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ABSTRACT 

Cosmology and other scientific results from the WMAP mission require an 
accurate knowledge of the beam patterns in flight. While the degree of beam 
knowledge for the WMAP one-year and three-year results was unprecedented 
for a ChIB experiment, we have significantly improved the beam determination 
as part of the five-year data release. Physical optics fits are done on both the 
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A and the B sides for the first time. The cutoff scale of the fitted distortions 
on the primary mirror is reduced by a factor of - 2 from previous analyses. 
These changes enable an improvement in the hybridization of Jupiter data with 
beam models, which is optimized with respect to error in the main beam solid 
angle. An increase in main-beam solid angle of - 1% is found for the V2 and 
W1-JV4 differencing assemblies. Although the five-year results are statistically 
consistent with previous ones, the errors in the five-year beam transfer functions 
are reduced by a factor of N 2 as compared to the three-year analysis. %'e 
present radiometry of the planet Jupiter as a test of the beam consistency and 
as a calibration standard; for an individual differencing assembly. errors in the 
measured disk temperature are - 0.5%. 

Subject headings: cosmic microwave background - planets and satellites: indi- 
vidual (Jupiter, I1Iars. Saturn) - space vehicles: instruments - telescopes 

1. Introduction 

The WMAP mission has produced an unprecedented set of precise and accurate cosmo- 
logical data, resulting in a consensus on the contents of the universe. WMAP has determined 
the age of the universe, the epochs of the key transitions of the universe, and the geometry 
of the universe, while providing the most stringent data yet on inflation. At the center of 
these advances is the angular power spectrum of the CSIB, which is the fundamental tool 
for studying the constituents and density distribution of the early universe. 

Characterizing the WMAP beams is crucial to interpretation of the ChIB power spec- 
trum. This paper, which describes the WMAP beam arialysis based on the five-year data set, 
is one of seven that together describe the complete five-year WMAP analysis. The results 
from the suite of papers are summarized and set in context by Hinshaw et al. (2008). which 
also describes the gain calibration, data processing, and mapmaking. 

WMAP observes in multiple microwave frequency bands, namely, K ( N  23 GHz), Ka 
( N  33 GHz), Q ( N  41 GHz), V (N 61 GHz), and PV (- 94 GHz). The sky is observed dif- 
ferentially via t'wo back-to-back offset Gregorian telescopes and associat,ed inst,rumentat'ion, 
which are designated side A and side B. The two sides comprise ten independent set's of 
feed horns and radiometers, called differencing assemblies (DAs): one each in the K and Ka 
bands, two each in the Q and V bands, and four in W band (Bennet't et al. 2003). 

The terminology applied to beams can be subtle, and it reflects, to some extent, the 
details of the particular analysis that is done. Here, we give a brief overview. For a fuller 



exposition of beam-related concepts and notation, the reader is referred to Page et al. (2003a) 
for the main beams and Barnes et al. (2003) for the far sidelobes. The W M A P  optics are 
described and analyzed in Page et al. (2003b). 

We can directly make a measured beam for any DA, either separately for the A and 
B sides, or by averaging the two sides. Similarly, we can make beams for either of the two 
radiometers in a DA, which measure orthogonal polarizations, or combine the two. In a strict 
sense, the word beam means point-source response in spherical coordinates, covering the full 
47r steradians. We divide the full beam into two parts, which are measured differently and 
treated differently in the analysis: the m a i n  beam and the far  szdelobes. The main beam has 
a radius of 3% - 7' depending on the DA. The measured main beam includes observations 
of Jupiter, while the measured far sidelobes include in-flight observations of the hloon, as 
well as pre-flight laboratory data. 

