
A Successful Component Architecture for Interoperable and
Evolvable Ground Data Systems

Tracking Number: 58308

Danford S. smith*, John 0. ~ristow', Jonathan J. ~ i l m o t :
National Aeronautics and Space Administration, Greenbelt, Mavyland, 20771

The National Aeronautics and Space Administration (NASA) Goddard Space Flight
Center (GSFC) has adopted an open architecture approach for satellite control centers and
is now realizing benefits beyond those originally envisioned. The Goddard Mission Services
Evolution Center (GMSEC) architecture utilizes standardized interfaces and a middleware
software bus to allow functional components to be easily integrated. This paper presents the
GMSEC architectural goals and concepts, the capabilities enabled and the benefits realized
by adopting this framework approach. NASA experiences with applying the GMSEC
architecture on multiple missions are discussed. The paper concludes with a summary of
lessons learned, future directions for GMSEC and the possible applications beyond NASA
GSFC.

Nomenclature

API
CAT
COTS
GMSE C
GREAT
GSFC
MOC
MOM
NASA
SMEX
ST5
TR MM

Application Programming Interface
Criteria Action Table. GMSEC Automation Component
Commercial Off-the-shelf Software
Goddard Mission Services Evolution Center
GMSEC Reusable Events Analysis Toolkit
Goddard Space Flight Center
Mission Operations Center
Message-Oriented Middleware
National Aeronautics and Space Administration
NASA's series of Small Explorer Satellites
NASA's Space-Technology 5 constellation of three satellites
NASA's Tropical Rainforest Measuring Mission

I. Introduction

T he Goddard Mission Services Evolution Center (GMSEC) reference architecture has been in development since
2001 and operational since mid-2005. GMSEC is NASA Goddard Space Flight Center's initiative to move

towards a common framework open architecture with the hopes of decreasing development, integration and
operations costs while increasing system flexibility and capabilities.

* Manager, Goddard Mission Services Evolution Center, NASA Goddard Space Flight Center, Information Systems
Division, MS 581.0, Greenbelt Road, Greenbelt, MD USA 20770
' Technical Lead, Goddard Mission Services Evolution Center, NASA Goddard Space Flight Center, Information
Systems Division, MS 581 .O, Greenbelt Road, Greenbelt, MD USA 20770

Task Lead, Advanced Flight Software Architectures, NASA Goddard Space Flight Center, Information Systems
Division, MS 581.0, Greenbelt Road, Greenbelt, MD USA 20770

1
American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20080039324 2019-08-30T05:23:35+00:00Z

A. NASA Goddard Space Flight Center

The Goddard Space Flight Center (GSFC) in Greenbelt, Maryland operates most of NASA's sub-orbital and
low-earth orbit unmanned scientific spacecraft. GSFC manages a wide variety of missions, from balloon and
sounding rocket experiments to flagship missions like the Hubble Space Telescope. Mission durations for orbital
spacecraft range from several months to over 20 years.

About 30 satellites are managed by GSFC at any time, with about half of these operated from mission operations
centers (MOCs) on the Greenbelt campus. Others are managed by universities across the United States. Suborbital
missions are managed from Wallops Flight Facility in Virginia.

B. The Need for a New Ground System Approach

Traditionally, each satellite mission team at GSFC is responsible for developing its own mission operations
center (MOC). Typically, the ground system manager utilizes the same designs, concepts and approaches used on
other recent missions; usually the last mission he or she worked. Trade studies are done, comparing different key
components, with heavy weighting given to the most familiar.

Although successful, this approach has led to several shortcomings:

1. Innovation is slowed. Mission managers are risk adverse, and budget-constrained missions work
towards low-cost solutions, only making enhancements when absolutely necessary. New
capabilities, developed to address issues on a single mission, often cannot be applied to other
missions because the lack of commonality in the developed systems.

2. Maintenance costs are high. There are cases where multiple in-house software options exist for
the same domain area; each used supporting multiple missions. With costs constrained on
maintenance support, valuable enhancement money is split among products. As a result, products
tend to get old, with little or no significant enhancement over time. The underlying architecture of
these systems is based on approaches from the late 1980s and early 1990s.

3. COTS products are rarely used. Often, COTS product lines are not even considered because the
products have never integrated with other GSFC products. Those performing the studies are not
familiar with the COTS products and tend not to trust the "unknown".

