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This paper proposes a methodology for evaluating a controller’s ability to sat-
isfy a set of closed-loop specifications when the plant has an arbitrary functional
dependency on uncertain parameters. Control verification metrics applicable to
deterministic and probabilistic uncertainty models are proposed. These metrics,
which result from sizing the largest uncertainty set of a given class for which the
specifications are satisfied, enable systematic assessment of competing control al-
ternatives regardless of the methods used to derive them. A particularly attractive
feature of the tools derived is that their efficiency and accuracy do not depend on
the robustness of the controller. This is in sharp contrast to Monte Carlo based
methods where the number of simulations required to accurately approximate the
failure probability grows exponentially with its closeness to zero. This framework
allows for the integration of complex, high-fidelity simulations of the integrated
system and only requires standard optimization algorithms for its implementation.
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Acronyms

CPV : Critical Parameter Value
CSR : Critical Similitude Ratio
MS : Maximal Set
PSM : Parametric Safety Margin
RI : Reliability Index

I. Introduction

Most of the strategies for robust control design are based on attaining satisfactory worst-case
stability and performance [1–5]. While H∞ and µ-analysis and synthesis3 are the best methods for
dealing with unstructured uncertainty, their intrinsic formulation render them overly conservative
when dealing with parametric uncertainty. These methods usually lead to high-order controllers
due to this conservatism and their emphasis on the worst-case. On the other hand, the control
literature on parametric uncertainty has been mostly devoted to the robust stability of linear time
invariant systems having affine and multi-affine parameter6–9 dependencies. Notable exceptions to
this case are made in References [10, 11] where polynomial parameter dependencies and approxi-
mate feasibility are considered. However, the deployment of these strategies over other functional
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forms requires over-bounding, a practice that introduces conservatism into the robustness analy-
sis. Realistic control applications are subject to both stability and performance requirements that
have an arbitrary functional dependency on the uncertain parameters and where the effect of the
non-linear dynamics is important.

The verification of satisfactory control effectiveness is a crucial task for safety-critical applica-
tions where instability and poor performance may lead to the loss of a mission. Since this is the last
software-based step in the control design cycle before control validation, the best dynamic model
must be used. This leads to complex, non-linear, high-fidelity simulations where all subsystems,
commonly developed independently with each using its own set of assumptions and methods, are
integrated. Under these conditions, the vast majority of assumptions behind robust and adaptive
control methods — e.g., linear dynamics, affine or multi-affine parameter dependencies, attain-
ment of matching conditions — do not hold. Even though such assumptions enable the efficient
manipulation of the problem and the generation of computationally viable control solutions, the
physics of the system, or, at this stage, our best model of it, will ultimately validate the control
practices exercised thus far. In accordance with this rationale, the framework proposed herein will
develop mathematics applicable to any representation of the dynamic system, including the best
one available. In the context of robustness analysis, this implies that the structure of the plant’s
model is arbitrary and the controller, possibly designed using a simpler dynamic model based on a
set of assumptions which we do not need to know, is available.

The nature and scope of this more general problem commonly leads to the usage of sampling-
based techniques, e.g., Monte Carlo analysis. When accurate robustness assessments are desired, the
computational demands associated with these methods render them impractical. This is especially
true when the number of uncertain parameters is large and when probabilities are small. To alleviate
this limitation, this paper proposes an optimization-based methodology and a set of metrics for
control verification applicable to systems subject to both robust stability and robust performance
requirements. The framework derived is applicable to linear and nonlinear systems having an
arbitrary control structure. Besides, the functional relationship between the design requirements
and the uncertainty may only be known implicitly, e.g., the dependence of the time response
of a nonlinear system on the uncertain parameters. Robustness will be quantified using both
deterministic and probabilistic uncertainty models. The figures of merit for evaluating robustness
are the Parametric Safety Margin, the Reliability Index, the Failure Probability, and upper bounds
to this probability. The tools for the calculation of these metrics, which are applications to control
of methods developed by the authors12,13 only require the use of standard optimization algorithms.

This paper is organized as follows. Basic concepts and notions are first introduced in Section
II. Section III presents the mathematical background required to perform set deformations, an
instrumental tool for the developments that follow. The formulation and tools required to calculate
the PSM are presented in Section IV, and the tools corresponding to the probabilistic metrics are
presented in Section V. The strategies proposed are exercised in the study of eleven controllers
designed for the robust control challenge problem posed at the 1990 American Control Conference.26

Finally, a few concluding remarks close the paper. Extensions of this framework to control analysis
and tuning are made in the companion paper [14].

II. Concepts and Notions

The object of this paper is the evaluation of the robustness characteristics of closed-loop systems
having a parametric mathematical model. The parameters which specify the closed-loop system
are grouped into two categories: uncertain parameters, which are denoted by the vector p, and the
control design parameters, which are denoted by the vector d. While the plant model depends on
p, the controller depends on d.
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The uncertainty model of p can be deterministic or probabilistic. A deterministic uncertainty
model is prescribed by the Uncertainty Set ∆, while a probabilistic one is prescribed by a random
vector. This vector is specified by the joint probability density function fp(p) defined over ∆. The
uncertainty set of the probabilistic model is commonly called the Support Set. Hereafter, the terms
uncertainty set and support set will be used interchangeably. By specifying the uncertainty model, it
is implied that ∆ contains the actual value of p, which is assumed to be time invariant. In principle,
the uncertainty set can be unbounded and can even be the entire parameter space. In practical
applications, the choice of this model is usually made by a discipline expert. However, the theory
presented herein acknowledges that such a choice may be fairly arbitrary, and addresses the need for
quantifying the level of tolerance of the controller to uncertainty in p as the closed-loop performance
degrades. Any member of the uncertainty set is called a Realization. The Nominal Parameter
value, denoted as p̄, is a parameter realization regarded as a good deterministic representation of
p. Further, we will call the set of control design parameters of a baseline controller the Nominal
Design point, d̄.

Stability and performance requirements for the closed-loop system will be prescribed by the set
of constraint functions, g(p,d) ≤ 0, which depend on the uncertain parameters and the control
parametersa. Throughout this paper, it is assumed that vector inequalities hold component wise.
The larger the region in p-space where g(p, d̄) ≤ 0, the better the baseline controller. In the ideal
case, such a region contains the support set ∆. Note that this implies that an infinite number of
constraints must be satisfied, specifically, dim(g) for each parameter realization.

