mass flux-weighting approach, unless otherwise noted, has been used

for all weighted averages discussed in this effort.

4 of 33



Conserved Mass/Momentum/Energy Method

The CMME method produces a set of uniform flow properties that satisfy the integral

relations for conservation of mass, momentum, and energy, i.e.,

fm
mass =

∫
[ρ (�v · �n) Ym] dA (2a)

�fmomentum =
∫

[ρ (�v · �n)�v + P�n] dA (2b)

fenergy =
∫

[ρ (�v · �n) h◦] dA (2c)

where f represents the flux quantities being conserved, ρ is the mixture density, �v is the

velocity vector, �n is the unit vector normal to the surface of integration, Ym is the mass

fraction of species “m”, P is the static pressure, and h◦ is the total enthalpy (sum of the

static enthalpy and kinetic energy).

The uniform flow properties that satisfy these integral flux relations are defined based on

the following expressions,

fm
mass = [ρ (�v · �n)Ym] A (3a)

�fmomentum = [ρ (�v · �n) �v + P�n] A (3b)

fenergy = [ρ (�v · �n)h◦] A (3c)

where the bold-faced quantities denote one-dimensional parameters. The equation set is

closed by introducing an equation of state, e.g. P = ρRT. This method results in a nonlinear

system of coupled equations, and the procedure used to decode the one-dimensional flow

properties from this equation set is given in Appendix A. Note that the decomposition process

for this methodology satisfies each individual component of the momentum flux vector. As a

result, this approach produces decomposed flow properties that are best characterized as an

effective uniform flow representation of the parent multi-dimensional flowfield, rather than

a true one-dimensionalization of the flowfield. In other words, the decomposition process

allows for the extraction of independent u, v, and w velocity components without any user-

specified information about the desired (streamwise) direction of the one-dimensionalized

flowfield.

Langley Distortion Methodology

The Langley distortion methodology 7 satisfies the same flux expressions given in Eq. 2,

but additional flux relations are introduced to provide information on the impact of multi-

dimensional effects (i.e. flow distortion). The additional flux relations are the mass flux-
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weighted kinetic energy components,
∫

ρ (�v · �n) u2 dA,
∫

ρ (�v · �n) v2 dA,
∫

ρ (�v · �n) w2 dA,

and the pressure force components,
∫

P �n dA. This additional information simplifies the

decomposition process, since the velocity (via the kinetic energy components) and the pres-

sure are readily available, but results in an over-constrained system of equations. Additional

unknowns (distortion parameters) are introduced to allow the uniform flow properties to

simultaneously satisfy these constraints and the desired conservation relationships (Eq. 2).

The uniform flow properties obtained from the Langley distortion methodology satisfy the

following expressions,

fm
mass = [ρ (�v · �n) η1Ym] A (4a)

fmomentum = [ρ (�v · �n) η2 (�v · �n) + η4Pref ] A (4b)

fenergy =
[
ρ (�v · �n)

(
h + η3 (�v · �n)2 /2

)]
A (4c)

where

η1 =

∫
ρ (�v · �n) dA

ρ (�v · �n) A
(5a)

η2 =

∫
ρ (�v · �n) (�v · �n) dA

ρ (�v · �n) (�v · �n) A
(5b)

η3 =
(�v · �v)

(�v · �n)2
(5c)

η4 =
P

Pref

(5d)

In principle, Pref can be tailored to force the pressure to follow a desired thermodynamic

path (e.g. a path that recovers the entropy flux from the parent multi-dimensional flow-

field). In this work, however, η4 has been defined as unity (i.e. P = Pref ). This assumption

is consistent with how the one-dimensional analysis codes that utilize this technique are

typically exercised. Note that the momentum equation (a vector expression) has been re-

duced to a scalar equation by taking the dot product of this vector with the unit vector, �n.