The A- and B-side main beams can be predicted using physical models of the W M A P  
optics. Indeed, we go further and adjust the model parameters in an iterative x2 fit to arrive 
at model m a i n  beams, or more simply, beam models. The instrument parameters of interest 
are small surface distortions of the mirrors, especially the two primaries. hlirror distortions 
are modeled as low-amplitude Fourier or Bessel modes added to the nominal mirror shapes. 
At intermediate angular scales within the main beams, the models are actually more reliable 
than observations, so that we combine models and observat'ions to produce hybrid beams. 

An additional variation in terminology is produced by our attempt to reconcile the far- 
thest outskirts of the model main beams with the far-sidelobe observations of the Moon. In 
this part of the analysis, the parameter set of the best-fit model is augmented with extrap- 
olated small-scale distortions of the primary mirror to produce augmented beam models. 

Scan strategy combines with the inherent geometry of each beam to produce maps with 
effective beams that are nearly azimuthally symmetric, when averaged over each year of 
observations. The beam analysis results in a symmetrized beam profile, which is equivalent 
to a symmetrized point-spread function in optical astronomy. The transform of the beam 
profile in harmonic space is termed a beam transfer funct ion,  be. A raw ChIB power spectrum 
is divided by we = b; to invert the filtering done by finite-width beams, and the resulting 
beam-corrected power spectra are used for fitting cosmological parameters: we is called the 
window functzon. 

Beam measurements consist of repeated scans over the planet Jupiter by each DA, 
which occur as part of the standard W M A P  full-sky observing strategy, with no need for 
special observations (Bennett et al. 2003). Jupiter is effectively a point source that allows 
high-resolution sampling of each beam. Because the sky is covered completely in six months, 



every observing year includes two Jupiter seasons, each lasting N 50 days. The data taken 
when Jupiter is near the axis of each of the twenty main beams are extracted from the time- 
ordered data (TOD) archive and analyzed separately from the sky map processing. Thus, 
the Jupiter data are reduced in the same manner as the CILIB data in terms of baseline 
removal and gain calibration (Hinshaw et al. 2008). Each brightness sample is labeled with 
the instantaneous position of Jupiter's image in the A-side or B-side focal plane. These data 
may be either utilized in time-ordered form or accumulated into twenty two-dimensional 
beam maps. 

The first-year beam analysis was described in Page et al. (2003a). For each DA, the 
beams for the largely symmetric A and B optics were measured independently. Azimuthally 
symmetrized beam profiles were fitted to the time-ordered data (TOD) of Jupiter using 
Hermite functions as the basis. The A- and B-side beams were averaged to give one beam 
per DA. SIean asymmetry corrections were produced by a time integration of the beam 
orientation. 

The first-year beam analysis also included the fitting of the detailed shapes of the pri- 
mary and secondary mirrors, motivated in part by the fact that the cold, laboratory-measured 
rms of the primary mirror surface distortions did not meet the pre-flight specification (Page 
et al. 2003b, 52.6). Inputs to a physical optics modeling program, DADRA (Rahmat-Samii 
et al. 1995), were varied iteratively to match Jupiter data. This program requires four types 
of inputs: (1) as-built coordinates and Euler angles of the primary and secondary mirrors and 
the feed horns. on both the A and the B sides; (2) as-designed feed horn outputs expressed 
as a spherical-wave approximation: (3) as-built primary and secondary mirror shapes; (4) 
perturbation coefficients for small distortions of the mirror shapes, which were fitted as free 
parameters. In the first-year analysis, the fit was done only on the A side and was used 
mainly to check the integral of the peak-normalized beam, called beam solzd angle (Page 
et al. 2003a). 

The three-year beam analysis was described in Jarosik et al. (2007). With the increase 
in the number of Jupiter seasons. the physical optics fits became well enough constrained to 
allow the model beams to be extrapolated below the noise level of the data; thus, the models 
entered directly into the adopted beam profiles. Directly measured beam points based on 
Jupiter were replaced with predicted values from a beam model if the corresponding model 
point had a gain below some defined threshold Bthresh. This merger, or hybridization, was 
done before Hermite function fitting. Again. the physical optics modeling was applied only 
to the A side, and the result was transformed to be applicable to the B side. Also, residual 
departures from azimuthal symmetry in the scan-averaged beams were computed for each 
DA and found to be subdominant, except in Q band at I 2 500 (Hinshaw et al. 2007). Beam 



errors were computed to encompass the overall uncertainty in the data, the modeling, and 
the transformation from A side to B side. 