Sets in the parameter and design spaces, instrumental to the developments that follow, are
introduced next. The Failure Domain is given byb

F j
p,d

∆= {〈p,d〉 : gj(p,d) ≥ 0}, (1)

Fp,d
∆=

dim(g)⋃

j=1

F j
p,d . (2)

While Equation (1) describes the failure domain corresponding to the jth requirement, Equation
(2) describes the failure domain for all requirements. The Non-Failure Domain is the complement
set of the failure domain and will be denotedc as Fc. The names “failure domain” and “non-failure
domain” are used because in the failure domain at least one constraint is violated while, in the
non-failure domain, all constraints are satisfied. The solution set of equation maxj{gj} = 0 usually
partitions the space into these two domains. For control analysis purposes, the design point d
will be kept at its nominal value d̄. In such a case, the projection of the failure domain onto the
parameter space is given by

F j
p(d̄) ∆= {p : 〈p, d̄〉 ∈ F j

p,d}, (3)

Fp(d̄) ∆= {p : 〈p, d̄〉 ∈ Fp,d}. (4)
aThe constraints in g may also implicitly depend on time or frequency. For instance, if a requirement is that the

step response y(p, d, t) must not exceed the upper envelope ŷ(t), the corresponding constraint is given by

g = max
t

{y(p, d, t)− ŷ(t)}.

Maximizations over t, such as this one, will be evaluated by selecting the largest value assumed by the argument at
the discrete points of a time simulation. Hence, the evaluation of g will not entail solving an optimization problem
per se.

bThroughout this paper, super-indices are used to denote a particular vector or set while numerical sub-indices
refer to vector components, e.g., pj

i is the ith component of the vector pj .
cThe complement set operator will be denoted as the super-index c.
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In the context of control analysis, which is the context of this paper, these two sets are also referred
to as failure domains and are denoted as F j and F for simplicity in the notation.

The Feasible Design Space, E and the Robust Design Space, Q, are given by

E(p̄) ∆= {d : g(p̄,d) < 0} , (5)

Q(∆) ∆= {d : g(p,d) < 0,∀p ∈ ∆}. (6)

The controller with gains d̄ will be called Robust if F and ∆ do not overlap. In such a case, d̄
belongs into the robust design space. Otherwise, the controller will be called Non-Robust. The
level of robustness of a controller is related to the size and geometry of the non-failure domain.
Note that Q ⊂ E when p̄ ∈ ∆.

III. Set Deformations

Some of the figures of merit proposed will result from deforming sets in the parameter space p.
The mathematical background for such deformations is introduced next.

Let Ω be a set in p-space, called the Reference Set, whose geometric center is the nominal
parameter p̄. The geometry of Ω will be prescribed according to the relative levels of uncertainty
in p. One possible choice for the reference set is a hyper-sphere. The hyper-sphere of radius R
centered at p̄, denoted as S(p̄, R), is defined by

S(p̄, R) = {p : ‖p̄− p‖ ≤ R} ,

where ‖ · ‖ denotes the Euclidean norm. Another choice might be to confine each component of the
reference set to a bounded interval. This leads to a hyper-rectangular set. If m > 0 is the vector
of half-lengths of such a set, the hyper-rectangle R(p̄,m) is defined by

R(p̄,m) = {p : p̄−m ≤ p ≤ p̄ + m]} .

Parameters with similar levels of uncertainty can be modeled using hyper-spherical sets. These
sets could also be used for parameters with dissimilar levels of uncertainty if some scaling is used.
However, whether scaling is used or not, a degree of dependence among parameters is introduced.
For instance, the range of variability of one parameter depends on the values taken on by the others.
Rectangular sets permit the consideration of dissimilar levels of uncertainty without the need for
scaling and introduce no such dependence. Such levels are attained by making mi proportional to
the level of uncertainty in pi.

For the sake of clarity, the presentation that follows concentrates on the case where the nominal
design point belongs to E , i.e., when the controller satisfies the requirements for the nominal plant.
One of the tasks of interest is to assign a measure of robustness to a controller based on measuring
how much the reference set can be deformed before intersecting the failure domain. This requires
specifying what we mean by a deformation. The Homothetic Deformation of Ω with respect to the
nominal parameter point p̄ by a factor of α ≥ 0, is the set H(Ω,α) ∆= {p̄ + α(p− p̄) : p ∈ Ω}. The
factor of this deformation, α, is called the Similitude Ratio. While expansions are accomplished
when α > 1, contractions result when 0 ≤ α < 1. Hereafter, deformations must be interpreted as
homothetic expansions or contractions. For purposes of this paper, two uncertainty sets will be
called Proportional if there exist a homothetic deformation that relates them, e.g., R(p̄,m) and
R(p̄,αm) are proportional sets since H(R(p̄,m),α) = R(p̄,αm).

Intuitively, one imagines that a set proportional to the reference set is being deformed until
its boundary touches the boundary of the failure domain, i.e., until at least one member of the
deformed set is at the verge of violating one or several of the closed-loop requirements (See Figure
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1). Any point where the deforming set touches the failure domain is a Critical Parameter Value
(CPV). The CPV, which will be denoted as p̃, might not be unique. The deformed set is called
the Maximal Set (MS) and will be denoted as Mp. The Critical Similitude Ratio (CSR), denoted
as α̃, is the similitude ratio of that deformation. While the CSR is a non-dimensional number,
the Parametric Safety Margin (PSM), denoted as ρ and defined in Section IV, is its dimensional
equivalent. Both the CSR and the PSM quantify the size of the MS. While the CSR depends on
the size of Ω, the PSM does not.

Figure 1. Relevant metrics in the deformation of a rectangular reference set.

The formulations that follow depend on whether the controller with gains d̄ satisfies the re-
quirements for the plant at the nominal parameter point (i.e., Nominal Plant) or not. To make this
distinction, the following function is introduced

γ =
{

1 if d̄ ∈ E
−1 otherwise.

(7)

When γ = −1, the controller does not satisfy the specifications for the nominal plant. In this case
we want to determine the separation between the pair 〈p̄, d̄〉 ∈ Fp,d and the non-failure domain
Fc

p,d. The larger the separation the worse the controller. The need for assessing bad controllers
results from the desire of searching for optimal ones in an automated fashion.14

Formulations that enable the deformation of hyper-spherical and hyper-rectangular sets in the
parameter space are presented in the next section. These formulations require solving an optimiza-
tion problem. Such a problem is non-convex when there are nonlinear parameter dependencies in
g. In any non-convex optimization problem there is always the possibility of convergence to a local
optimum instead of the global optimum. When this occurs, the estimated MS is not fully contained
in the non-failure domain and the corresponding figures of merit are larger than those obtained
when a global optimum is found. Absolute guarantees are not possible, but a variety of algorithmic
safeguards can be used to compensate for this deficiency. For instance, g can be evaluated at few
samples points in M, and if some happen to be in the failure domain, they can be used as initial
conditions in subsequent searches.