Hence, the resulting uniform flow properties represent a true one-dimensionalization of the

multi-dimensional parent flowfield, with the flow direction dictated by the choice of this unit

vector. It can be shown that this methodology (with η4 = 1) results in uniform properties

that are analogous to those obtained based on the following operations:

• Area-weighting the pressure (using the area projection perpendicular to the 1-D direc-

tion, i.e. w = �n · �n)

• Mass flux-weighting the mean kinetic energy components
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• Mass flux-weighting the static enthalpy

• Thermodynamic closure with an equation of state

Conserved Mass/Energy/Entropy Method

The CMES method (or thermodynamic state average) was first introduced by Riggins et

al. 8, 9 The primary motivation behind this method was to address the deficiencies of the

existing conserved-flux approaches as related to violations of the second law of thermody-

namics. The CMME method (with or without distortion effects) introduces an entropy

increase due solely to the “mixing loss” associated with the one-dimensionalization process.

The CMES method attempts to rectify this problem by explicitly conserving the entropy

flux obtained from the parent multi-dimensional flowfield. Hence, this method results in

uniform flow properties that satisfy the integral relations for conservation of mass, energy,

and entropy, i.e.,

fm
mass = [ρ (�v · �n)Ym] A (6a)

fenergy = [ρ (�v · �n)h◦] A (6b)∫
[ρ (�v · �n) s] dA = fentropy = [ρ (�v · �n) s] A (6c)

The conservation of these fluxes ensures equivalency of mass addition, heating, and ir-

reversible losses between the parent multi-dimensional flowfield and the one-dimensional

flowfield. This statement holds regardless of the level (or type) of flow distortion that may

be present because changes in mass, total enthalpy, and entropy are not influenced by flow

distortion. Changes in these fluxes can only occur due to mass and/or heat addition (or

extraction) and irreversible phenomena. The momentum flux, on the other hand, is affected

by flow distortion, and its impact on the stream-thrust is accounted for in this method

via the introduction of a single distortion parameter, η. This distortion parameter is de-

fined in a manner that forces a match between the multi-dimensional stream-thrust and the

one-dimensional value, i.e.,

∫
[ρ (�v · �n)�v + P�n] · �n dA = η [ρ (�v · �n) (�v · �n) + P] A (7)

Similar to the Langley distortion methodology, the CMES method produces a true one-

dimensionalization of the multi-dimensional flow properties. The amount of distortion that

is present in the flow is influenced by the choice of the unit vector, �n. The procedure used to

decode the one-dimensional flow properties for the CMES approach is given in Appendix B.
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Results

Three examples have been compiled to illustrate various features associated with each

of the one-dimensionalization approaches considered in this effort. The first case involves

the one-dimensionalization of a flowfield with an oblique shock wave. This example has

an analytic solution with uniform flow properties in front of and behind the shock wave.

Two grids were superimposed onto this flowfield. The first grid was aligned with the shock

wave, while the second was representative of what would be used for CFD analyses. The

second case considered was inviscid flow through a converging/diverging nozzle, and the

third case was a representative scramjet isolator component. Cases 1 and 2 were specifically

chosen to address issues associated with extracting one-dimensional parameters from multi-

dimensional data sets. Case 3 was chosen to illustrate the performance of each averaging

methodology for a representative high-speed propulsion component.

Case 1

The first case is an inviscid Mach 5 flow over a 20 degree compression corner. The analytic

solution has uniform flow in front of the 29.8 degree shock wave and uniform flow behind the

shock wave. The pre- and post-shock properties are given in Table 1. The exact solution was

one-dimensionalized along the cross-flow grid lines for each of the methods. Two different

grids were used to determine the effect of grid topology on the one-dimensional properties.

The first grid is shown in Fig. 2. This grid is composed of two blocks, divided by the shock

wave, with grid lines that conform to the shock angle. The upper boundary of the solution

domain represents a dividing streamline so that mass conservation is maintained. The two

uniform flow regions, separated by the shock wave, can be seen in the Mach contours of

Fig. 3.