The five-year beam analysis is the main subject of this paper. An additional four 
seasons of Jupiter observations have increased the signal-to-noise ratio (SIN) of the beam 
data, allowing the boundaries of the main beams to be expanded to lower gain levels. The 
scope of the physical optics fitting has been extended in two main ways. First, separate, 
complete fits are now done on both the A- and the B-side optics. Second, the cutoff scale of 
the fitted distortions on the primary mirror is reduced by a factor of - 2, in effect widening 
the beam area that is treated by the models. The hybridization step has been changed in 
that it is now optimized statistically, by minimizing the error in the beam solid angle. The 
hybrid beam profiles are transformed directly to be, with no intervening functional fit. The 
improved SIN and modeling result in a - 1% increase in the solid angle of the adopted main 
beam for several DAs, occuring mainly inside the old beam radius. However, the new beam 
transfer functions are consistent with those from the two earlier analyses. 

The five-year results include a revision to the WMi4P full-sky sidelobe sensitivity pat- 
terns. Augmented beam models, which are matched to early-mission observations of the 
hloon, are substituted for a part of the sidelobe measurements taken under ambient ground- 
based temperature and humidity. In addit,ion, the in-flight hloon observations used directly 
in the sidelobe patterns are recalibrat,ed for bands Ka-W. The result'ing patterns are used 
in WMAP sky map generation to correct for sidelobe pickup. 

An important test of the consist'ency of beam processing is radiometry of the planet 
Jupiter. These measurements, which should also be useful in calibrating other microwave 
observations, are presented here, together with radiometry of hlars and Saturn. 

A flowchart of the main beam processing, from TOD through window functions, is shown 
in Figure 1. This processing is described in detail in 52, which describes the fitting of model 
beams, and in $3, which describes the computation of beam transfer functions from Jupiter 
observations and models. Radiometry of selected planets is given in 54. The conclusions of 
this study are summarized in 55. 

2. Physical Optics Models 

2.1. Beam Data 

The fundamental beam data are Jupiter measurements extracted from the mission's 
TOD archive. These measurements are differential like all WMAP data, but the presence of 



Jupiter in only one of the two beams of a given DA means that they are effectively single- 
dish, after subtraction of a differential sky background. Five-year WMAP full-sky maps, 
which omit Jupiter, are used to estimate this background. Also, measurements affected by a 
bright source other than Jupiter in either set of optics are omitted. The apparent measured 
Jupiter temperatures are scaled to a standardized distance of 5.2 AU and are binned by the 
position of Jupiter in a coordinate system attached to the spacecraft. Planetary coordinates 
are obtained from the Jet Propulsion Laboratory ephemeris DE2001(Standish 1990). 

2.2. DADRA Modeling 

2.2.1. Software Structure 

The physical optics modeling is the most computationally intensive aspect of the WMAP 
beam analysis. Individual fitting runs can take days or weeks. even with the availability of 
numerous processors. The procedure is automated as much as possible to minimize user 
intervention and false starts. 

Several pieces of software are used in concert. Computation of a beam model from a 
specification of the mirrors and of a single feed is done by a Fortran program called DADRA 
(Rahmat-Samii et al. 1995). The overall framework of the fitting algorithm is embodied in 
an Interactive Data Language (IDL) code2, which performs a conjugate-gradient l2 mini- 
mization driven by the residuals between beam models and the Jupiter data. Requests for 
beam computations are made by the IDL program, and they are passed to DADRA by inter- 
mediary shell scripts running continuously in the background. This architecture enables the 
computation to be spread over multiple processors, with each processor running an instance 
of DADRA. 