III.A. Deformation of hyper-spheres

For γ = 1, the CPV for the jth requirement is given by

p̃j = argmin
p

{
‖p− p̄‖ : gj(p, d̄) ≥ 0

}
, (8)

5 of 20

American Institute of Aeronautics and Astronautics



while the overall CPV is
p̃ = p̃k, (9)

where
k = argmin

1≤j≤dim(g)

{
‖p̃j − p̄‖

}
. (10)

Hence, the CPV for each individual requirement is identified, and the closest of these CPVs to the
nominal parameter point is the overall CPV.

For γ = −1, the CPV for the jth requirement is given by

p̃j = argmin
p

{
‖p− p̄‖ : gj(p, d̄) ≤ 0

}
, (11)

while the overall CPV is

p̃ = argmin
p

{
‖p− p̄‖ : gj(p, d̄) ≤ 0, j = 1, . . . ,dim(g)

}
. (12)

In this case the overall CPV may not coincide with any of the p̃js since this point must be in the
intersection of the non-failure domains corresponding to all requirements. If there exists a j such
that p̃j does not exist, meaning that the deformation grew unbounded, the overall CPV does not
exist either.

Note that for γ = 1, the nominal point p̄ is not in the failure domain, and the CPV p̃ is the
parameter point on the boundary of the failure domain that is the closest to p̄. Similarly, for
γ = −1 the nominal point p̄ is in the failure domain, and the CPV p̃ is the parameter point in the
non-failure domain that is the closest to p̄. Note that for γ = 1, the CPV is the p value closest
to p̄ in the failure domain, while for γ = −1, the CPV is the p value closest to p̄ in the non-
failure domain. To prevent the CPV from assuming values leading to infeasible plants, additional
constraints must be used in Equation (8) and Equation (11), e.g., if p1 is a mass, the constraint
p1 > 0 must be imposed. Further note that the critical requirement(s), i.e., any that prevents a
larger deformation, is the one corresponding to gk.

III.B. Deformation of hyper-rectangles

Recall that the infinity norm is defined as ‖x‖∞ = supi{|xi|}. Let us define the m-scaled infinity
norm as ‖x‖∞m

∆= supi{|xi|/mi}. A distance between the vectors x and y can be defined as
‖x − y‖∞m. Using this distance, the hyper-rectangle R(p̄,m) is the unit ball centered at p̄, i.e.,
R(p̄,m) = {p : ‖p− p̄‖∞m ≤ 1}.

The CPV corresponding to the deformation of the hyper-rectangular set Ω = R(p̄,m) results
from using Equations (8-9) or Equations (11-12) after replacing the Euclidean norm with the m-
scaled infinity norm. Using the definition of the m-scaled infinity norm in Equation (8) leads
to

p̃j = argmin
p

{
max

1≤i≤dim(p)

|pi − p̄i|
mi

: gj(p, d̄) ≥ 0
}

.

The “max” can be eliminated from the objective function , thereby removing a potential derivative
discontinuity, by introducing the similitude ratio α defined earlier

〈p̃j , α̃j〉 = argmin
p,α

{
α : gj(p, d̄) > 0, p̄− αm ≤ p ≤ p̄ + αm

}
. (13)

Hence, for the γ = 1 case, the CPV for each individual constraint function is solved for, and the
closest of these CPVs to the nominal parameter point according to the m-scaled infinity norm is
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the overall CPV. The statements on the need for additional constraints and on the interpretation
of the CPV made in the previous section hold.

Once the CPV has been found, the MS is uniquely determined and its size can be readily
measured. Developments for this are presented next.

IV. Figures of Merit for Deterministic Uncertainty Models

The Spherical PSM is defined as

ρS(p̃) ∆= γ‖p̃− p̄‖, (14)

where p̃ is the CPV resulting from Equations (8) or (9) when γ = 1, or from Equations (11) or
(12), when γ = −1. The corresponding CSR is α̃ = |ρS |/R, and the MS is given by

Mp = S(p̄, α̃R). (15)

If the overall CPV is used and γ = 1, Mp is the largest hyper-sphere centered at p̄ which fits
within the non-failure domain. Conversely, if γ = −1, Mp is the the largest hyper-sphere centered
on p̄ which fits within the failure domain.

On the other hand, the Rectangular PSM is defined as

ρR(p̃) ∆= γα̃‖m‖, (16)

where the CSR is α̃ = ‖p̃− p̄‖∞m and p̃ is given by the m-scaled infinity norm version of Equations
(8-9) (i.e. Equation(13)) when γ = 1, or of Equations (11-12) when γ = −1. The corresponding
MS is given by

Mp = R(p̄, α̃m). (17)

As stated previously, if the overall CPV is used and γ = 1, the MS is the largest hyper-rectangle
proportional to R(p̄,m) which fits within the non-failure domain Fc. Conversely, if γ = −1, the
MS is the largest hyper-rectangle that fits within the failure domain F . If the CPV of the jth
requirement is used instead, these remarks apply to (F j)c and F j respectively. For γ = 1, the
overall PSM coincides with the smallest individual PSM, i.e., ρ(p̃) = min{ρ(p̃j)}. This does not
hold when γ = −1, in which case the smallest individual PSM is just an upper bound to the overall
PSM, i.e., ρ(p̃) ≤ min{ρ(p̃j)}.

Because the CSR and the PSM measure the size of the MS, their values are proportional to
the degree of robustness of the controller associated with d̄ to uncertainty in p. The CSR is non-
dimensional, but depends on both the shape and the size of the reference set. The PSM has the
same units as the uncertain parameters, and depends on the shape, but not the size, of the reference
set. The sign convention enforced by γ in Equations (14,16) implies the following. If the PSM takes
on a negative value, the controller does not even satisfy the requirements for nominal parameter
point. If the PSM is zero, the controller’s robustness is practically nil since there are infinitely small
perturbations of p̄ leading to the violation of at least one of the requirements. If the PSM is positive,
the requirements are satisfied for parameter points in the vicinity of the the nominal parameter
point. The larger the PSM, the larger the variation from the nominal parameter point to which
the uncertain parameter can be subjected without leading to a violation of a requirement. Overall,
the larger the PSM the more robust is the controller (i.e., the further the nominal parameter point
of the failure domain), with a negative PSM being unacceptable.

