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The Xational Aeronautics and Space Administration (NASA) Atmospheric In- 
frared Sounder (AIRS) on board the Aqua satellite has been long recognized as 
an important. contributor towards the improvemerlt of weather forecasts. How- 
ever, only a small fraction of the total data produced by AIRS is currently being 
used by operational weather systems. 

In fact, in addition to effects of the procedures of thinning the data and ap- 
plying quality control (which causes many data to be rejected), the only AIRS 
data assimilated are radiance observations of channels unaffected by clouds. 
This means that only the data from areas that appear cloud free at the time of 
the observation are being retained by operational weather forecastiiig systems. 
Therefore, being observations in mid-lower tropospheric sounding AIRS chan- 
nels assimilated under completely clear-sky conditions, a very severe limitation 
on the horizorltal distribution of the AIRS-derived informat,ion is being imposed 
t,o the atmospheric models which make use of AIRS data. 

In this work it is shown that the ability to derive accurate temperature 
profiles from AIRS observations in partially cloud-contalninated areas can be 
utilized to further improve t,he impact of AIRS observations in a global model 
and forecasting system. 

The analyses produced by assimilating AIRS temperature profiles obtained 
under partial cloud cover result in a substantially different temperature struc- 
ture of the northern hemisphere lower midtroposphere at higher latitudes. 'This 
temperature difference has a strong impact, through a complex dynamical mech- 
anism, on the representation of the polar vortex, especially over rlort,heastern 
Siberia and Alaska. The polar vortex is one of the main agents of boreal winter, 
because on its borders most of the weather systems develop. The AIRS-induced 
modifications in the model representation of the polar vortex modify in turn the 
weather systems development and propagatioli through the model's dynamics, 
producing iniproved 3-day forecasts. 
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The National Aeronautics and Space Administration (SASA) Atmospheric 

Infrared Sounder (AIRS) on board the Aqua satellite has been long recog- 

6 nized as an important contributor towards the improvement of weather fore- 

7 casts. At this time only a small fraction of the total data produced by AIRS 

8 is being used by operational weather systems. In fact, in addition to effects 

9 of thinning and quality control, the only AIRS data assimilated are radiance 
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observations of channels unaffected by clouds. Observations in mid-lower tro- 

pospheric sounding AIRS channels are assimilated primarily under completely 

clear-sky conditions, thus imposing a very severe limitation on the horizon- 

tal distribution of the AIRS-derived information. In this work it is shown that 

the ability to  derive accurate temperature profiles from AIRS observations 

in partially cloud-contaminated areas can be utilized to further improve the 

impact of AIRS observations in a global model and forecasting system. The 

analyses produced by assimilating AIRS temperature profiles obtained un- 

18 der partial cloud cover result in a substantially colder representation of the 

19 northern hemisphere lower midtroposphere at higher latitudes. This temper- 

20 ature difference has a strong impact, through hydrostatic adjustment, in the 

21 midtropospheric geopotential heights, which causes a different representa- 

22 tion of the polar vortex especially over northeastern Siberia and Alaska. The 

23 AIRS-induced anomaly propagates through the model's dynamics produc- 

24 ing improved 5-day forecasts. 
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1. Introduction 

25 The Aqua satellite containing the Atmospheric Infrared Sounder (AIRS) and the Ad- 

26 vanced Ylicrowave Sounding Unit (AMSU-A) was launched in May 2002 by the National 

27 Aeronautics and Space Administration (YASA) to become the most-advanced polar orbit- 

28 ing integrated infrared and microwave atmospheric sounding system to this day [Pagano 

29 et al., 20031. The basic theory used to  analyze AIRS/AMSU/HSB data in the presence of 

30 clouds, called the at-launch algorithm, and that used in a post-launch algorithm, has been 

31 described previously [Susskind et al., 2003; 20061. The post-launch algorithm, referred to  

32 as AIRS Version 4 [Susskind et al., 20061 has been used by the NASA Goddard Distributed 

33 Active Archive Center (DA4,4C) to  generate AIRS retrieval products. AIRS unprecedented 

34 vertical resolution allows a more detailed depiction of the thermal structure of the atmo- 

35 sphere with respect to other data sets such as reanalyses. For example, Tian et al. [2006] 

36 investigated the Madden Julian Oscillation and documented that AIRS-derived products 

improve the representation of the vertical moist thermodynamic atmospheric structure in 

38 the tropics. 