The mininlization software is in most respects the same as that used in the first two 
WMAP beam analyses (Page et al. 2003a; Jarosik et al. 2007). In the one- and three-year 
analyses, ten processors of one computer were used concurrently to compute the beams for 
a giver1 mirror distortion. However, for the five-year fits. upgrades to the IDL and shell code 
enable the use of multiple computers. Typically, the fit uses four to six clustered Silicon 
Graphics Origin 300 machines, each with 32 processors and 32 gigabytes of memory in a 
non-uniform memory access (NUMA) architecture. With these resources, 12 to 18 sets of 
ten beam nlodels each can be computed simultaneously. 

l h t t p :  //ssd. jpl  . n a ~ a . ~ o v /  

'IDL is licensed by ITT Visual Information Solutiorls, Boulder, Colorado. 



2.2.2. Parameters of Fit 

The coordinates and Euler angles of the W M A P  optical components are furnished to 
DADRA as constants, as are the measured mirror shapes and the beam patterns of the feed 
horns. These constants are results of the pre-flight structural thermal optical (STOP) per- 
formance analysis (Page et al. 2003b). The fit is done by varying a set of mirror distortion 
parameters, which are defined as small-amplitude Fourier or Bessel modes added to the input 
shape. The emphasis in the fitting is on the primary mirror, because in pre-flight laboratory 
measurements, the shape of the secondary was less susceptible to temperature changes. Also, 
the illumination pattern occupies a much larger proportion of the primary mirror than of the 
secondary (Page et al. 2003b, Figure 2). For these reasons, the perturbation space chosen 
to characterize the primary mirror encompasses more modes than that for the secondary. 
hloreover, Fourier modes in x and y are a natural choice because the morphology of the 
distortions is dominated by a rectangular frame that is part of the backing structure. On 
the other hand, the mount of the secondary is cylindrically symmetric with a more extensive 
backing structure, consistent with fitting to a restricted set of Bessel modes. 

The primary distortions have the form 

special 

The distortion modes are characterized by the spatial frequency indexes k, and k,, where 
k = 1 corresponds to L = 280 cm, which is twice the width of the mirror. The reason for 
setting L = 280 cm rather than 140 cm is to remove the requirement that the solution be 
periodic on the circumscribed square; in particular, an approximate tilt of the 140 cm mirror 
is expressed naturally as half a sine wave with a 280 cm period. Some of the Fourier modes 
specified in this way are redundant, so the set that is used in the fit is culled to contain 
only even values of k, and k, ,  with k, > 0. A few additional modes with k, and k, of d11 
are the ones that represent tilt. Special distortion modes, F,,(x, y),  are also allowed, with 
amplitudes A,,. One special mode is a scalar offset of the whole mirror surface. A second 
special mode is simply a map of the mirror surface as measured pre-flight; in practice, this 
mode plays no significant role in the fit. The phase and strength of the modes are specified 
by the sine and cosine amplitudes, S(k,, k,) and C(k,, k,), and the amplitudes of the special 
modes, A,,. Below, we make use of the pourer per mode, P( f )  = C(k,. k,)2 + S(k,, 
where f is the spatial frequency in em-' and f 2  = ( /~ , /280)~  + (k,/280)2. 



The three-year fit, carried out for the A side only, reached a maximum spatial frequency 

index of k,, = 12, corresponding to a distort'ion wavelength of 280112 - 23 cm. By 
contrast, the five-year fit reaches k,,, = 24, or - 12 cm, for both t'he A and the B sides. 
The number of Fourier modes goes as k;,,, so the five-year fits include - 400 modes on 
each primary as compared to - 100 modes in previous analyses. This extension in k space 
means that t'he primary mirror dist'ortions are fitted nearly to the surface correlation length 
measured in the laboratory under cold conditions, i.e., 9.3 cm on the A side and 11.4 cm on 
the B side (Page et al. 2003b). 