Traditionally, robustness analysis is made by setting forth an uncertainty set and checking if the
closed-loop performance is satisfactory for all set members. This applies to both, real parameter
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uncertainty and model form-uncertainty (e.g., unmodeled dynamics). A robustness analysis test of
this kind based on the developments above is available.12

Determination of whether a controller is robust or not for a given hyper-spherical or hyper-
rectangular set ∆, is a matter of making Ω = ∆ and calculating the value of the CSR. The
controller is robust iff the CSR is greater or equal to one. A controller might turn out to be non-
robust (recall the definition of non-robust) because of an overly-large uncertainty set or because
the requirements are too stringent. If the uncertainty model and the design requirements are not
relaxed, the only choice is to change the control structure such that a robust controller can be
found. This practice however, usually leads to complex, high-order controllers. Other options may
be to (i) relax the closed-loop requirements, (ii) reduce the size of the uncertainty set, or (iii) allow
for requirement violations with a small probability. Since uncertainty models are never perfect,
the closed-loop stability and performance guarantees derived from using a prescribed uncertainty
model, e.g., ∆ or fp(p), should be interpreted with the same level of rigor used to prescribe such
a model.

V. Figures of Merit for Probabilistic Uncertainty Models

Metrics and tools for the control verification of systems having a probabilistic uncertainty model
are presented next. Note that the only information from the probabilistic model that is used in
determining if a controller is robust is the support set of the probabilistic density function and
not the actual distribution of the uncertain parameters. Therefore, the developments that follow
are suited for controllers that are non-robust. The analysis of such controllers entails quantifying
the severity by which the design requirements are violated. In the context of the developments
presented thus far, one quantifier for this is the volume of the set ∆∩Mc

p. This metric approximates
the failure domain, and evaluates its probability for the case where all parameter realizations are
uniformly distributed. Such an assumption is inadequate if one regards parameter realizations closer
to the nominal parameter point as more important/likely than the ones further away. To properly
account for the relative importance of all parameter realizations, a probabilistic uncertainty model
can be used. The value of the joint density function at each particular parameter realization can
be interpreted as a measure of our belief that such a realization is the true value of the uncertain
parameter. In this setting, a natural quantifier of robustness is the probability of violating the
design requirements. This probability, called the Failure Probability, will be denoted as P [F ]. The
failure probability is zero for robust controllers, while it is greater than zero for non-robust ones.
Clearly, the larger P [F ], the more severe the violation. It is worth noticing that small values of
P [F ] do not necessarily imply that the design is in the feasible design space, i.e., is it possible to
attain P [F ] + 1 when there exists a j for which gj(p̄,d) > 0.

The main appeal of the developments that follow is that they will enable the comparison of
simple controllers along with complex ones from a practical perspective, (e.g., for 99% of the
plants the closed-loop performance of a PID controller may be indistinguishable from the one of a
high-order controller). Since no uncertainty model is perfect, one may accept using a non-robust
controller with a simple control structure when its corresponding probability of failure is sufficiently
small. Forcing the controller to attain zero failure probability may lead to complex controllers whose
performance is as good as that of much simpler controllers for most parameter realizations.

As opposed to the contributions in [15–18] on probabilistic controls, the developments herein
are not intended to alleviate the computational burden of pursuing worst-case robust stability, but
to enable the discrimination among events in the set of all possible closed-loop system performances
according to their chance of occurrence. This has the potential to address and alleviate the demands
on the controller complexity imposed by worst-case control policies. In this regard, this paper is
better aligned with the developments in References [2, 19–21] and with the idea of handling some
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of the requirements as soft constraints.22,23

Hereafter, we assume that a probabilistic uncertainty model is available. Recall that such a
model is prescribed by the joint probability density function fp(p), or equivalently by the joint
cumulative distribution function Fp(p), defined over ∆. The framework for the calculation of three
probabilistic figures of merit, — the Reliability Index (RI), an upper bound to the failure probability,
and the failure probability itself— is presented next.

V.A. Reliability Indices

The calculation of probabilities can be better performed in spaces other than p-space. The most
relevant of these spaces is the standard normal space, commonly referred to as the u-space. In
u-space, the multi-variate probability density function becomes an uncorrelated normal density
function with zero mean and unit standard deviation, whose value decreases as exp(−‖u‖2/2). For
many useful probability distributions, one can find a probability preserving parameter transforma-
tion,24 denoted hereafter as u = U(p), that maps the requirements from p-space to u-space such
that P [U(F)] = P [F ].

The formulations introduced in Section III that enable the deformation of sets in p-space can be
easily extended to the u-space. An obvious parallelism between the concepts, notions and equations
introduced earlier and the ones used here is apparent. For instance, if Ω = S(ū, R), and γ = 1, the
CPV corresponding to the jth requirement is given by

ũj = argmin
u

{
‖u− ū‖ : gj(U

−1(u), d̄) ≥ 0
}

, (18)

while the overall CPV is given by
ũ = ũk, (19)

where
k = argmin

1≤j≤dim(g)

{
‖ũj − ū‖

}
.

These equations are analogous to Equations (8-9). A natural choice is ū = 0 because in standard
normal space most of the probability is concentrated about the origin (it is mean).

In regard to eliminating infeasible plants when performing deformations in u-space, it is suffi-
cient to prescribe a support set ∆ in p-space only made of feasible realizations. However, upper
bounds on ‖u‖ should be imposed when searching for the CPV, in order to avoid the divergence
and error caused by the numerical evaluation of U and its inverse. These bounds can be chosen
large enough so the neglected portion of the u-space has negligible probability.

Analogous to the spherical PSM is the Spherical RI, which is given by

βS(ũ) ∆= γ‖ũ− ū‖. (20)

The corresponding MS is given by
Mu = S(ū, α̃R), (21)

where α̃ = |βS |/R. Analogous to the rectangular PSM is the Rectangular RI, which is given by

βR(ũ) ∆= γα̃‖m‖, (22)

where α̃ = ‖ũ− ū‖∞m. The corresponding MS is given by

Mu = R(ū, α̃m). (23)
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If the controller is robust, none of the optimization problems posed in this section has a finite
solution since the failure domain in u-space is empty. The RI exists if and only if the failure
probability is non-zero, i.e., the controller is non-robust. As before, for γ = 1 the overall RI
coincides with the smallest individual RI, e.g., β (ũ) = min{β(ũj)}, while for γ = −1 the smallest
individual RI is an upper bound to the overall RI, e.g., β(ũ) ≤ min{β(ũj)}. Note that if the
overall CPV is used and γ = 1, Mu is the largest set proportional to Ω which fits within U(Fc).
Conversely, if γ = −1, Mu is the largest set proportional to Ω that fits within U(F). If the CPV
of the jth requirement is used instead, these remarks apply to U((F j)c), and U(F j) respectively.