39 Le Marshall et al. [2006] have shown an improvement of the S C E P  operational system's 

40 forecasting skill resulting from the assimilation of AIRS radiance observations unaffected 

41 by clouds. IVu et al. [2006] found a specific impact on hurricane simulation by assimilat- 

42 ing retrieved AIRS temperature and humidity profiles derived in clear conditions, which 

43 produce a more accurate representation of the Saharan ,4ir Layer. However. despite these 

44 promising studies it should be stressed that the improved representation of the atmo- 

D R A F T  December 14, 2007, 11 :38am D R A F T  



REALE E T  AL : IhlPROVISG FORECAST SKILL X - 5  

45 spheric structure has been limited, so far. by the use of AIRS data only in areas not 

46 contaminated by clouds. 

47 Susskind [2007] describes some of the capabilities of the AIRS Version 5 retrieval al- 

48 gorithm now being used operationally at  the DAAC. A key element of the new system 

49 is the ability to  generate accurate case-by-case level-by-level error estimates and also use 

them for quality control. In this work, we assimilate quality-controlled AIRS Version 5 

51 temperature soundings, using the medium quality control described in Susskind [2007]. 

2. The Model and Data Assimilation System 

52 The global data assimilation and forecasting system used is the NASA GEOS-5, which 

53 combines the Gridpoint Statistical Interpolation (GSI) analysis algorithm co-developed 

54 by the National Centers for Environmental Predictions (KCEP) Environmental hlodeling 

j5 Center (documented in Wu et al., [2002]), with the KASA atmospheric global forecast 

56 model, described in Bosilovich et al., [2007]. The forecast model shares the same dynami- 

57 cal core [Lin, 20041 with the so-called finite-volunie General Circulation Model (fvGChl), 

58 used in several studies focused on tropical cyclones [e.g. Atlas et al. 2005; Shen et al., 

j g  20061. The GEOS-5 however contains a newer version of the fvGCh1, differing in many 

60 aspects but most notably in the physical parametrizations, partly developed by the NASA 

61 Global Modeling and Assimilation Ofice (GMAO). 

3. The Experiments 

62 Three 31-day assimilation experiments, starting at 00z 1 January 2003, have been per- 

63 formed with the GEOS-5 DAS run at a spatial horizontal resolution of lo. In all three 

64 experiments conventional and satellite observations used operationally at  XCEP at that 
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65 time are assimilated, with the exclusion of AIRS data in the first run, which we define 

66 CKTRL. In the second and third assimilation runs two additional sets of data are assimi- 

67 lated: AIRS temperature profiles with medium quality control in one (experiment named 

68 AIRS), the same AIRS data but only above 200 hPa in the other (experiment CUTF), so 

69 as to assess the significance of withdrawing tropospheric temperature information derived 

70 under cloudy conditions. The first four days are discarded to  allow spin-up. From the 

71 three sets of analyses, three corresponding sets of 27 five-day forecasts (CXTRL, AIRS 

72 and CUTF) are produced and verified against operational NCEP analyses. 

4. Results 

73 Figure 1 shows the anomaly correlation (AC) plot for 500 hPa geopotential height in 

14 the northern hemisphere extratropics, comparing 3 sets of 27 5-day forecasts: CKTRL, 

75 i41RS and CUTF. The AC at day 5 (AC5) is about .82 for the CNTRL. and a significant 

76 impact of AIRS can be seen throughout the integration, with AIRS AC5 being about 35 .  

77 The CUTF AC is virtually identical to that of the CNTRL, thus suggesting that most of 

78 the impact during boreal winter originates from AIRS data within the troposphere. 