Table 1: Analytic Shock Properties

Property Pre-Shock Post-Shock

Pressure [MPa] 0.101325 0.713066

Temperature [K] 300.0 636.8

Density [kg/m3] 1.1765 3.9007

u [m/s] 1736.2 1436.7

v [m/s] 0.0 522.9

Mach number 5.0 3.022

Total Pressure [MPa] 53.609764 27.076732

Each one-dimensionalization strategy should be capable of returning the uniform flow
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Figure 2: Grid 1 - Two blocks aligned with the shock wave
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Figure 3: Mach number contours for the compression corner

properties provided by the multi-dimensional data set. Equation 1 shows that the weighted

approach will always recover the correct uniform flow properties, since Eq. 1 reduces to

φ = φ

∫
w dA∫
w dA

= φ (8)

when φ does not vary spatially. The decomposition of flow properties based on the CMME

approach requires one to consider how to appropriately define the unit normal for the one-

dimensionalized flowfield (�n). In general, the multi-dimensional computational surface used

to generate the conserved fluxes will be a curved surface (see Fig. 1). Hence, there may not be

an obvious choice as to how the unit normal should be specified in the one-dimensionalized

space. As noted previously, the CMME method contains a flux vector quantity (i.e. the

momentum equations) which allows each of the velocity components to be extracted inde-

pendently. As a result, the CMME method should be interpreted as a method for extracting

an equivalent uniform flowfield, rather than a method for determining one-dimensionalized

flow properties. The Langley distortion methodology and the CMES method, on the other
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hand, contain only scalar fluxes. As a result, the desired streamwise (i.e. one-dimensional)

direction must be explicitly specified for these two approaches. The one-dimensional flow di-

rection for these two methodologies is defined by the specification of the one-dimensionalized

unit normal vector.

One can determine how the one-dimensionalized unit normal should be defined for the

CMME approach by enforcing the requirement that the method return the same uniform

flow properties given by a multi-dimensional data set with uniform flow. In this instance,

Eq. 2 reduces to

fm
mass =

[
ρ

(
�v ·

∫
�ndA

)
Ym

]
(9a)

�fmomentum =
[
ρ

(
�v ·

∫
�ndA

)
�v + P

∫
�ndA

]
(9b)

fenergy =
[
ρ

(
�v ·

∫
�ndA

)
h◦

]
(9c)

Comparing Eqs. 3 and 9 shows that the CMME method will return the correct uniform flow

properties provided that �n is defined as

�n =

∫
�ndA

A
(10)

Any other choice for the one-dimensionalized unit normal (with the exception of one that is

aligned with the velocity vector) will not satisfy this constraint. This feature is illustrated

in Fig. 4 which compares the Mach number obtained by the CMME method based on the

unit normal given by Eq. 10, with that of one chosen to be aligned with the x-coordinate.

The Mach number obtained by the weighted approach is also shown for reference purposes.

The use of a unit normal aligned with the x-coordinate removes the contributions from the

y-momentum equation during the decomposition process. This “loss” of momentum prevents

the matching of properties downstream of the shock. It should be noted that the distance

variable used to plot the one-dimensional data is defined as the average of the x-coordinate

along the line (or plane) of integration.

The procedure used to decode the one-dimensional flow properties based on the Langley

distortion methodology can be expressed in terms of weighted averages. Hence, the one-

dimensional flow variables are not affected by the specific choice made for the unit normal

(�n) when the flow properties are uniform along the surface of integration. The distortion

coefficients, on the other hand, are influenced by the definition of �n. The distortion coeffi-

cients will be unity (for uniform flow) only if the unit normal is defined to be parallel to the

velocity direction. Any other choice will result in non-unity distortion coefficients due to the

lack of alignment with the velocity field. The CMES method does not contain a vector flux
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Figure 4: Variation of uniform CMME properties with choice of unit normal (the distance
variable is defined as the average x-value along a given integration surface)

quantity, and velocity only appears in the form of (�v ·�n) (convective terms) and �v ·�v (kinetic

energy terms). Thus, the only logical choice for the unit normal that closes this system is

one that is aligned with the velocity vector, since this choice results in (�v · �n) =
√

�v · �v. The

distortion coefficient is also unity (as it should be for uniform flow) with the unit normal

chosen in this manner. Since the velocity appears as a scalar quantity in this formulation,

the velocity components for flow alignment must be supplied by some external means (such

as mass flux-weighting). Figure 5 verifies that the Langley distortion methodology and the

CMES method (with the unit normal aligned with the velocity direction) recover the parent

uniform properties. Although not shown, all of the distortion coefficients are also unity.