4. Efforts are duplicated. Studies, designs and implementations efforts are repeated, although very
similar, for each mission.

A key problem facing all of the missions today is developing and operating within reduced budget guidelines.
Not only is the traditional development approach considered expensive, but the lack of innovation is felt to restrict
the introduction of new concepts which can lower operations costs over the life of the mission.

C. Goals for a New Architecture

Goals were established prior to starting work on the new architecture. It was important that any new investment
specifically address the issues identified by the GSFC management and mission teams. Candidate solutions would
be measured against the goals to ensure progress was maintained. By keeping the list of goals short, presentations to
management and new missions could be kept to a high level and not be overburdened by technical details. The
following four key goals for GMSEC were developed early in the program and have continued to drive decisions
throughout the system's development:

1. Simplify integration and development. The architecture should allow for reduced system integration
time, shortening overall development efforts. Clean interfaces and clear functional boundaries for
components are key to simplifying integration. A loose coupling of components and black box approach
are necessary. Although GSFC has many heritage components, they often have to be significantly
modified to be used on the next mission with unique interfaces and integration becoming a long custom
process.

2
American Institute of Aeronautics and Astronautics

2. Facilitate technology infusion over time. Many GSFC missions are develop 3-4 years prior to launch and
operated for over a decade. Over such a time span, technology evolves, operations concepts grow, security
issues and patches arise, and new components and tools become available. This model requires full system
change-out about every five or so years. The GMSEC architecture must expect and facilitate routine
changes over the life of the mission.

3. Support evolving operations concepts. The new architecture should enable new operational concepts
now envisioned and should not preclude those to come. Key new concepts include fleet operations,
satellite constellations, split operations between GSFC and other organizations and ground-based or on-
board autonomy.

4. Allow for a mix of government, heritage, COTS and new components. GSFC has made a great
investment in custom mission support software. The new architecture must be able to utilize the existing
systems while allowing new components to be added. The architecture should easily allow the use of the
commercial products - with the assumption that a commercial product's actual software can not be
changed. In addition, through utility routines or simple interfaces and standards, the ability to write and
integrate new applications must be straight forward.

11. The GMSEC Architecture

A. High-Level Architecture Concepts

As with the list of goals, the list of high-level architectural concepts for GMSEC has been kept short:

1. Standardize interfaces - not Components. GMSEC does not perform trade studies and make
component recommendations or selections. By standardizing interfaces, GMSEC encourages the access
to a broad range of tools.

2. Middleware infrastructure. At the heart of the architecture is a message oriented middleware (MOM).
It can be a commercial package, open source or GSFC-developed.

3. User choice. GMSEC is not trying to select the best component in each functional area. The GMSEC
team is not trying to compare COTS products against each other or against heritage systems. Instead,
the architecture allows the user or mission to select their favorite tools and integrate them into a ground
system.

4. General-purpose approach with flight-ground capabilities. The architecture itself should be designed
to be adaptable to any number of missions. The key concepts should be applicable to either flight
software or ground control systems and should, ideally, be extensible to other domains.

3

American Institute of Aeronautics and Astronautics

The basic GMSEC architecture concepts are applicable to flight systetns and ground
systems, and can be extended throuxh firewalls to provide external access.

B. The Message-Bus Approach

The GMSEC Architecture uses a message bus (sometimes called an information bus or software bus) for inter-
process and inter-node communication. Instead of traditional socket connections among components, each
component only interfaces with the message bus. The middleware keeps track of where processes are located and
which process requires the data published to the bus.

The message bus provides publisldsubscribe message passing mechanisms. Applications "publish" messages to
the bus. Each message contains a subject name and the standard message contents. The subject name, for GMSEC
applications, indicates the mission, originating node, type of message, etc. Applications that need the data
"subscribe" to the pertinent subject name(s) and the middleware delivers the messages which match the subscribe
request.

Traditional Design
Socket Connections

GMSEC Design
Middleware Connections

The use of npublishL~ubscribe middleware package reduces the complexity
o f system interfaces and simplifies component integration.

Although publisldsubscribe mechanisms are common to many different middleware products, each product uses
its own proprietary message structure for passing the data on the bus. The commercial middleware products are

4
American Institute of Aeronautics and Astronautics

therefore not compatible with each other and applications are normally written to match the specific middleware
package selected for the system development effort. The GMSEC API (see next section) normalizes the basic
capabilities of multiple middleware products so they each appear the same to the applications software. In this way,
a change to the middleware product does not require changes to the applications software.