The developments of this paper require setting both an uncertainty model and a reference
set. Guidance on how to select the latter is given next. For p-deformations, the relative levels of
uncertainty among the components of p are fully prescribed by the p-space reference set which, for
this part of the discussion, will be denoted as Ωp. In contrast, for u-deformations these levels depend
on both, the u-space reference set Ωu, and the probability density function fp(p). The manner in
which the geometry of Ωu, and the shape of fp(p) determines these levels is exemplified in Figures 2
and 3. Therein, unimodal and bimodal density functions with Ωu = S(0, R), and Ωu = R(0,1) are
considered. The subplots in the left column show the probability density function. A homothetic
deformation in u-space can be seen as a deformation in p-space where the boundary of an expanded
set is the image under U−1 of the points on the surface of Mu that attain a fixed RI value. The
center and right columns of subplots show these boundaries, to be referred to as RI contours, for
various values of the spherical and rectangular RI.

Note that (i) images under U−1 of proportional sets in u-space do not correspond to proportional
sets in p-space, (ii) the RI contours do not coincide with those of fp(p), (iii) the center and the
aspect ratio of the rectangular RI contours change with the value of the RI, and (iv) U−1(Mu)
approaches ∆ as the RI approaches infinity. It is apparent that the geometry of Ωu affects the
relative levels of uncertainty. To preserve the levels set by fp(p), Ωu must be a hyper-sphere or
a hyper-cube centered at the origin. For instance, if p is a normally distributed random vector
having the mean p̄, and covariance matrix diag{σ2}, R(p̄,ασ) = U−1(R(0,α1)). Therefore, the
selection of Ωu = R(0,1) enables that σ, variable that describes the relative levels of uncertainty in
fp(p), be also the aspect ratio m of the rectangular RI contours. Note however, that the geometry
of the reference set can be adjusted as desired. The developments in the next sections indicate
that reference sets leading to larger maximal sets are desirable. Such sets may not preserve the
uncertainty levels prescribed by fp(p).

Strategies for the calculation of upper bounds to the failure probability based on the deforma-
tions of sets in p- and u-space are presented next.

V.B. Upper Bounds to Failure Probability

In this section we use the MS calculated above to derive analytical bounds to the failure probability.
The following Lemma provides the basic mathematical background for this.

Lemma 1 (Bounding Interval). Let ψ
∆= 1−P [M], where M is the MS. The bounding interval I,

which satisfies P [F ] ∈ I, is given by I = (0,ψ] for γ = 1, and by I = [1− ψ, 1) otherwise.

Proof: Assume that γ = 1. Since P [F ] + P [Fc] = 1, and M ⊂ Fc so P [M] ≤ P [Fc]. It follows
that P [F ] ≤ 1 − P [M] = ψ. Since for γ = −1, M is chosen so that M ⊂ F , it follows that
P [F ] ≥ 1− ψ.

Because these bounds result from calculating the probability of an event, and in contrast to several
other bounds available in the literature, their value always lies between zero and one. Note that
there is a bounding interval for each reference set. Denote the left and right end points of the
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Figure 2. RI contours for a unimodal probability density function.

bounding interval by by Il and Ir respectively. If I denotes the bounding interval corresponding to
all requirements and Ij the one corresponding to the jth requirement, I = (0,min{Ij

r}] for γ = 1,
and I = [Il, 1), where Il ≤ max{Ij

l }, for γ = −1. Hereafter, our discussion will concentrate on
γ = 1, in which case ψ is an upper bound to P [F ].

When the deformation leading to the MS takes place in p-space, we will use the notation

ψp = 1− P [Mp]. (24)

If the components of p are independent random variables and Ω is hyper-rectangular, P [Mp] can
be evaluated analytically in a straightforward manner.

Lemma 2 (Hyper-rectangles in p-space). Let ρR be the rectangular PSM corresponding to the
deformation of the reference set Ω = R(p̄,m), and to the constraint set g(p, d̄) ≥ 0. Denote the
Cumulative Distribution Function of the probabilistic uncertainty model Fp, where p is a vector of
independent random variables. In this context, Equation (24) leads to

ψp(p̄,m, ρR) = 1−
dim(p)∏

i=1

Fpi

(
p̄i +

ρRmi

‖m‖

)
− Fpi

(
p̄i −

ρRmi

‖m‖

)
. (25)

The proof of this Lemma is trivial, and results from evaluating the probability of Mc
p for

Mp = R(p̄, α̃m). The main advantage of using Equation (25) is that the MS, and therefore the
PSM, are independent of the probabilistic uncertainty model assumed. This implies that bounds
corresponding to arbitrary uncertainty models are trivial to evaluate since they will only require
changing Fp in Equation (25).
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Figure 3. RI contours for a bimodal probability density function.

Tighter upper bounds are obtained if the reference set chosen leads to a larger P [M]. Experience
has shown that this can be more easily attained by working in the standard normal space. In
particular, deformations of reference sets in u-space leading to maximal sets containing the vicinity
of the origin usually produce smaller bounds. For these deformations we will use the notation

ψu = 1− P [Mu]. (26)

While ψp can be estimated analytically for arbitrary hyper-rectangular sets, ψu can also be esti-
mated for hyper-spherical sets centered at ū = 0. The following two Theorems, whose proofs are
given in Reference [13], present the corresponding closed-form expressions.

Theorem 1 (hyper-spheres in u-space). Let βS be the spherical RI corresponding to the deformation
of the reference set Ω = S(0, R), and the constraint set g(U−1(u), d̄) ≥ 0. Let l = dim(p). In this
case, Equation (26) is equivalent to

ψu(βS) = 1− Λl(|βS |), (27)

where Λl(r), which is the cumulative distribution function of a chi-distributed random variable with
l degrees of freedom, is given by

Λl(r) =






erf
(

r√
2

)
−

√
2
π

(
rl−2

(l−2)!! + rl−4

(l−4)!! + · · ·+ r
1!!