Based on the observations outlined above, all remaining properties based on the CMME

method will utilize a unit normal based on Eq. 10, and a unit normal aligned with the
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velocity vector will be used for the Langley distortion and CMES methods.
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Figure 5: Uniform properties obtained from each methodology (the distance variable is defined
as the average x-value along a given integration surface)

The second grid, shown in Fig. 6, is typical of a grid topology that would be used in a

shock-capturing CFD simulation. The grid has a single block with vertical grid lines in the

cross-flow direction. Hence, the distance variable in all of the uniform flow property plots will

precisely coincide with each streamwise integration plane. The area-weighted and mass flux-

weighted properties (ρ, u, v, and P ) for this grid are given in Figs. 7 and 8. Both averaging

methods give the exact pre- and post-shock values for grid lines in regions of uniform flow

(i.e. near the inflow and outflow planes). Along grid lines passing through both pre-shock

and post-shock flow, the two methods give significantly different values. For this problem, a
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Figure 6: Grid 2 - Single block grid typical of that used for CFD

weighted property can be written in the following form,

φ = φ1 + F (φ2 − φ1) (11)

where

F =
w2 A2

(w1 A1 + w2 A2)
(12)

and the subscripts 1 and 2 refer to the pre- and post-shock properties, respectively. For

area-weighting (i.e. w = 1), F reduces to

F = 1 − ymax − x tan β

ymax − x tan θ
for 0 ≤ x ≤ ymax

tan β
(13)

where ymax is the height of the inflow streamline, β is the shock angle, and θ is the turning

angle. This is a non-linear relationship in x and gives the curved distributions shown in the

figures. For mass flux-weighting, i.e. w = ρ (�v · �n), F reduces to

F = 1 − ρ1 u1 (ymax − x tan β)

ṁ
for 0 ≤ x ≤ ymax

tan β
(14)

The mass flow rate is conserved, so ṁ is constant leading to a relationship that is linear in

x. As a result, all of the mass flux-weighted properties vary linearly for integration planes

that cross the shock wave.

There are two approaches that can be used to compute a set of weighted properties.

The first is to simply weight every property of interest independently. The second is to

weight only a minimum number of properties, and compute all additional properties using

thermodynamic and gas-dynamic relationships. These two approaches are illustrated in

Fig. 9, which shows the Mach number and total pressure distributions using both approaches.

The solid and dashed lines are the mass flux-weighted and area-weighted distributions, while
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the symbols are the distributions computed from the weighted density, velocity, and pressure.

The weighted Mach numbers and total pressures follow the behavior defined above, whereas

the values computed from the minimum set of weighted averages are significantly different.

This is a direct result of the non-linear relationships between the flow properties. For this

particular minimum set of properties, the total pressure distribution shows a local minimum,

which is a violation of the second law of thermodynamics. Somewhat different results would

be obtained if a another set of weighted properties had been chosen.

The property distributions computed with the CMME, Langley distortion, CMES, and

mass flux-weighted methods are plotted in Figs. 10 and 11. The CMME, Langley distor-

tion, and CMES methods give similar results for the static pressure distribution, but each

of these deviate significantly from the mass flux-weighted values. The x-velocity distribu-

tions are similar for all approaches except for the values obtained from the CMES method.

Interestingly, the Mach number obtained from the CMES method compares favorably with

the mass flux-weighted Mach number; indicating that the static temperature given by this

method is greater than the mass flux-weighted value. The total pressure distributions that

result from the CMME and Langley distortion methods have a local minimum, similar to

what was observed with the weighted averages when the weighting process was not performed

independently. The CMES method does not show this behavior for the total pressure be-

cause the entropy, which is closely coupled to the total pressure, is one of the quantities that

was conserved.
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Figure 7: Static density and x-velocity distributions on grid 2 using weighted averages
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Figure 9: Mach number and total pressure distributions on grid 2 using weighted averages
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Figure 11: Mach number and total pressure distributions on grid 2 using conserved-flux
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Case 2

The second case is a two-dimensional inviscid flow through a converging/diverging nozzle

with an exit Mach number of 3. The contour was generated with the IMOCND (Irrotational

Method of Characteristics for Nozzle Design) code, 12 and has a throat defined by a Gaussian

curve with a radius of curvature equal to one half of the throat height. The grid and Mach

contours for this flowfield are shown in Fig. 12. The simulation was carried out using the

VULCAN flow solver, and was considered to have reached a converged state once the L2-

norm of the residual error was reduced by 12-orders of magnitude from its initial state.