The design concept of normalizing the middleware packages and creating a common API was a result of wanting
to avoid vendor-lock-in. It may be necessary to change a middleware product if a company goes out of business, the
product goes in a new technical direction, product costs increase dramatically or other problems are found. Another
significant benefit is the ability to use different middleware packages for different situations. A no-cost GMSEC-
developed middleware system can be used during development efforts and a more robust, higher capacity system
used for final integration or operations. For the highest reliability, GMSEC supports the use of commercial
middleware packages that were initially developed to support the U.S. banking industry and Wall Street. A
messaging system with a very small memory footprint may be necessary for flight software. A product or new
component can be tested with one middleware system and can then be expected to run under the other systems in
different environments. The API also supports mixing middleware products in the same MOC.

Plug-in tools have been developed by the GMSEC team to allow monitoring of a system or bus configuration,
resource utilization or bus traffic, and to automate middleware failover scenarios. A full performance analysis has
been performed and real-time monitoring tools have been developed. The GMSEC system, with its middleware, can
transfer 10's of megabits of data per second - a rate 100's of time beyond what missions today typically require for
command and control and health and safety data. Typical overhead of the GMSEC middleware is less than 2% of
the CPU.

C. API and Message Standards

The GMSEC API forms a critical layer in the GMSEC architecture. It provides isolation between the
applications programs and the underlying messaging software. As discussed in the previous section, any of several
different middleware packages can be used without modifying the applications. In addition, the API supports
multiple languages, operating systems and platforms. It normalizes the behavior of the middleware while allowing
access to special functions or capabilities of individual middleware products.

Components

GMSEG Messages

CMSEC APB

Middleware

Operating Systems

Tedernetry 8 Command f A&~tom;rttion 1 Flight Dynamics

The GMSEC API provides the generalized interface between applications programs and the system
middleware. Mtlltiple languages, middlavare products, platforms and operating systems are supported.

GMSEC standard messages are passed to the API by the applications. The GMSEC message specifications cover
common messages such as telemetry packets and frames, eventllog messages, heartbeat messages, directives,
products, etc. Each message contains a subject naming standard, a common message header and the message-
specific body. The naming standard is used by the middleware to route the messages. The common header contains
more information about the message (time tag, etc.) and may be used for further applications-level filtering and

5
American Institute of Aeronautics and Astronautics

processing decisions. The message body is tailored for each message type. To develop the message standards, the
GMSEC team utilized the interface documents from many different commercial product vendors as well as the
documentation on the GSFC-built systems and the experiences of many of the mission development managers. The
result has been a message set which has been very easy for many product vendors or developers to adapt to.

The GMSEC API is key to rapid and successful development efforts and was designed with usability in mind. It
is software designed for software people. The documentation has been refined by having fresh-out employees install
and use the API without help - if they had a question, it was addressed as an update to the documentation. For L3
Communications, the result was COTS software that worked the first time they brought it to the GMSEC Lab; same
for Attention Software, who relied solely on the documentation and developers toolkit and did not make a single call
for technical support.

Because of the significant number of platforms, operating systems and programming languages the GMSEC
Architecture and API must support, an extensive automated testing system was developed. The test suite contains
over 12,000 tests that are automatically executed daily as new code is check into the configuration library. This test
suite was absolutely essential for supporting so many platforms and languages. Since it runs every day, errors are
detected as soon as a new routine is checked in and can be isolated and corrected quickly.

Together, the GMSEC API and standardized messages provide a plug-and-play capability for a wide variety of
functional components across a large selection of hardware platforms, operating systems and development
languages. By involving the commercial product industry in the message definition process, the message standards
were designed to support a wide range of products, concepts and problem domains. The success of the message
definitions allowed simplified integration of COTS products as well as heritage GSFC software systems and
software from other NASA Centers.

D. Compliant Components

Instead of selecting the "best in class" components for telemetry and command processing, trending, planning
and scheduling, etc., GMSEC uses the common interface approach to allow many different products of the same
functional domain to be integrated. By having choices in each functional area, missions avoid vendor lock-in and
can select components based on merits (technical, cost, etc.). There is no single suite of tools to define a GSFC
GMSEC control center. Flexibility is maintained.

