IEEE New Orleans Section 17 JUL 2008

Intelligent Sensors for Integrated Systems Health Management (ISHM)

> John L. Schmalzel NASA Stennis Space Center, EA41 (IPA) Department of ECE, Rowan University

Outline

The Context

Integrated Systems Health Management

Smart & Intelligent Sensors

• Why should we care?

Conclusions

NASA Centers

Constellation: The Next Generation

Ares I: Crew Launch Vehicle

Constellation: Return to the Moon

Constellation.VOB

Requirements Driving ISHM

Improve quality

By making better and more reliable measurements

Minimize costs

- Of reconfiguration between test articles
- Of repair and calibration
- Avoid downtime
 - By predicting impending failures
 - By timely intervention
- Increase safety (protect people and assets)

Technologies and Tools for ISHM

ISHM Architecture
Health assessment database
Anomaly detection methods
Predictive modeling
Root cause analysis
Intelligent elements
Integrated awareness

Component Technology View of an ISHM Application

ISHM Models (Embedded Data, Information, and Knowledge): **MTTP Implementation**

Test Time 🛒 🛒

Leak

||**(**)&

is2 process-equipment

a-subcomponent-of

Time of Day TO Marker 0.0

MTTP-Model

>=

Health Assessment Database:

Health Electronic Data Sheets Repository of anomalies

PE-118LON

M V-1168-GP

Decreasing Pressure

)&

pressure sensor

PE-1171-G

-<

Date 5 Mar 2007 9.51.04.359 am. Packets/Second 0*

Anomalv **Detection**: Sensor V&V. System pressure leaks, etc.

Smart & Intelligent Sensors Virtual Intelligent Sensors

MV-1165-GM MV-1125-Q0 PV-1170.0 TT-1205-0.0 T close MV-1126-G/ MV-1176-08 GN IGN-CUPPENT open open SV.1194.GM Integrated Awareness: Root 3-D Health Visualization Cause **Embedding of** Analysis **Predictive Models**

Pressure Leak

is2 pressure-subsystem

8

encompassing

PE-1140-00

HV-1128-00

ISHM Enabling Technologies: ISHM Architecture

Thet Paip shated to tauge (Get in sy Di) agrade (P.&ID) for a system...

Populated by component objects with associated xEDS...

ISHM Enabling Technologies: Health Assessment Database

Historical data records

- Nominal
- Anomalous
- Algorithm repository
 - Complex for implementation at upper ISHM architecture levels
 - Simplified for embedding in Intelligent Sensor
- Electronic Data Sheets (EDS)
 - Transducer Electronic Data Sheets (IEEE 1451.4 TEDS)
 - Health Electronic Data Sheet (HEDS)
 - Component EDS (CEDS)
 - Others

ISHM Enabling Technologies: Anomaly Detection

- Available w/in NASA (e.g., Glenn Research Center suite developed in the 80's as part of Atlas-Centaur pneumatic and hydraulic system post-flight analysis)
 - Noise Events (Broad spectrum, Impulse)
 - Flat-line Events
 - Level Shift Events
 - Drift Events
- Standard DSP and Statistics
 - Spectral analysis, Correlation
 - σ, σ²
- Literature

ISHM Enabling Technologies: Root Cause Analysis

Withindserlises and the free free free of the strength of the

Example Leak RCA

A decreasing pressure measurement associated with a pressurizable subsystem is used to reason about the possible cause/effects.

ISHM Enabling Technologies: Integrated Awareness

User interface

- Minimize information overload
- Provide navigation through 3d structure
- Spatial relationships between components
- Maintenance guide

Sensors Supporting ISHM

Smart Sensors

- A Smart Sensor adheres to one of the IEEE 1451.x Standards; for distributed systems, important to have a network capable application processor (NCAP)
 - IEEE 1451.0 Defines a set of common commands, operations and Transducer Electronic Data Sheets (TEDS) for the family of IEEE 1451 standards
 - IEEE 1451.1 Defines a common object model describing the behavior of a Network Capable Applications Processor (NCAP)

More IEEE 1451.X Smart Sensor Standards

- IEEE 1451.2 Defines a transducer to NCAP transducer independent interface (TII) and TEDS for a point-to-point configuration of transducer interface modules (TIMs)
- IEEE 1451.3 Defines a transducer to NCAP interface and TEDS for multi-drop transducers
- IEEE 1451.4 Defines a mixed-mode interface for analog transducers with analog and digital operating modes; simplest 1451 model
- IEEE 1451.5 Defines a TII interface and TEDS for wireless transducers
- IEEE P1451.6 Defines a TII interface and TEDS using the controller area network (CAN)
- IEEE P1451.7 Defines an RFID interface