)
e−r2/2 if r ≥ 0, l odd

1−
(

rl−2

(l−2)!! + rl−4

(l−4)!! + · · ·+ r2

2!! + 1
)

e−r2/2 if r ≥ 0, l even
0 otherwise
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and n!! is the double factorial d.

Theorem 2 (hyper-rectangles in u-space). Let βR be the rectangular RI corresponding to the
deformation of the reference set Ω = R(ū,m), and the constraint set g(U−1(u), d̄, t) ≥ 0. In this
case, Equation (26) is equivalent to

ψu(ū,m,βR) = 1−
dim(p)∏

i=1

Φ
(

ūi +
|βR|mi

‖m‖

)
− Φ

(
ūi −

|βR|mi

‖m‖

)
, (28)

where Φ is the cumulative distribution function of the univariate standard normal random variable.

Recall that ψp ∈ (0, 1] and ψu ∈ (0, 1]. For a given fp(p), g, d̄, we have no general rule that
determines which reference set leads to the smallest upper bound. However, we know that the
maximal sets leading to small upper bounds contain points where ‖u‖ is small. For a different
uncertainty model, the bounds in Equation (26) require solving another optimization problem in
order to identify a new βR. This is in sharp contrast to the bounds in Equation (25) where the
MS is independent of the uncertainty model. Note that while Lemma 2 can be applied to robust-
and non-robust controllers, Theorems 1 and 2 are only applicable to non-robust ones. This is so
because for robust controllers Mu is unbounded. Equations (25), (27) and (28) lead to guaranteed
upper bounds to the failure probability.

V.C. Failure Probability

The problem of finding P [F ], or equivalently P [U(F)], is usually difficult since it requires evaluating
a multi-dimensional integral over a complex integration domain. Methods for estimating the failure
probability include sampling based techniques, such as Monte Carlo sampling, the First Order
Reliability Method,24 and the hybrid method.13

The hybrid method, which is used in the example of Section VI, approximates the failure
probability by combining sampling with the upper bounds introduced above. Once the MS has
been determined, an arbitrary sample point can be easily tested for membership in this set. If
the sample point lies within the MS, it is unnecessary to go through the computational expense of
evaluating g, since the outcome is now known. The numerical advantage of using this method is
a consequence of not having to evaluate g at these realizations. The method is especially suitable
when the number of evaluations of g required to determine the MS is considerably less than the
number of samples falling within the MS. The efficiency of the hybrid method increases with the
absolute value of the RI. In addition, the accuracy of the method using n samples outside the MS
is comparable to the one of Monte Carlo using N = floor(n/ψ) samples. In the context of control
analysis, a particularly attractive feature of the hybrid method is that its efficiency and accuracy
does not depend on the robustness of the controller.25 This sharply contrasts with the case in
Monte Carlo-based methods, where accurate robustness assessments (i.e., those based on statistics
having small confidence intervals) demand a number of simulations that grow exponentially with
the robustness of the controller. In other words, the better the robustness, the smaller the P [F ]
and the larger the number of samples required to estimate this probability accurately. Details on
the implementation of the hybrid method and its analysis are available in References [13,25].

Now that all the figures of merit have been introduced, it is worth noticing a conceptual differ-
ence in the way they measure robustness. While the PSMs, the RIs, and the upper bounds to the

dRecall that the double factorial is defined as

n!! =

(
n · (n− 2) · · · 5 · 3 · 1 n > 0 and odd
n · (n− 2) · · · 6 · 4 · 2 n > 0 and even
1 n = −1, 0
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failure probability have a notion of robustness based on the closeness of the nominal parameter point
to the failure domain, the failure probability itself quantifies the portion of all possible realizations
falling into the failure domain. As such, the estimation of P [F ] does not require the definition of a
nominal parameter point or a nominal plant, and designs attaining small failure probabilities may
have their corresponding failure domain very close to the realizations where fp(p) is the largest.
Designs that attain both small P [F ] and large separation between the nominal parameter point
and the failure domain are best suited for the hybrid method because of its usage of the failure
bounding sets. Notice that this dual notion of robustness cannot be assessed or pursued by using
Monte Carlo sampling.

VI. Example: Benchmark Robust Control Problem

VI.A. Problem Statement

The verification and comparative analysis of controllers designed for the robust control challenge
problem posed in the 1990 American Control Conference [26] are considered here. The benchmark
system, shown in Figure 4, is a two-mass/spring system with a non-collocated sensor actuator pair.
Several design problems were posed based on this setting. In all of them, stability and performance

Figure 4. Two-mass spring system.

requirements in the time domain were prescribed for plants with uncertain masses and stiffness
whose values lie within a bounded set. As in Reference [27], additional sources of uncertainty are
considered herein to fully exercise the scope of the methodology. We added a non-linear spring with
constant kn, a time delay τ denoting a first order lag between controller command and actuator
response, and a multiplicative loop-gain uncertainty f resulting from variation in sensors, control
gain, and/or actuator failure. The state space plant model is

ẋ1 = x3

ẋ2 = x4

ẋ3 =
k

m1
(x2 − x1) +

kn

m1
(x2 − x1)3 +

fu

m1
,

ẋ4 =
k

m2
(x1 − x2) +

kn

m2
(x1 − x2)3 +

w2

m2
,

τ u̇ = uc − u.

While the output z and the observed variable y are both equal to x2, only the disturbance w2

will be active. The uncertain parameter vector is p = [m1,m2, k, kn, τ, f ]T whose nominal value is
p̄ = [1, 1, 1, 0, 0, 1]T . Note that the nominal values of the additional parameters lead to the plant
used in the original benchmark problem. In order to prevent deformations leading to infeasible
plants, the constraints m1 > 0, m2 > 0, k > 0, τ > 0 and f > 0 are imposed on the optimization
problem used to calculate the CPVs. The specifications imposed on the closed-loop system are
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1. Local closed-loop stability.

2. Settling time: the response to a unit-impulse must fall between ±0.1 after 15s.

3. Control saturation: the control signal corresponding to the impulse response must fall between
±1.

In the context of this paper, the corresponding set of constraints is

g =
[

max
1≤l≤np

{,(si)}, max
t>15

{|z(t)|}− 0.1, max
t>0

{|u(t)|}− 1
]T

,

where si is a closed-loop pole of the linearized system and ,(·) is the real part operator. Eleven
controllers were designed for the above problem by several authors. The controllers have been
designed using several different methods, including robust H∞, loop-transfer recovery, imaginary-
axis shifting, constrained optimization, structured covariance, game theory, the internal model
principle27,28 and µ-synthesis.29 A Monte Carlo-based analysis of some of these controllers is
available in Reference [27].