Components on the GMSEC framework provide the system's functionality. Components can be as major as
telemetry and command systems or planning systems or as small as performance monitoring tools or system agents.

Each major component is required to meet certain standards to be considered "GMSEC compliant":
1. It must, of course, meet its functional requirements;
2 . It must publish a heartbeat message on a periodic basis;
3. It must publish statusilog messages to indicate an action has taken place or an event has occurred;
4. It must support user directives for component control to be received over the message bus.

These simple rules yield very powerful results. The heartbeats allow for system monitoring, configuration
displays and failovers. The log messages and directives are required for system automation (see section 111).

Source code for most COTS products can not be altered to become GMSEC compliant. An "adapter" approach
is used for these components. An adapter is a piece of software which works like an API-to-API interface and
converts from the COTS package's interfaces to the GMSEC interfaces. Because the GMSEC interfaces were
developed with knowledge of many COTS interface definitions, this adaptation has proven to go quickly (from as
short as a day to about 2 weeks). COTS packages that do not have clean, exposed APIs are more difficult to adapt
and their underlying design may not be amenable to GMSEC adaptation. Obviously, new software can be written to
use the GMSEC API calls directly. Heritage software can use either the adaptation model or the new software
model.

6
American Institute of Aeronautics and Astronautics

The goal of matching the interfaces is to create components that can be instantly integrated when connected to a
GMSEC bus. By significantly reducing the integration step, efforts can begin immediately on tool-specific
configuration to support the mission's needs. Instead of "plug-and-play", it should be "configure-and-operate."

GMSEC does not advocate on behalf of specific components. Instead, the GMSEC organizations serves as an
honest broker - encouraging the adaptation of many components and leaving the responsibility for product selection
to the end-user. GMSEC now offers choices in each of several functional areas. The first GMSEC components
were programs already in use at GSFC that could be modified to use the GMSEC API and help validate the plug-
and-play concepts to refine the message specifications. Commercial vendors' products were then added.
Components enabled by the architecture, including performance monitoring tools and automation suites, were
developed by the GMSEC development team. The result is a robust "catalog" of choices in several functional areas.
The catalog is added to on a regular basis with additional heritage, newly developed, and commercial products.

The GMSEC "catalog" is shown above - the acronyms are not as important as understanding that they
represent options for the mission end-users.

E. Architecture Analysis and Comments

Commercial product vendors and mission development teams have reported that the GMSEC API is very well
documented. The developer's toolkit allows for quick use and integration including providing templates for all
message types. Attention Software, Inc. was able to modify and integrate their paging system with the GMSEC
message bus simply by following the documentation. They did not call the GMSEC team until they were ready to
demonstrate their product and the demonstration worked perfectly on the first try. When L3 Communications
integrated their telemetry and command product, In Control Next Generation (ICNG), they first spent two weeks
working at their facility. When they installed their product in the GMSEC Lab, it was publishing GMSEC messages
visible on the GMSEC monitoring displays before the ICNG user interface finished starting up.

7
American Institute of Aeronautics and Astronautics

GMSEC is considered an unusual piece of software by some. Instead of being a solution for a specific
functional need, GMSEC addresses system-wide issues of flexibility, scalability, maintainability, technology
inhsion over time, avoidance of vendor lock-in, reuse, and COTS integration. By addressing these key issues.
GMSEC enables mission development teams to develop systems more rapidly from a large catalog of parts. Vendor
lock-in issues are minimized and component changes can be made without impacting with existing components - a
tremendous advantage over traditional maintenance approaches.

New trends are now being seen with the missions using the GMSEC architecture. Multiple choices of
components allow technical needs or even personal preferences to factor into selections. The first three missions
each chose a different telemetry and command system. At the same time, tools that perform very well will begin to
be used by many missions, and the number of available choices may actually shrink in some domain areas over time.
This has already been experienced in areas such as paging systems.

111. Architecture-Enabled Capabilities

The early demonstrations of the GMSEC system displayed the message bus concepts and showed the simplified
integration of heritage and COTS products. These demonstrations, however, did not show the functional benefits of
the architecture. In fact, it first appeared that GMSEC was a more expensive approach to providing the same mix of
functional components that had been available for years. What was not yet apparent was that the architecture itself,
through the use of standard messages and key requirements placed on the components allow for significant increases
in capability and reliability over previous approaches.