IEEE 1451 – Smart Sensor Block Diagram

TEDS

- The transducer electronic data sheet provides the means to tag a sensor with a description.
 - Manufacturer
 - Serial number
 - Calibration status
 - Coefficients
 - Physical location
- Offers practical means for reducing costs/errors associated with measurement system configuration

Definition of an Intelligent Sensor

An *Intelligent Sensor* consists of an *IEEE 1451 Smart Sensor* augmented to support application-specific algorithms and associated electronic data sheets (xEDS) useful to ISHM.

Making a Smart Sensor Intelligent

- Capable of embedding algorithms; for example, for ISHM:
 - Noise detection (broadband, bandlimited, spike)
 - Instrumentation anomalies
 - Flat line
 - Drift
 - Sensor anomalies
 - Open/short
 - Debondment

Augmenting Core IEEE 1451 Functions

NCAP

- Publish normal data + health
- Extended TEDS
 - Health electronic data sheet (HEDS)
 - Set_HEDS
 - Get_HEDS
 - Component electronic data sheet (CEDS)
 Set_CEDS
 - □ Get_CEDS

Intelligent Sensors

- Smart sensor
 - NCAP (Go Active, Announce)
 - Publish data
 - Set/Get TEDS
- Intelligent sensor
 - Set/Get HEDS
 - Publish health
- Detect classes of anomalies using:
 - Using statistical measures
 - Mean
 - Standard deviation
 - □ RMS
 - Polynomial fits
 - Derivatives (1st, 2nd)
 - Filtering e.g., Butterworth HP
 - FFT-e.g., 64-point
 - Algorithms for
 - Flat
 - Impulsive ("spike") noise
 - White noise
 - Other (ANN, etc.)

Example ISHM-Enabled Intelligent Sensors

<u>IEEE 1451</u>

•NCAPBlock_Go_Active
•NCAP_Block_Go_InActive
•Request_NCAPBlock_Announcement
•NCAPBlock_Announcement
•PublishNormalData

<u>ISHM</u>

Mean, Std dev, Min/Max, RMS
dv/dx, d²v/dx²
Poly fit
Bu HPF (13th)
64-pt FFT
Anomalies: Flat, Spike, Noise

Hardware •3-Ch Thermocouple •24-bit ADC •8-bit μP •1 MB RAM/Flash •SPI •Ethernet (802.3af)

PublishNormalData+Health
Channel_Sample_Rate
Get_HEDS •Set_HEDS •Get_TEDS •Set_TEDS

Other Smart Sensors—Some w/ Intelligent Sensor Capabilities

Mobitrum <u>www.mobitrum.com</u>

Smart Sensor Systems www.smartsensorsystems. com

NIST www.mel.nist.com

KSC - SNE

Esensors www.eesensors.com

ISHM Enabling Technologies: Intelligent Sensors

- Unfortunately, Untelligent Sensorsare not widely available; to realize IS benefits in a system populated with conventional sensors, create a Virtual IS

The Virtual Intelligent Sensor is software that mimics IS behavior and allows use of conventional sensors and data acquisition systems

ISHM NCAP

Other Issues: Timing in Sensor Networks

- Need to provide time synchronization across multiple IS nodes in order to time-align measurements
- IEEE-1588 in distributed networks
 - For spatially-localized networks (e.g., Test stand, Space vehicle, Labs)
 - μs to sub-μs accuracy
 - Local oscillators synchronized to Grand Master Clock by measuring network transport delays

http://ieee1588.nist.gov/

Why Should We Care?

Sensors are ubiquitous
Pressure for increased efficiency, etc.
Systems view
MEMS + Nanotechnology + Solid-State
Distributed reasoning
Plug-and-Play

Conclusions

- IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through
 - Improved configuration management (TEDS)
 - Plug-and-play re-configuration
- Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits
 - Sensor validation
 - Confidence assessment of measurement
 - Distributed ISHM processing
- Space-qualified intelligent sensors are possible
 - Size, mass, power constraints
 - Bus structure/protocol

Lunar Habitat

Discussion