79 The daily variation of CNTRL AC5 between 5 and 31 January 2003 for the northern 

80 hemisphere ranges between a minimum of about .67 to a maximum of .91 (Fig. 1). The 

81 CUTF AC5 does not differ remarkably from the CNTRL whereas the AIRS maintains 

82 an overall superior skill, with only 5 days over 27 in which the CNTRL is better. In 

83 particular, AIRS minimum and maximum ACjs range from .76 to  .91, suggesting that 

84 ingestion of AIRS profiles makes the GEOS-5 system more stable. 
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5. Mechanism: temperature structure at the high latitudes 

85 The most relevant aspect of the AIRS data impact on the forecast is a substantially 

86 different representation of the lower midtropospheric temperature structure over the Arctic 

87 region, northeastern Asia and northern Alaska. This is observed in most of the cases in 

88 which AIRS AC5 is higher than the CNTRL. One case is selected, initialized on January 

89 25th. in which the difference AIRS minus CNTRL is particularly remarkable (larger than 

90 .05) and where the CNTRL performance is already satisfactory (CNTRL AC5=.85). In 

91 other words, a case is chosen in which the ingestion of AIRS data further improves a 

92 reasonably good forecast. 

93 Fig. 2 shows the 800hPa temperature difference between AIRS and CNTRL analyses 

94 at 002 25 January 2003: a large asymmetric temperature anomaly, slightly displaced to- 

gs wards Asia, dominates the Polar regions, with the AIRS analysis colder than the CNTRL 

96 of about 2°C over a large portion of the Arctic and Northeastern Siberia. This remark- 

g7 able temperature difference is entirely caused by AIRS data. In the same figure. the 

98 area-averaged temperature profiles for AIRS. CUTF, CNTRL and the difference AIRS 

99 minus CNTRL are computed for latitudes between 70"N and 90°N. The CUTF profile is 

loo virtually indistinguishable from the CNTRL up to 200hPa, confirming that most of the 

101 AIRS impact is in the troposphere. The largest difference between AIRS and CSTRL is 

102 of more than 2.5"C between 925 hPa and 800 hPa, reaching almost 4°C at 875hPa, and 

103 goes to zero at about 600hPa. A similar situation exists in most of the AIRS analyses 

104 associated to  forecasts in which there is improvement with respect to the CNTRL (not 

los shown). 
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6. Changes in the polar vortex and baroclinic waves 

106 blajor geopotential height hydrostatic adjustments related to  the lower temperatures 

107 occur in the AIRS analyses. As a consequence. the ingestion of AIRS data causes the 

108 AIRS minus CNTRL 500 hPa geopotential height anomaly to be negative, on the order 

109 of several tens of meters, over the entire Arctic and a fraction of northeastern Siberia 

110 and Alaska (Figure 3). This difference is not found for the CUTF case which is almost 

identical to  the CNTRL (not shown). 

112 The geopotential anomaly, originated mostly in the Polar regions, propagates through 

113 the model forecast also in the mid-latitudes and can be followed with the aid of a Hovmgller 

114 diagram (Figure 4) ,  which shows the 500hPa geopotential AIRS minus CNTRL difference, 

115 area-averaged between 40' and 80°AT. The small negative initial anomaly between 160°E 

116 and 160°W over northeastern Siberia, and Alaska corresponds well to  Fig. 3, and appears 

to undergo dispersion and propagation, producing a wave packet affecting most of North 

ilmerica and the northern Atlantic a t  day 5. In the same Figure the difference between the 

corresponding verifying NCEP analyses and the CNTRL shows a tripole between 100°W 

and O0 which is in qualitative good agreement with the impact induced by AIRS. 

In Fig. 5 the 5-day 500 hPa height forecast difference between AIRS and CNTRL is 

compared with the difference between the verifying corresponding NCEP analysis and 

the CNTRL. A good correspondence of most features can be observed over most of the 

western part of the northern hemisphere and over Europe, in agreement with Fig. 4. The 

suggested explanation is that AIRS data modify the representation of the high latitude 

low and mid-tropospheric temperature structure, leading to a substantially changed polar 
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vortex. particularly on the side of Siberia, where troughs and ridges are altered. These 

changes in the initial conditions affect in turn baroclinic wave production and propagation 

in the GEOS-5 forecast. Similar patterns are noted in other cases in which the AIRS AC5 

is larger than the CNTRL (not shown). 