The secondary mirror distortions are described by Bessel functions: 

where p and 4 are cylindrical coordinates and L is the radius of the mirror. The kth 
alternating zero of Jn, JA is denoted un.k; zeroes of J ,  have k odd, and zeroes of JA have k 
even. Inclusion of the zeroes of JA removes any constraint on the edge of the mirror. The 
fitted parameters are C,,i for n 2 0 and Sn,i for n 2 1. Two different pairs of (n,,,. k,,,) 
are used: (1,3),  resulting in nine parameters, or (2,6) ,  resulting in 30 parameters. 

2.2.3. Fitting Method 

The optimization is done by a modified conjugate gradient method, a deterministic 
descent into a X 2  valley. Avoidance of local >i2 minima is attempted by exploiting the 
Fourier description of the primary mirror distortions. The largest scale distortions are fitted 
first,, and each result is used as a starting point for the next fit, in which finer scale modes 
are included. At each stage, distortions at the large scales that have already beer1 fitted are 
not held constant, but rather, they are refitted together with t,he small-scale di~t~ortions that 
are newly included. 

As defined above, the primary mirror modes do not compose an orthogonal basis. How- 
ever, orthogonality is desirable in order to make the fit as efficient as possible. Consequently, 
the primary mirror modes are not fitted directly, but first are orthogonalized with respect to 
the area inside the circular boundary of the mirror, using a modified Gram-Schmidt method. 
When the k,,, of the included Fourier modes is increased, a new orthogonalization is per- 
formed that generates a completely new set of linear combinations of the Fourier and special 
modes. The conjugate gradient algorithm therefore navigates in a space consisting of two 
groups of parameters: (1) the amplitudes of the orthogonalized primary mirror modes, and 
(2) the amplitudes of the Bessel modes on the secondary. 



Each time x2 is calculated, two types of adjustment are made to the model beams. First, 
the pointing in the coordinate frame attached to the spacecraft is matched to that implied 
by the Jupiter observations. Second, the peak sensitivity of the model is scaled to match 
the peak observed Jupiter temperature. The pointing adjustment may be done for the ten 
beams as a group, without altering their mutual displacements, or it may be done for each 
beam separately. However, the peak scaling is always done separately for each beam. 

These adjustments are not parameters of the fit, because corresponding dimensions of 
x2 space do not exist. Rather, their purpose is to absorb errors in the input coordinates 
and angles of optical components and prevent them from being projected into the mirror 
distortions. Ideally, this problem would be avoided by solving a more complicated problem, 
i.e., by directly fitting the mechanical parameters of the WMAP components. However, a 
full set of mechanical parameters would include many degeneracies with respect to the beam 
morphology. By limiting the parameter set to -- 100 - 400 mirror perturbation modes and 
ignoring -'nuisance7' information, we converge on acceptable values of x 2 .  

For a given fitting run, either the primary or secondary mirror parameters can be held 
constant at the starting values. The DA microwave frequencies can also be fitted as param- 
eters, but are held constant in practice, since they are accurately determined. 

The fits for side A begin with the inherited three-year solution (Jarosik et al. 2007). 
The final run for each value of k,,, is listed in Table 1. An indication of the quality of fit 
after each step is given by the 22, column in the table. 

The B side of the instrument is characterized by an overall shift of the ten beam pointings 
in relation to their pre-flight positions, by N 0 9 .  This shift complicates the fitting strategy. 
The overall fitting history for side B comprises several different sequences of fits. The most 
important sequence, leading to the adopted beams, is similar to the A-side fitting sequence, 
in that k,,, is increased in stages, with the secondary mirror distortions held constant 
after being fitted early in the sequence (Table 2). In other sequences, a different form of 
the secondary was tried, the floating shift in elevation and azimuth were disabled, or the 
secondary alone was fitted from various initial conditions. None of these variations improved 
)i2 for the resulting beams, as compared to the adopted fitting sequence. 