A. Situational Awareness, System-Wide Control, Automation and Failovers

Event messages (often called log or status messages) have been traditionally available in displays or log files
associated with many different components. Although the GMSEC approach does not preclude the local logs, the
publishing of log messages onto the bus is required. The message bus, therefore, is carrying the combined messages
from all components in all functional domains.

Simple tools can be developed which display or filter the combined collection of messages from all the subsystems.
This provides situational awareness, allowing users to view messages that span multiple domains in one place.
The GMSEC Reusable Events Analysis Toolkit (GREAT) is a compliant utility that provides the viewing and
filtering of messages. GREAT displays can be configured by the user to include selected message fields, sort and
filter the messages. In addition, GREAT creates a merged data base of the messages and has powerful report
generation capabilities which operate off of the archive.

This enhanced situational awareness can significantly increase the effectiveness of the flight operations team. Take
for example a system where scheduling, command management, flight dynamics and real-time telemetry and
command events are logged together. The real-time system could report that a temperature sensor is out of limits
low. In a traditional architecture, the user may then plot the value or look elsewhere for the cause. With situational
awareness and the GREAT display, the operator could tell that there are five minutes left in the pass (scheduling
message), a stored command on-board turned a heater off two minutes earlier (command management), and that the
satellite had entered into eclipse about one minute earlier (flight dynamics). On one display, the operator could
quickly surmise that the heater should have been turned on, not off and there are several minutes left in the pass to
correct the problem before it gets worse.

Requiring each component to subscribe to text-based directives (scripted or user inputs) on the bus provides system-
wide control. Scripts of directives destined for any number of applications can be executed from a single location.
An entire demonstration or operation can be conducted from one system.

With situational awareness and system-wide control, the user has the basic ingredients for automation. An

8
American Institute of Aeronautics and Astronautics

application can be developed which watches messages on the bus (situational awareness), makes decisions based on
those messages (new capability), and takes action (system-wide control) per the rules an operator has established.
GMSEC's Criteria Action Table, "CAT", allows users to develop automation rules. The rules indicate the "criteria"
for an action to be taken and the series of steps to be taken if the conditions are met. Any message can be watched
for and parsed. Multiple message conlbinations across multiple domains, temporal criteria and local variables may
be included. The actions taken can be defined as a sequence of functions, including relative timing, parameter
setting, operating system directives, message generation, user control directives and temporary rule disabling.

The GMSEC CAT system allows for event-driven system automation. It enables known actions to be taken in
known conditions. Model-based automation is possible by having independent model-based reasoning tools make
determinations and publish event messages for CAT to act on, or by issuing its own directives.

The first teams of GMSEC users found a broad set of uses for the CAT automation. A simple rule could be to watch
for the end of a pass, then wait 60 seconds and close files, trend critical data and distribute products to external
organizations. If a pass does not start when planned, the tool could invoke a reacquisition sequence. In conjunction
with a schedule execution system, total operations can be automated for several shifts per day and users can be
paged (or other actions taken) when anomalous conditions are recognized.

The GMSEC SystemAgent is a general purpose GMSEC-compliant software component that provides among other
things, software component or computer health information to other GMSEC components such as CAT on the
message bus. It provides a mechanism for managing failures of the middleware or individual components without
human intervention. It can even help predict failures by monitoring the computer's available memory or disk space.
Other failures may be detected by lost or missing heartbeat messages. CAT rules and SystemAgents may used to
watch for these problems and take action. Should a heartbeat for a given component not be received during a set
period, CAT in combination with the SystemAgent can direct the application to restart either on the same machine
or on another machine. The message bus middleware automatically reestablishes communications paths. If a node
goes down, or all of its applications, then all of its applications can be automatically started on another machine or
the applications can be split across multiple machines. Failover rules can now be set up in a number of hours. The
flexibility of application- and node-level failovers offer tremendous advantages over the older full string failover
approaches.

B. Creative Tools
Having data moving across the bus creates opportunities for tools to be developed which monitor the system

itself. Components can be developed which subscribe to certain message types and do not need knowledge of the
major functional pieces of the system.