It is important to stress that the Arctic and northeastern Siberia are almost void of 

conventional data and are not covered by geostationary data: therefore polar orbiting 

observing systems are particularly beneficial. In our case. the data coverage provided by 

AIRS over these regions is very dense (not shown) because of the capability of deriving 

accurate quality controlled temperature profiles in partly cloudy conditions. Low-level 

stratus cloud coverage over the Arctic peaks in summer but a non-negligible coverage of 

about 18% is also documented in winter [Klein and Hartman, 19931. The use of AIRS data 

under partly cloudy condition allows therefore a significantly improved lower tropospheric 

spatial coverage compared to  that obtained from the use of clear-sky data only. 

The AIRS temperature retrieval methodology involves the determination and use of 

so-called "cloud-cleared" radiances R% [Susskind et al., 20031, that are in effect estimates 

of what AIRS would have measured had the scene been cloud free. These cloud-cleared 

143 radiances can be assimilated in an analogous manner to that used now with cloud free 

144 radiances. A comprehensive assessment of this approach will be the subject of a future 

article. 

7 .  Concluding Remarks 

146 In this article we emphasize that the use of AIRS soundings derived in cloud contami- 

147 nated areas significantly increases weather forecast skill during midlatitude boreal winter 
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143 conditions due to  a substantially different representation of the low midtropospheric ther- 

149 mal structure over the Arctic region, northeastern Siberia and Alaska. The analyzed 

150 ther~nal anomaly induced by AIRS data ingestion causes hydrostatically related adjust- 

151 ments in the representation of the mid- and upper-tropospheric height fields, modifying 

152 particularly the geopotential gradients in dynamically active features such as troughs and 

153 ridges. The AIRS minus CNTRL 500 hPa geopotential difference in the GEOS-5 system 

154 has the appearance of a wave packet undergoing dispersion and amplification. After a 

155 120 hour forecast, the modified pattern of waves and associated baroclinic weather sys- 

156 tems over half of the northern hemisphere, which is caused by AIRS data ingestion, is 

157 verified against the S C E P  operational analyses, and found to be more realistic than the 

158 control simulation without AIRS data. It is important to  stress that the experiment in 

159 which AIRS data are excluded only below 200 hPa is virtually indistinguishable from the 

160 control and indicates that most of the AIRS impact is driven by a better depiction of the 

161 troposphere, especially beneath 600 hPa. 
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Figure 1. 500 hPa geopotential height anomaly correlation for the Xorthern Hemisphere 

Extratropics (above), north of 30°,V. Green is AIRS, red is CII'TF, black is CRTRL. Time 

series of 500NHAC (below). The numbers refer to individual forecasts. Case n.1 corresponds to 

January 5th. The thick line on n.21 corresponds to the selected case of January 25th. 
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Figure 2. Temperature anomaly analyses (AIRS minus CNTRL, "C. above) at 800hPa and 

area-averaged (70" - 90°i\i) temperature ( O C )  vertical profiles from analyses at 00z 25 January 

(below). CUTF and CNTRL virtually indistinguishable below 200hPa. Upper horizontal axis 

refers to CKTRL, AIRS, CUTF, lower horizontal axis in red refers to AIRS minus CNTRL. 
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Figure 3. Geopotential height (m) anomaly analysis (AIRS minus CNTRL) at 500 hPa, 00z 

25 January. 

Figure 4. Hovmejller diagram of latitudinally-averaged (40' - 80') 500hPa height (m) anomaly 

forecast (AIRS-CNTRL) from 00z 25 January to 06z 30 January (shaded). Difference between 

YCEP verifying analyses and CNTRL forecast is superimposed (solid contour). Time upward. 
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Figure 5 .  500hPa height (m) anomaly 120h forecast (AIRS minus CNTRL, shaded, panel 

above) and NCEP verifying analyses minus CNTRL 120h forecast (shaded, below) at verifying 

time of 00z 30 January. On both panels the corresponding CNTRL 500hPa geopotential 120h 

forecast (initialized at 00z 25 Jan, contour) is superimposed. Latitude range 25' - 70°N for 

clarity. 
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