It is common practice in CFD to take advantage of any symmetry present in the geometry

to reduce the time required to compute steady-state solutions. This convention can have an

affect on the properties computed by the various one-dimensionalization methods. Figure 13

shows the distributions of the y-component of velocity computed from the full nozzle solution

and the solution of just the upper half of the nozzle. When only the upper half of the

geometry is processed, all of the methods produce a negative y-velocity distribution upstream

of the throat (where the flow is turned towards the centerline), and a positive y-velocity

distribution downstream of the throat (where the flow is turned away from the centerline).

When the complete geometry is processed, all of the methods produce a zero cross-flow

velocity except for the Langley distortion method. The Langley distortion method extracts

the velocity magnitudes from the kinetic energy fluxes, i.e.,

u2 =

∫
ρ (�v · �n) u2 dA

ṁ
(15a)

v2 =

∫
ρ (�v · �n) v2 dA

ṁ
(15b)

w2 =

∫
ρ (�v · �n) w2 dA

ṁ
(15c)

Hence, there exists no cancellation of velocity components across the line of symmetry, as

is the case for each of the other methods. Note that this method also yields values for the

y-velocity component that are larger (in magnitude) than the values obtained from any of

the other methods that were considered. This behavior can be explained by comparing the

expressions for the weighted average of velocity

v =

(∑nmax

n=1
wnvn∑nmax

n=1
wn

)
≈ 1

nmax

nmax∑
n=1

vn (16)
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with that of the square root of the weighted average of the velocity squared

v =

(∑nmax

n=1
wnv2

n∑nmax

n=1
wn

) 1

2

≈
(

1

nmax

nmax∑
n=1

v2

n

) 1

2

(17)

In the above expressions, it has been assumed that the weighting factors are approximately

equal at each point. A close examination of these expressions reveals that Eq. 17 produces

velocity values that are greater than or equal to those obtained from Eq. 16.
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Figure 12: Nozzle grid (every fourth point removed for clarity) and Mach number contours

Other than the y-velocity component, the weighted averages obtained from the full nozzle

match those of the half nozzle. The flux-conserved methods, on the other hand, involve a

system of coupled equations. Hence, a change in any one property can affect other prop-

erties. Figures 13 and 14 show the distributions of various properties through the nozzle

for each of the one-dimensionalization approaches. The largest differences between full and

half geometry properties occur when the CMME method is utilized. Both the Mach num-

ber and total pressure show noticeable deviations from the values obtained with the other

averaging approaches. The total pressure distributions are particularly interesting because

this quantity should be constant for the isentropic flowfield considered here. The CMME

value for the full nozzle solution shows nearly a 20% total pressure drop in regions where

the y-component of velocity is large. The half nozzle solution also shows a drop in total

pressure, but the drop is considerably smaller (approximately 5%). The larger total pressure

drop seen with the full nozzle is a result of an inconsistent accounting of the kinetic energy

between the multi-dimensional and one-dimensional spaces. The kinetic energy computed

from the full nozzle solution only includes contributions from the x-velocity component (the

y-component vanishes), leading to a value for the kinetic energy that is smaller than that

computed for the half nozzle. Total enthalpy is one of the properties that is conserved, so
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the static enthalpy (or static temperature):

h = h◦ − 1

2
(�v · �v) (18)

will be larger for the full nozzle. This larger temperature results in the smaller Mach number

and total pressure values seen in Fig. 14. The results obtained with the CMME method, and

to a lesser extent the Langley distortion methodology also show a violation of the second

law of thermodynamics. This undesirable behavior is avoided when the weighted average or

the CMES method is employed.
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Figure 13: Static pressure and y-velocity distributions for the half and full nozzle geometry
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Figure 14: Mach number and total pressure distributions for the half and full nozzle geometry
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Case 3