One simple tool subscribes to all message types. It then tabulates the number and sizes of messages for each type
and creates a pie-chart of current bus traffic. Users can watch the traffic build as telemetry streams are started or
major activities take place and can possibly be aided in problem identification.

Another tool records all message traffic for a
period of time and then allows its playback at a
later time. By moving the data file to a laptop,
realistic demonstrations of actual message traffic
and component processing can be prepared to
show specific scenarios. For repeatable problems,
this message recorder can be used to track down
issues without impacting an operational
environment.

The display below shows the dynamic
configuration display. By monitoring heartbeat
messages and defining automation rules in CAT,
a display of the actual system configuration can
be created. Each "stack" represents a single node
on the network. Each box in the stack is a

9
American Institute of Aeronautics and Astronautics

software component for which a heartbeat is being received. Alarms go off and colors change if the heartbeats stop
for a component or components. Additional messages drive other parts of the display. When a start-of-pass
message is seen, the satellite picture is drawn and a line drawn to the front-end -processor. When a message is seen
saying someone is being paged (normally due to a problem), then the display is updated to show a pop-up antenna,
an alarm is sounded, and the message is added to the high-level message area. Other messages can cause other
updates to be made on the display. The importance of the display is that it represents the "'truth model" of the state
of the current system - it is not simply a depiction of what was planned or anticipated.

The GMSEC configuration and activity display is created by passively monitoring traffic on
the bus - there is no integration with the primary functional components.

C. Satellite Fleet and Constellation Operations

The GMSEC approach is ideal for the support of satellite fleets or constellations. Each satellite-related message
on the bus includes a Satellite-ID field in the header. Telemetry data from multiple satellites can be put on the bus.
A multi-satellite application can subscribe to messages containing any of several Satellite-IDS. Applications that
only support a single satellite only need to subscribe to that satellite. Situational awareness tools like GREAT and
automation tools like CAT can be configured to display or support multiple satellites. Multi-satellite displays are
easy to create. Cross-mission collaboration tools can be developed by using the status from one satellite to
determine actions to be taken on another.

Even with just a single satellite, data on the bus can be routed, for example, to multiple telemetry and command
systems or to current and updated components for comparison testing or parallel operations.

IV. Successful Mission Use

The GMSEC Architecture is now operational on several mission ground systems including NASNGSFC's
Tropical Rainforest Measuring Mission (TRMM), TRACE, SWAS, WIRE and Space Technology 5 (STS) missions.

10
American Institute of Aeronautics and Astronautics

A. TRMM

TRMM was the first mission to apply the GMSEC technologies. The TRMM
spacecraft was performing well, but was beyond its budgeted lifetime. The Project
was challenged to reduce operations costs by 50% or turn off the spacecraft. By
basing their reengineering effort around the GMSEC Architecture and concepts,
the TRMM mission was able to add significant levels of automation and move to
fewer operational shifts per day without any science data loss. The annual
operating budget was reduced by about 50% and the reengineering efforts were
fully paid for out of incremental budget savings. The reengineered system has paid for itself within 2 years.

B. NASA Small Explorer (SMEX) Missions

The Small Explorer missions, including the TRACE, SWAS and Wire satellites did not implement the GMSEC
architecture to save money, but rather to enable new capabilities associated with satellite fleet operations and
constellation operations. The system has been operational since mid-2005 and has successfully demonstrated
continuous "lights-out" operations. No direct operator involvement in the control room is required - the system
pages users if a problem is detected.

The SMEX reengineering effort is considered a pathfinder for future GSFC low-cost fleet operations and the
operations involving of satellite constellations.

C. Space Technology 5 (ST5)

The ST5 mission is a constellation of three small satellites launched in
March 2006. Its control center was used to support satellite integration,
pre-launch checkout, training, and now on-orbit operations. Power and
solid-state recorder subsystems were modeled using a MatlabISimulink
GMSEC-compliant component. Real-time telemetry is used to update
the model so that predictions can be made based on scheduled future
activities. Should problems be projected, the modeling system notifies
the scheduling system to make adjustments. All of the interactions are
across the GMSEC bus.

ST5 has reported that GMSEC saved them money while allowing them to demonstrate more advanced capabilities,
but the savings have not been quantified. ST-5 has also demonstrated limited "lights out" automation with GMSEC
and is preparing for a full 2-week lights-out operations period with the system paging the operations team if
problems are recognized.