The state space representation of a controller is given by

ẋc = Acxc + Bcy,

uc = Ccxc + Dcy,

where xc is the controller state, uc is the actuator command, and Ac, Bc, Cc, and Dc are the
controller matrices. The controllers considered here are the ones labeled as A, B, C, D, E, F , and
H in Reference [27], and the controllers designed for problems one and two in Reference [28] and
Reference [29]. In this paper, the controllers from Reference [28] will be labeled as W1 and W2,
and those from Reference [29] will be labeled as B1 and B2.

VI.B. Control Verification

In this section we perform the control verification of the above controllers. In the context of this
example, the CPV is the critical combination of uncertain physical parameters, nonlinearity, time
delay, and control effectiveness degradation for which the closed-loop specifications are at the verge
of being violated (providing they are satisfied for the nominal plant).

The deformation of the reference set R(p̄,m) is considered first. The relative levels of uncer-
tainty among the parameters are assumed to be m = [4, 4, 5, 2, 1, 2]T , e.g., we expect four times
more uncertainty in the value of the masses than in the value of the time delay. Note that even
though the values in m are subjective, the resulting MS is always fully contained in the non-failure
domain. Table 1 presents the stability margins and the PSMs corresponding to the three require-
ments. According to the results, only W1, B1 and B2 satisfy the requirements for the nominal
plant. While W2 has the best figure of merit in regard to stability and control saturation, the
settling time requirement is best satisfied by controller D. The gain and phase margins for the
nominal plant are not reliable indicators of robust stability because they are independent of the
way in which the plant depends on p. Note that they are not always proportional to the PSM. The
controller attaining the best compromise is B2, design for which ρR = 0.038.

Assessments using a probabilistic uncertainty model are presented next. For this, we assume
that m1, m2, k, kn, τ and f are independent, Beta-distributed random variables with shape param-
eters, [5, 5], [5, 5], [2, 3.7], [6, 6], [0.3, 5], and [0.5, 1.5], having the support sets [0, 2], [0, 2], [0.5, 2],
[−0.5, 0.5], [0, 0.1] and [0.5, 1.5], respectively. This probabilistic model has been set such that p̄ and
U−1(0) are in E . The ranges of variation of the parameters and the shapes of the distributions are
assigned according to engineering judgment.
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Table 1. Stability margins, and rectangular PSMs.

Controller Gain Phase Stability Settling time Control
[db] [deg] ρR

(
p̃1

)
ρR

(
p̃2

)
ρR

(
p̃3

)

A 2.5 −20.6 0.320 −0.019 0.368

B 3.2 26.7 0.490 −0.175 0.523

C 3.3 26.6 0.501 −0.189 0.533

D 15.1 57.2 0.562 0.212 −∞

E 2.4 22.2 0.394 −0.259 0.233

F 5.2 23.9 0.419 0.012 −3.277

H 3.4 24.8 0.510 −0.005 0.524

W1 3.3 24.5 0.501 0.001 0.517

W2 6.0 34.2 0.754 −0.024 0.639

B1 1.8 18.9 0.300 0.020 0.003

B2 2.8 27.2 0.437 0.038 0.141

Deformations of hyper-spherical reference sets in u-space lead to the results in Table 2. Ac-
cording to the RIs, the controller D is the one with best stability and settling time characteristics
while W2 has the best figure of merit for control saturation. As in the previous case, only W1,
B1 and B2 satisfy the requirements for the nominal plant while B2 is the most robust of all con-
trollers. Conclusions based in the RI coincide with the ones based on the upper bound, so results
corresponding to the latter have been omitted.

The values of P [F j ], calculated using the hybrid method with n = 1000 samples, are shown
in Table 3. Recall that P [F ] does not depend on whether the nominal point is in the feasible
design space or not. According to this metric, D is the best controller in stability and settling time,
while W2 is the best for control saturation. Values of P [F ] for W1, B1 and B2, which were the
only controllers satisfying the requirements for the nominal plant, were calculated using n = 2000
samples. The resulting values, which are 0.908, 0.980 and 0.873 respectively, indicate that B2 is
the controller with best robustness characteristics. Since the failure probabilities are large, the
advantage of using the hybrid method, as compared to sampling is moderate.

The control assessments above are consistent even though they use different uncertainty models
and figures of merit. These analyses determine not only which is the limiting design requirement for
each controller, but more importantly, how the levels of robustness corresponding to all requirements
compare among themselves.

VII. Concluding Remarks

Figures of merit for control verification that quantify a controller’s ability to satisfy the closed-
loop requirements in the presence of uncertain parameters are proposed. The framework developed
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Table 2. Spherical RIs.

Controller Stability Settling time Control
βS

(
ũ1

)
βS

(
ũ2

)
βS

(
ũ3

)

A 0.665 −0.037 0.913

B 0.992 −0.319 1.169

C 1.01 −0.336 1.191

D 2.366 0.598 −∞

E 0.690 −3.517 0.374

F 1.627 0.025 −∞

H 1.050 −0.009 1.174

W1 1.027 0.0009 1.152

W2 2.147 −0.072 2.287

B1 0.497 0.030 0.005

B2 0.852 0.066 0.236

is applicable to systems whose functional dependence on the uncertain parameters is arbitrary,
and for which stability and performance requirements are present. The figures of merit are the
parametric safety margin, the reliability index, the failure probability, and upper bounds to this
probability. The tools used to calculate these metrics are based on the solution to optimization
problems whose formulation and solution does not introduce conservatism. The parametric safety
margin enables quantification of robustness when uncertainty is prescribed as a set. The other
metrics, for which a probabilistic uncertainty model is required, account for the chance of occurrence
of any given plant within the uncertainty set and therefore for the likelihood of unsatisfactory
closed-loop performance. As compared to sampling-based methods, the efficiency and accuracy of
the tools proposed is substantially better. This improvement is particularly advantageous when the
controllers are highly robust, a case when the computational expense of an accurate sampling-based
analysis is impractical. This framework enables a fair comparison of controllers designed using
different methods and assumptions. The justification of adopting complex control architectures
and the determination of the consequences of violating such assumptions are aspects that can be
naturally evaluated using this framework.
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Table 3. Failure Probabilities via the hybrid method.