The fitted beams and residuals for sides A and B are shown in Figure 2. which can be 
compared to Figure 9 of Jarosik et al. (2007). 



2.2.4. Instrument Parameter Results 

False-color renditions of the final A and B side mirror surface fits are shown in Figure 3. 
Two natural length scales for the surface of the primary mirrors are 0.5 cm for a hexagonal 
mesh that composes one layer of each mirror, and 30 pm for the correlation length of the 
reflector surface roughening, which was done to diffuse visible solar radiation (Page et al. 
2003b). Both of these length scales are too small to  be probed either by the direct fitting 
of the main beam or by the sidelobe observations of the AIoon. The main feature of each 
fitted primary mirror figure is the backing structure, dominated by members that form a 
rectangular frame near the center of the mirror. In the center part of this rectangle, the 
primary mirror appears to be depressed by - 0.5 - 1 mm. Also seen are hints of the 
stiffening lugs near the edge of each backing structure. The rms distortions of each primary 
mirror model are r, = 0.023 cm and 0.022 cm for the A and B sides, respectively. Pre-flight 
cold-measured values on the real mirrors, as extrapolated to the flight temperature of 70 K. 
were a, = 0.023 cm and 0.024 cm. respectively (Page et al. 2003b). 

For the A side, the measured centroids of Jupiter beam data are displaced by - 0%3 f 
0%2 from the nominal pre-flight beam positions on the sky, where the error term is the la 
scatter among beams. However. for the B side. the corresponding displacement is 0?3&0?03. 
The )c2 computation in the beam-fitting algorithm includes a floating elevation-azimuth 
adjustment that is intended to soak up such discrepancies without converting them into 
parameters of the fit. For the final adopted beam models, the floating displacement amounts 
to 0 3 9  in combined elevation and azimuth for side A, and 0?21 for side B. The difference 
between these two values agrees with the raw pointing difference between the beams on each 
of the two sides. 

We emphasize that these displacements are unrelat'ed to the est'imat'ed pointing errors 
of < 10" in the WMAP TOD (Jarosik et al. 2007). The A-side and B-side boresight vectors 
are accurately det,ermined from flight data as part of the TOD processing and are not 
influenced either by the beam fitt,ing or by pre-flight predictions. The WMAP pointing 
model is described in Limon et al. (2008). 

The mirrors are constrained only where they are substantially illuminated by the feed 
horns: see Page et al. (2003b), Figure 2. Thus, for example, the secondary mirror for the B 
side appears as a bull's-eye partly because the fit is only constrained in the center (Figure 
3). In actuality, the fitted shape consists mostly of a tilt of - 025:  however, apparent mirror 
tilts reflected in the fitted parameters are difficult to interpret because they are coupled to 
the floating elevation-azimuth offsets. 

The polarization characteristics of the main beam models are consistent with previous 



results. The morphology of the co- and cross-polar components of both the A- and the 
B-side models is similar to that found for the A side in the three-year analysis. Similarly, 
cross-polar suppression, as calculated from peak model values, is within 0 - 2 dB of 
previously reported A-side values, depending on the DA. However, for Q, V, and FV bands, 
the polarization isolation of the orthomode transducer (OMT) dominates the end-to-end 
cross-polar response, which was measured pre-flight (Jarosik et al. 2007). 

2.3. Extrapolation to Small Distortion Scales 

The modeling of primary mirror dist'ortions with k as high as 24, which affect the beam 
at relatively wide angles, raises the possibility of comparing DADRA-computed main beams 
to the innermost parts of the far sidelobe patterns, which are obtained from observations of 
the hfoon (Barnes et al. 2003). 

