NASA Langley Research Center

Exploration

MISSE

Flight Test Articles

Landing Systems

National Aeronautics and Space Administration

Wing Leading Edge Impact Detection

Ares I Aero Characterization

Lunar & Mars Architectures

Mission Management Support

Launch Abort System

Habitat Structures & Materials

Science

Mission Concepts

CALIPSO

Field Missions

National Aeronautics and Space Administration

Advanced Instruments

A-Train

CERES - Radiation

Space-based Missions

Algorithm Development

Applications - Air Quality

Aeronautics

Hypersonics

Integrated Vehicle Health Management

Supersonics

Integrated Intelligent Flight Deck

Airportal

Fixed-Wing

Aircraft Aging and Durability

Rotary-Wing

Integrated Resilient Aircraft Control

Test Facilities

Ares I-X Thermal Ruth Amundsen 2008

Orion Flight Test

Joe Gasbarre, Joe Del Corso 2008

Video of PA-1 Test Article showing diurnal shadow contours (6 AM – 7 PM LST)

- LaRC has thermal lead for Orion flight tests (PA-1/2, AA-1/2/3)
- Tests to be done at White Sands Missile Range (WSMR), NM
- PA-1 test schedule for Spring 2009
- AA-1 test scheduled for Spring 2010

PICA Thermal Testing Salvatore Scola 2008

PICA Vacuum Cycling Test

MEDLI Pressure Port Arc Jet Test

Walt Bruce, Kaitlin Liles 2008

- PICA Models Fabricated at Langley
- Quantity = 44
- Four active pressure measurements
- Eight temperature measurements

Tested at Boeing LCAT Facility (St. Louis)

- March 8 21, 2008
- Tested 34 models in 13 runs
- Test conditions match predicted flight conditions

Results

- Pressure port shape change (enlargement) greater than anticipated
- Cause identified as material oxidation phenomena
- Use of smaller port diameter being considered to stay under a maximum hole growth diameter - Science team evaluating potential impact if any
- Hole oxidation barriers (material liners) investigated during test with success

MEDLI Thermal Vacuum Testing Kaitlin Liles, Walt Bruce 2008

Interstage Thermal Protection System Sizing Joe Gasbarre 2007

- A thickness of 0.75 in of TPS is required for the DAC-2 thermal loads with a heating amplification factor 1.17 for stringers in the flow
- Increasing the thickness of the stringer web decreased TPS thickness
- Rohacell filled hat-sections adds approximately a total of 50 lbm

Interstage RoCS Plume Shielding Sizing Results Mark Thornblom 2007

- Initial RoCS plume shielding analysis was performed
- Near 'worst-case' heating requires 1.0 in of P-50 cork to protect substrate from excessive heating
- Low conductivity materials are desired to prevent excessive temperature (<120° F) at the substrate

Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) Joe Del Corso, Walt Bruce, Kaitlin Liles 2008

Inflatable Reentry Vehicle Experiment (IRVE I & II) Walt Bruce, Joe Del Corso 2008

- Flight test demonstration of inflatable ballute concept
- Designed, analyzed, integrated, and tested by NASA Langley
- Aeroshell fabricated by ILC Dover
- Centerbody fabricated by NASA Langley

RTD/Structures Mechanics Concepts Branch Thermal Analysis & Test Highlights

Hypersonics Project, Fundamental Aeronautics Program POC: Dr. Kim Bey

TPS Application: Highly Reliable Reusable Launch Systems (HRRLS)