Controller Stability Settling time Control
P [F1] P [F2] P [F3]

A 0.272 0.971 0.158

B 0.143 0.957 0.119

C 0.130 0.967 0.104

D 0.007 0.333 1

E 0.219 0.999 0.426

F 0.080 0.871 1

H 0.138 0.914 0.188

W1 0.119 0.907 0.174

W2 0.014 0.875 0.010

B1 0.313 0.976 0.601

B2 0.196 0.798 0.462

18 of 20

American Institute of Aeronautics and Astronautics



References

1Bryson, A. E. and A.Mills, R., “Linear-Quadratic-Gaussian Controllers with Specified Parameter Robustness,”
AIAA Journal of Guidance, Control and Dynamics, Vol. 21, No. 1, 1998, pp. 11–18.

2Tenne, D. and Singh, T., “Efficient Minimax Control Design for Prescribed Parameter Uncertainty,” AIAA
Journal of Guidance, Control and Dynamics, Vol. 27, No. 6, 2004, pp. 1009–1016.

3Skogestad, S. and Postlethwaite, I., Multivariable feedback control , John Wiley and Sons, Chichester, England,
1996.

4Darligton, J., Pantelides, C., Rustem, B., and Tanyi, B., “An algorithm for constrained nonlinear optimization
under uncertainty,” Automatica, Vol. 35, 1999, pp. 217–228.

5Rustem, B. and Nguyen, Q., “An algorithm for the inequality constrained minimax problem,” SIAM Journal
of Optimization, Vol. 8, No. 1, 1998, pp. 265–283.

6deGaston, R. and Sofonov, M., “Exact calculation of the multiloop stability margin,” IEEE Transactions on
Automatic Control , Vol. 33, No. 2, 1988, pp. 156–171.

7Sideris, A. and Pena, R., “Robustness Margin Calculation with Dynamic and Real Parametric Uncertainties,”
Proceedings of the American Control Conference, 1988, pp. 1201–1206.

8Barmish, B. R., “New Tools for Robustness Analysis,” Proceedings of the 27th Conference on Decision and
Control, Austin, Texas, 1988, pp. 1–6.

9Boyd, S. L., Ghaoui, L. E., Feron, E., and Balakrishnan, V., Linear matrix inequalities in systems and control
theory , SIAM, Philadelphia, PA, 1994.

10Barmish, B. R. and Shcherbakov, P. S., “A dilation method for robustness problems with nonlinear parameter
dependence,” Proceedings of the American Control Conference, Denver, Colorado, 2003, pp. 3834–3839.

11Babayigit, A., Ross, B. R., and Shcherbakov, P. S., “On robust stability with nonlinear parameter dependence:
some benchmark problems illustrating the dilation integral method,” Proceedings of the 2004 American Control
Conference, Boston, Massachusetts, 2004, pp. 2671–2673.

12Crespo, L. G., Giesy, D. P., and Kenny, S. P., “Robust Analysis and Robust Design of Uncertain Systems,”
AIAA Journal , Vol. 46, No. 2, 2008.

13Crespo, L. G., Giesy, D. P., and Kenny, S. P., “Reliability-based Analysis and Design via Failure Domain
Bounding,” Structural Safety , 2008, Accepted for publication pending final revision.

14Crespo, L. G., Kenny, S. P., and Giesy, D. P., “A Verification-driven approach to Control Analysis and
Tunning,” AIAA Guidance Navigation and Control Conference, Honolulu, Hawaii, USA, August 18-21 2008, p. TBD.

15Blondel, V. and J.N.Tsitsiklis, “A survey of computational complexity results in systems and control,” Auto-
matica, Vol. 36, 2000, pp. 1249–1274.

16Calafiore, G., Dabbene, F., and Tempo, R., “Randomized Algorithms for Probabilistic Robustness with Real
and Complex Structured Uncertainty,” IEEE Transactions on Automatic Control , Vol. 45, No. 12, December 2000,
pp. 2218–2235.

17Polyak, B. and Tempo, R., “Probabilistic robust design with linear quadratic regulators,” Systems and Control
Letters, Vol. 43, 2001, pp. 343–353.

18Raghavan, V. and Barmish, B. R., “Stability of Systems with Random Parameters,” Proceedings of the 45th
Conference on Decision and Control, San Diego, California, 2006, pp. 3180–3185.

19Wang, Q. and Stengel, R. F., “Robust control of nonlinear systems with parametric uncertainty,” Automatica,
Vol. 38, 2002, pp. 1591–1599.

20Crespo, L. G. and Kenny, S. P., “Reliability-based control design for uncertain systems,” AIAA Journal of
Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005.

21Wang, Q. and Stengel, R. F., “Robust Nonlinear Flight Control of a High Performance Aircraft,” IEEE
Transactions on Automatic Control , Vol. 13, No. 1, 2005, pp. 15–26.

22Lagoa, C. M., “A convex-parameterization of risk-adjusted stabilizing controllers,” Automatica, Vol. 39, 2003,
pp. 1829–1835.

23Barmish, B. R. and Shcherbakov, P., “On avoiding vertexization of robustness problems: the approximate
feasibility concept,” IEEE Transactions on Automatic Control , Vol. 47, No. 5, 2002, pp. 819–824.

24Rackwitz, R., “Reliability analysis, a review and some perspectives,” Structural Safety , Vol. 23, 2001, pp. 365–
395.

25Giesy, D. P., Crespo, L. G., and Kenny, S. P., “Approximation of Failure Probability using Conditional
Sampling,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, Canada, 10-12
September 2008, p. TBD.

26Wie, B. and Bernstein, D., “A Benchmark Problem for Robust Control Design,” Proceedings of the 1990
American Control Conference, Vol. 1, San Diego, CA, USA, 1990, pp. 961–962.

19 of 20

American Institute of Aeronautics and Astronautics



27Stengel, R. F. and Morrison, C., “Robustness of Solutions to a Benchmark Control Problem,” AIAA Journal
of Guidance, Control and Dynamics, Vol. 15, No. 5, 1992, pp. 1060–1067.

28Wie, B., Liu, Q., and Byun, K.-W., “Robust H-infinity control synthesis method and its application to Bench-
mark problems,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 15, No. 5, 1992, pp. 1140–1148.

29Braatz, R. and Morari, M., “Robust Control for a Noncollocated Spring-Mass System,” Journal of Guidance,
Control and Dynamics, Vol. 15, No. 5, 1992, pp. 1103–110.

20 of 20

American Institute of Aeronautics and Astronautics