The beams at angles greater than 5" - 10" from each boresight may be affected by 
unmodeled primary mirror distortions with 24 < k 5 250. However, extending the models to  
fit these distortions directly is computationally unmanageable, because the required number 
of Fourier modes is of order 10" which is - 100 times the number of modes in our normal 
fits. Nevertheless, the observed sidelobe data provide a constraint on the contribution of 
such modes to the primary mirror surface shapes, and hence to the main beams. To apply 
this constraint, we need an appropriate choice of sidelobe data together with a method for 
extending each main beam model to the low gain levels outside the main beam radius. 

The choice of sidelobe data is important. because the full-sky sidelobe patterns are 
dominated by features that are not captured in the beam models. The WMAP sidelobe 
patterns are depicted in Figure 2 of Barnes et al. (2003). The most vivid features are formed 
by reflections from the radiator panels, by diffraction around the edges of the primary mirrors, 
and by reflection from the focal plane assembly. Despite their striking appearance in the 
referenced figure, these features are at  least 40 - 60 dB below the peak gain of each main 
beam; however, they must still be excluded from the comparison. 

Only a small region of each sidelobe map, a smooth region in the -'shadow" of the 
primary mirror, is suitable for comparison with the main beams. Although we choose the 
boundary of this region as conservatively as possible, the choice is subjective and a source of 
systematic error. Essentially, we draw the boundary according to a combination of sidelobe 
morphology and angular proximity to the main beam. However, the morphological criterion 
by nature cannot exclude an extraneous component of sidelobe response that happens to be 
smooth, such as might arise from a diffuse reflection off the top of the structure that holds 



the feeds. For this reason, the sidelobe patches chosen for the comparison are regarded as 
upper limits. 

Additionally, these radiometric observations cannot be calibrated as well as the ChIB 
data, primarily because they were taken when the spacecraft was thermally unsettled, during 
the phasing loops between the Earth and the hloon. The instrumental gain in this part of the 
mission is estimated to be known to 5 10%. A total of 4.3 days of hloon data were obtained 
covering 1 . 2 ~  sr of sidelobe area. The calibration standard for the Moon observations is 
the COBE DLIR model of lunar microwave emission as a function of phase angle (Bennett 
et al. 1992). 

In order to achieve a comparison with the iL1oon observations, the spatial frequency of 
the modeled primary mirror distortions is pushed to as high a value as possible. Figure 4 
(lower left panel) shows radial profiles of the symmetrized main beam models in comparison 
to the sidelobe sensitivity pattern for one example beam, V2 on the A side. The sensitivity 
profile at intermediate angles of 1 5  - 22"5 is directly related to k,, of the fit, as seen also 
in the grayscale images of the model beams (top row). A natural hypothesis is that an 
even greater increase in k,,, might give a model that joins smoothly to the hloon data. 
Unfortunately, the direct fitting algorithm cannot accommodate an indefinite increase in 
k,,, because the number of Fourier modes goes as k;,,. 

To cope with this difficulty. an approximation is used for Fourier modes with 25 5 k 5 
250. Power spectra, P, of the fitted A-side and B-side primary mirror distortions are shown 
in Figure 5 as a function of spatial frequency, f = k/280 cm-l. The form of the power 
spectrum expected from ground-based measurements of the mirrors is also shown, under the 
assumption of a Gaussian two-point correlation function (Page et al. 2003b). As the spatial 
frequency increases, P decreases. Our approach is to extrapolate the power spectrum P ( k )  
to smaller scales assuming a power-law form, P x (ilk)". with 3 5 ct. 5 6. Random phases 
are used to convert the extrapolated spectrum to sine and cosine amplitudes. 

A grid of beam models is assembled as a function of two variables: the slope a.  and 
the random number seed s that selects the phases used for the extrapolated Fourier modes. 
Separately for each s ,  a x2 minimization is used to fit the beam models to the hloon sidelobe 
data as a function of the slope a.  The value of x2 is computed from measured and predicted 
gains, g,  as z (gp red  - ghIoon)2 /~~Ioon .  where the sun1 is over pixels in the region of overlap 
between the beam model and the hloon data. The fit uses all of the Q, V, and QT DAs 
together. For each side, the fitted values of a from five values of the seed s are averaged to 
get the adopted slope. Using this slope value, five new beam models are computed with the 
original phases, and these models are averaged. The result is termed the augmented beam 
model. 