V. Potential Applications

The core GMSEC system, including the architecture, middleware and MI has been designed to be domain
independent and, therefore, applicable well beyond the confines of GSFC. It should be noted that the use of a
message bus is a common software development strategy for large complex systems today. Most often, however,
large systems are designed as "point solutions", with a vendor's product at the core and specialized interfaces
designed to simplify the specific system's development efforts. GMSEC has taken these industry concepts beyond
the "point solution" paradigm and has created a general purpose framework where the platforms, operating systems,
development languages or even the underlying messaging mechanism can be mixed or changed without impacting
the integrity of the overall system. It is this extension of the commonly used design approach which has drawn so
much interest to GMSEC. GMSEC addresses concerns of those developing systems with very long lifetimes or a
significant mix of computing resources and products.

The initial application of the GMSEC architecture for reengineering efforts of existing missions at GSFC has
proven the value of the message bus approach. Other missions at GSFC which are being reengineered include

11
American Institute of Aeronautics and Astronautics

TERRA, AQUA, and AURA - the earth sciences trio basing their systems on the TRMM implementation. Future
NASA missions now working with the GMSEC team include: GLAST, SDO, GPM and MMS.

GMSEC labs have been established at most other NASA Centers for evaluation. As a result of work at the
Marshal Space Flight Center (MSFC), major software components have been traded between the Centers. The
NASA Exploration Initiative planning teams are aware of GMSEC and studying its features for possible use on
NASA's future manned missions and lunar and Martian exploration
missions.

Other commercial space operators and other U.S. Civil government
organizations have also been in contact with the GMSEC team about
possible applications.

Many of the same concepts proven with GMSEC in recent ground
system implementations can also provide benefits for flight software
systems. GSFC has recently developed a small-footprint architecture
for flight. This system includes device and operating system
abstractions, a messaging middleware and a suite of core flight
executive (cFE) services. The flight architecture has been tested on an
existing experimental satellite and is planned as the primary
architecture on a GSFC mission now under development.

12
American Institute of Aeronautics and Astronautics

VI. Lessons Learned and Future Directions

The GMSEC project at NASAJGSFC has matured into a proven, successful benefiting multiple on-orbit missions
and planned for several more. The GMSEC reference architecture approach, from technical to business model, has
resulted in several key findings. The benefits that have been observed include the following:

1. Significant reduction in integration time
2. Components can be addedlupgraded without impacting the existing system
3. Ideal for using multiple small distributed development teams and vendors
4. New concepts emerging for small independent components that integrate with the bus and provide

immediate benefits
5 . Missions are more willing to adopt the approach if "old favorite" components can still be used
6 . Some vendors see message compliance as a way to enter what had appeared to be a closed marketplace
7. Standard message approach provides collaboration possibilities with other organizations
8. Same concepts can be extended to flight systems

In evaluating the actual GMSEC effort, a different type of self-assessment emerges (in no particular order):

Our interface focused approach was key to customer
buy-in, allowing them to use their "old favorites"
while saving integration costs.
The establishment of a well-equipped GMSEC Lab
for integration and demonstrations provided a
integration, development and testing show place.
A working relationship with industry has yielded new
opportunities and options.
Framework approach has improved our flexibility
and design.
Focus on communication mechanisms and data to be
communicated help leverage industry trends and
technologies.
We no longer simply try to pick best component in a
problem domain; rather, users can evaluate and
change selections as required.

7. Maintenance approaches are being reconsidered.
8. Building flexibility into a system leaves margin for growth and evolution.
9. It is important to have a marketing plan and the ability to explain the risks and benefits (good technology is

not enough). What do you offer the customer?

Looked at from yet another perspective, GMSEC and other framework architecture approaches represent what may
be a set of new trends in mission critical systems development. Some traditional approaches are on their way out,
while other approaches are on their way in:

13
American Institute of Aeronautics and Astronautics

GMSEC development and use is expected to continue for many more years. It is expected that the area of
situational awareness and automation will continue to evolve, as GMSEC is only beginning to show the power
"public" information on the bus. For use in larger networks and system-of-systems approaches, work will be needed
in the areas of security and interoperability, as middleware products today do not consistently handle these aspects
of large systems when middleware products are mixed.