The third case is a two-dimensional, turbulent flow through a model scramjet isolator. The

inflow conditions simulated are given in Table 2, along with the assumed surface temperature

and applied back-pressure. The lower wall of the isolator is part of the facility flowpath,

while the upper wall is a flat plate extension placed into the test section. This produces an

asymmetric boundary layer structure, providing a more realistic simulation of what would

occur with a flight engine. The back-pressure was set high enough to force a shock system into

the isolator, simulating the pre-combustion shock train flow physics of a scramjet operating

in dual-mode. Figure 15 shows the grid and Mach contours of the back-pressured isolator

flowfield in the vicinity of the shock system. As one would expect, the thicker boundary layer

on the lower surface has separated to a larger extent than the adjacent thinner boundary layer

present along the upper surface. The CFD simulation for this configuration was performed

using the VULCAN flow solver 13, 14 with the Wilcox (1998) k-ω turbulence model. 15 The

simulation was considered to have reached a converged state once the L2-norm of the residual

error was reduced by 6-orders of magnitude from its initial state. The turbulent kinetic

energy is a contributor to the total enthalpy flux, and the decomposition required for the

one-dimensionalization methods took this into account, i.e.

h◦ = h +
1

2
(�v · �v) + k (19)

where ∫
[ρ (�v · �n) k] dA = ftke = [ρ (�v · �n)k] A (20)

Note that the choice of including the turbulent kinetic energy in the decomposition process

may not be appropriate when coupling a multi-dimensional analysis with a typical one-

dimensional cycle analysis (where turbulent kinetic energy is not accounted for). In this

instance, strict consistency is only realized by neglecting the turbulent kinetic energy during

the decomposition process, and allowing the “turbulent” energy to be distributed amongst

the velocity components.

Table 2: Isolator Conditions

Nominal Isolator Conditions Inflow

Mach Number 2.22

Total Temperature [K] 286.1

Total Pressure [MPa] 0.924

Surface Temperature [K] 250.0

Back Pressure [MPa] 0.40
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Figure 15: Isolator grid and Mach contours (separation zone highlighted in purple)

The shock system in the isolator introduces a high level of flow distortion; presenting

a significant challenge for any one-dimensionalization methodology. Figure 16 shows the

distributions of Mach number and total pressure through the isolator for the CMME, Lan-

gley distortion, CMES, and mass flux-weighted approaches. The oblique shock pattern in

the isolator causes a reduction in Mach number from a supersonic condition at the isolator

entrance, to a subsonic condition near the exit of the isolator. The cross-sectional area in the

isolator, however, is constant. Under these circumstances, the CMME method relationships

(Eq. 3) can permit only two solutions: a supersonic (shock-free) solution and a subsonic

(normal-shock) solution. Hence, this approach is not capable of predicting the gradual com-

pression through the isolator. The Langley distortion method includes distortion coefficients

that allow for an “effective” area change; providing a mechanism for capturing the effects

of the oblique wave patterns through the isolator. The shock wave patterns in the Mach

distribution obtained from this approach match those of the mass flux-weighted Mach distri-

bution quite well. The Mach number extracted with the CMES method exhibits a behavior

similar to that given by the CMME approach. However, since entropy is a quantity that

is explicitly matched, a physically consistent monotonic drop in total pressure is realized

with this methodology. Both of the CMME methodologies predict a non-monotonic change

in total pressure. This behavior has been a consistent trend for each test case when non-

negligible levels of flow distortion are present. This observation (to a large degree) motivated

the development of the CMES methodology.

The distortion coefficients extracted from the Langley distortion and CMES methods are

given in Fig. 17. The η3 distortion parameter (present in the Langley distortion method)
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never deviates from unity. This is a direct result of choosing the unit normal to be aligned

with the velocity vector. All other distortion parameters deviate significantly from unity. The

gradual reduction seen for the η1 and η2 distortion parameters upstream of the shock system

is primarily a boundary layer displacement effect. The onset of the shock system causes

a rapid drop in these distortion parameters, and they remain low until the flow has been

shocked down to subsonic conditions. The η1 and η2 parameters gradually rise downstream

of the shock system as the flow attempts to become re-attached. The distortion parameter

present in the CMES method, η, shows a gradual rise through shock system up to the point

where the subsonic solution (see Fig. 16) is achieved. At this point, the distortion parameter

drops discontinuously and gradually increases for the remainder of the re-attachment process.
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Figure 16: Mach number and total pressure distributions for the back-pressured isolator
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Figure 17: Distortion coefficients for the back-pressured isolator