Independent status displays
Independent control points
Knowledge experts define automation

Providing or giving away the architecture and API as open source may provide GSFC with one of the largest
paybacks. This will expand the user base and therefore increase the number of compatible functional components
which can be immediately integrated into GSFC operational systems. Some of these new components may be
available for free and some may have a license cost, but the integration costs for GSFC would be near zero.

Situational Awareness
System-wide control
Ops team defines automation

The real future directions for GMSEC are just now being determined. The end-users are now comfortable with
the new levels of automation and are considering system enhancement needs. Other NASA Centers are considering
using approaches like GMSEC and may want to help expand GMSEC into a NASA common approach. Other
organizations (commercial and government) are considering the use of GMSEC and would help influence its
direction. Many organizations would like to adapt their components to meet the GMSEC standards so they could be
considered for GMSEC use. What is clear is that there are many options and the GMSEC architecture has the
flexibility to expand in many different directions.

VZI. Conclusion

The GMSEC Architecture features plug-and-play components, standard messages, and a software information
bus. Components can be core functional applications such as Telemetry & Command, Planning & Scheduling,
Assessment & Archive, Guidance Navigation & Control, and Simulation & Modeling or new stand-alone functions.
In many cases, there are multiple components covering the same functional area so that a mission can select the
component best matched to their requirements. The components publish/subscribe to the information bus using
GMSEC standard messages. The GMSEC Application Programming Interface (API) shields the components from
dependencies on communication protocols, operating systems, and hardware platforms thus facilitating platform
transparency for the components. The APl supports and "normalizes" the behavior of several communications
middleware products, providing additional flexibility. Legacy components may interface to the Information Bus
using adapters that translate legacy conlponent messages andlor protocols to those that are GMSEC-compliant.
Additionally, legacy components may, in combination with GMSEC, continue to use legacy interconnections.

The value of the GMSEC Architecture and tools is not just about dollar savings. Ground systems can now be
built and prototyped faster, allowing for quick and low-cost "fly-offs" or evaluations of different ground system

14
American Institute of Aeronautics and Astronautics

components and implementations. New capabilities are enabled including more powerful and system wide
automation. In the past, each domain had automation within their components, but there was no generic
commonality or cross-domain sharing of information. The "public" nature of the information bus allows cross-
domain knowledge of system status. In addition, upgrade approaches are more flexible inherently allowing parallel
operations to verify before switching to a new version or component. Components can truly operate as black boxes
with loose coupling simplifying any future change out of components.

The significance of the GMSEC architecture and supporting API middleware and tools can be viewed from a
number of perspectives. For end-users, the architecture enables levels of automation beyond the current state-of-the
practice on GSFC missions - thereby enabling missions to operate with smaller support teams. For system
developers, GMSEC provides a way to quickly integrate large sets of functional components, allows for simplified
technology infusion over time, and increases the ability to share software between missions. For COTS vendors, the
ability to easily adapt their products uslng the GMSEC API allows them to demonstrate their products in a NASA
environment (sometimes for the first time) and have an opportunity to be considered for NASA missions (several
vendors have now made their first GSFC sales this way). For other NASA Centers and organizations (like APL and
commercial satellite operators), GMSEC offers the opportunity for collaboration and tools sharing and provides a
flexible framework for their consideration for their own systems. It is the combined technical and business aspects
of GMSEC which has attracted the attention of so many organizations.

Acknowledgments

D. Smith, J. Bristow and J. Wilmot acknowledge the contributions of the entire GMSEC development team in
developing the GMSEC technical solution. Credit also goes to Pat Crouse and Chris Wilkinson at GSFC, the
primary funding sources and supporters of the GMSEC business model, and the management of the GSFC
Information Systems Division for supporting the business reengineering efforts which have become a critical part of
the GMSEC system success.

References

2006, IEEE Aerospace Conference, Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
Maureen Madden NASMGSFC, Everett Cary Jr., Timothy Esposito Emergent Space Technologies, and Jeffrey
Parker, David Bradley Honeywell Technology Solutions, Inc. 2006, IEEE Aerospace Conference

Bridging ESA and NASA Worlds: Lessons Learned from the Integration of hiflyE1SCOS-2000 in NASA's GMSEC
Jean-Pierre Chamoun, Steve Risner, Theresa Beech, Gonzalo Garcia, GMV Space Systems Inc 2006, IEEE
Aerospace Conference

15
American Institute of Aeronautics and Astronautics