Conclusions

Issues involved with the extraction of uniform properties from experimental data sets

and/or multi-dimensional computational data sets have been examined for a variety of

methodologies. The unique assumptions associated with each one-dimensionalization ap-

proach were shown to significantly affect the values computed by each method. In general,

the conserved-flux approaches all had difficulty producing expected one-dimensional flow

properties when the primary flow direction was not uniform. The conserved-flux approaches

that did not explicitly account for the entropy flux were particularly troublesome, since these

methods were susceptible to violations of the second law of thermodynamics. The assump-

tion of symmetry often used in CFD analysis was also shown to have an impact on the

one-dimensionalization process. In general, the assumption of symmetry helped to main-

tain the correct kinetic energy levels for the conserved-flux methodologies, which led to an

improved uniform flow representation of the nozzle flowfields studied in this effort. Finally,

while no general arguments can be given for one averaging approach over another, some basic

observations can be made for each class of approach. The weighted methods, particularly

the mass flux-weighted approach, consistently predicted the qualitative trends present in the

multi-dimensional data. As a result, this approach is attractive when one simply wants to

qualitatively examine how properties are varying through the flowpath. The shortcoming of

this approach appears when one wants to interface with a one-dimensional engineering tool

(or in any other situation where strict consistency between the flow properties is required).

In this situation, the approach used to one-dimensionalize the data should be consistent with
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the fluxes that are conserved by the engineering tool, and the interface should be placed at

a plane with minimal flow distortion.
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Appendix A. CMME Method - Variable Decomposition

The uniform flow properties that satisfy the integral flux relations for mass, momentum,

and energy conservation can be written as

fm
mass = [ρ (�v · �n)Ym] A (1a)

�fmomentum = [ρ (�v · �n) �v + P�n] A (1b)

fenergy = [ρ (�v · �n)h◦] A (1c)

The introduction of the total mass flux, ṁ,

ṁ =
ns∑

m=1

fm
mass (2)

allows these relations to be recast as

fm
mass = ṁ Ym (3a)

�fmomentum = ṁ �v + P �n A (3b)

fenergy = ṁ h◦ (3c)

The mass expression provides an explicit relationship for the uniform composition variables,

Ym =
fm

mass

ṁ
(4)

and the energy expression provides a direct relationship for the uniform total enthalpy

h◦ =
fenergy

ṁ
= h(T,Ym) +

1

2
(�v · �v) (5)

The momentum expression can be rearranged to yield an expression for the velocity vector,

�v =
�fmomentum −P �n A

ṁ
(6)

This expression can be simplified to a scalar equation by taking the dot product of this

vector with the unit normal (�n),

�v · �n =
fmomentum − PA

ṁ
(7)
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where

fmomentum ≡ (�fmomentum · �n) (8)

Further manipulations are possible with the introduction of the equation of state,

P = ρRT =
ṁ RT

(�v · �n)A
(9)

resulting in the following relationship for (�v · �n)

�v · �n =
fmomentum − PA

ṁ
=

fmomentum

ṁ
− RT

(�v · �n)
(10)

This equation is quadratic with respect to (�v · �n), hence the quadratic formula can be used

to obtain:

�v · �n =
fmomentum/ṁ ±

[
(fmomentum/ṁ)2 − 4RT

] 1

2

2
(11)

Equations 4, 6, 9 and 11 can be substituted into Eq. 5 to yield a single expression with static

temperature as the only unknown, i.e.

F (T ) = 0 = h(T,Ym) +
1

2
(�v · �v) − fenergy

ṁ
(12)

This function has the general shape displayed in Fig. A1.
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Figure A1: CMME function (colored lines denote the two branches of Eq. 11)

In principle, any root solving algorithm can be used to solve for the static temperature

in Eq. 12. Unfortunately, there are two values of temperature that can satisfy F (T ) = 0. In

this effort, two bisection solves are performed to determine each temperature that satisfies
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F (T ) = 0. The first bisection procedure finds the root (or roots) that is bounded between

Tmin and Tmax on the upper (red) portion of the curve, corresponding to values obtained by

choosing the “−” sign in Eq. 11. The second bisection procedure finds the root (if it exists)

that is bounded between Tmin and Tmax on the lower (blue) portion of the curve, representing

the values obtained when choosing the “+” sign in Eq. 11. Tmax is the temperature that

forces the discriminant of Eq. 11 to be zero, i.e.,

T =
(fmomentum/ṁ)2

4R
(13)

and Tmin can be taken as either zero, or the lower temperature bound given for the polynomial

fits of the thermodynamic data. The temperature value that is retained is the solution that

yields a Mach number that lies closest to the mass flux-weighted Mach number, which must

be externally supplied. As a final note, one may be tempted to assume that the two roots

that satisfy F (T ) = 0 represent a subsonic and a supersonic solution to the flux equations. A

careful examination of Eq. 11 reveals that this is not necessarily the case. The Mach number

(based on �v · �n) that appears when the discriminant of Eq. 11 vanishes corresponds to a

value of 1/
√

γ, where γ is the ratio of specific heats. Hence, the two temperature values that

satisfy F (T ) = 0 can correspond to two subsonic solutions, or a subsonic and a supersonic

solution.

31 of 33



Appendix B. CMES Method - Variable Decomposition

The uniform flow properties that satisfy the integral flux relations for mass, energy, and

entropy conservation can be written as

fm
mass = [ρ (�v · �n)Ym] A (1a)

fenergy = [ρ (�v · �n)h◦] A (1b)

fentropy = [ρ (�v · �n) s] A (1c)

The introduction of the total mass flux, ṁ,

ṁ =
ns∑

m=1

fm
mass (2)

allows these relations to be recast as

fm
mass = ṁ Ym (3a)

fenergy = ṁ h◦ (3b)

fentropy = ṁ s(T,P,Ym) (3c)

leading to explicit relationships for the uniform composition variables, total enthalpy, and

entropy. If the unit normal is defined to be aligned with the velocity vector (i.e., �n = �v/|�v|),
then

(�v · �n) =
√

�v · �v (4)

allowing (�v · �n) to be extracted from the definition of total enthalpy,

(�v · �n) = [2 (h◦ − h(T,Ym))]
1

2 (5)

It should be noted that the velocity vector is not present in the equations that govern the

CMES method. Therefore, it must be supplied by some other means (e.g. by mass flux-

weighting the velocity components) to define the unit normal. Finally, an expression for the

pressure is obtained by combining the equation of state with the total mass flux, i.e.

P = ρRT =
ṁ RT

(�v · �n)A
(6)

Equations 3, 4, 5, and 6 can be combined to yield a single expression with static tem-

perature as the only unknown. For a calorically perfect gas, the resulting function can be
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expressed as

F (T ) = 0 =

[
fentropy

ṁ
− sref

]
−

[
γR

γ − 1
ln

(
T

Tref

)
− R ln

(
P

Pref

)]
(7)

This function has the general shape displayed in Fig. B1, which shows that two values of

temperature will satisfy F (T ) = 0. One of the roots results in a solution for subsonic

flow (blue curve), and the other yields a solution for supersonic flow (red curve). In this

effort, two bisection solves are performed to determine each temperature value that satisfies

F (T ) = 0. The first bisection procedure finds the root that is bounded between Tmin and the

temperature at the sonic point, and the second finds the root that is bounded between the

temperature at the sonic point and the stagnation temperature. The stagnation temperature

is obtained from the solution of

h◦(T◦,Ym) = 0 , (8)

the sonic temperature is the temperature that satisfies

γ(T,Ym) R T = 2 (h◦ − h(T,Ym)) , (9)

and Tmin can be taken as either zero, or the lower temperature bound given for the polynomial

fits of the thermodynamic data. The solution that is retained is the solution that yields a

Mach number that lies closest to the mass flux-weighted Mach number (which must be

externally supplied).
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Figure B1: CMES function (colored lines denote subsonic and supersonic branches of Eq. 7)
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