Figure 6 shows radial profiles of the A-side augmented beam models compared to the 
fitted subset of hloon data. The K and Ka beams are not used in the fit because of the 
relatively strong diffuse light that is seen as the bright profile in the top two panels of Figures 
6 and 7. This component, which may result from reflection off the focal plane assembly, is 
seen in Figure 2 of Barnes et al. (2003), where it appears as a haze in the region above 
the main beam. In addition, the Q, V, and LV bands appear subject to systematic errors 
depending on the individual DA. 

For Cl IB analysis, the main implication of the augmented models is an increase in main 
beam solid angle as compared to the ordinary fitted models with k,,, = 24. The effect on 
the "tail" part of the main beam model is illustrated in the bottom right panel of Figure 4. 
To compute accurately the effect that the augmented models would have on the symmetrized 
beam profiles used to compute be, a hybridization with Jupiter data is required, as described 
below (53.1). If augmented rather than ordinary k,, = 24 beam models are used in the 
hybridization, the resulting increase in main beam solid angle is just - 0.1 - 0.3% depending 
on DA. 

There are two arguments for treating this main-beam solid angle increase as an upper 
limit. One argument is the one already made above, namely, that the Moon data in all 
bands may include a diffuse reflected component in addition to the extended main beam 
response, as is apparent for K and Ka, and which our procedure cannot exclude. The other 
argument invokes the thermal nature of the ChlB power spectrum, which requires that the 
power spectrum be the same in all microwave frequency bands. Section 3.4 below shows that 
the ordinary models with k,, = 24 maintain a tighter consistency of the CMB Ce across Q,  
V, and LV than do the augmented models. Consequently, the adopted 5-year beam transfer 
functions incorporate only the ordinary models, whereas the augmented models are used to 
characterize the innermost part of the sidelobe response (33.2). 

3. Beams and Window Functions 

3.1. Hybridization 

To mitigate sensitivity of the window functions to observational noise, we use a beam 
hybridization technique similar to that employed in the three-year data analysis (Jarosik 
et al. 2007). In this method, a hybrid beam is constructed for each DA on each side by 
combining Jupiter observations with the physical optics models. Jupiter observations are 
used in the central portions of the beam where SIN is high. hfodel points are substituted 
for the data in the outlying regions of low signal, called the tail. 



The five-year analysis differs from that of Jarosik et al. (2007) in the method for choosing 
the hybridization threshold, Bthresh, which defines the tail region. In the three-year analysis, 
the threshold for each DA was chosen to replace noise-dominated parts of the beam with 
model values, in order to facilitate fitting the beam profile with a smooth function. However, 
the improvements in the five-year data and modeling open the possibility of extrapolating 
the main beam to wider angles and subsuming more of the full-sky beam solid angle into the 
main-beam treatment, rather than the sidelobe pattern. As a result, lower-signal parts of the 
beam are included in the beam transfer functions, and we require an explicit optimization 
of SIN in the hybrid beams. 

The effect of the beam tail on science occurs through the normalization of the ChIB 
power spectrum, Ce. An increase in main beam solid angle raises the beam-corrected CE by 
a constant factor for l 2 100. Hence, the error in the solid angle is a convenient indicator of 
the error induced in the high-! part of the ChIB power spectrum via the hybridization. The 
solid angle error is therefore a natural figure of merit for optimizing Bthresh. 

A grid of simulations is run that evaluates solid angle error in the hybrid beam as a 
function of threshold level. Let the true solid angle of a given beam be 0, and the solid 
angle of the hybrid beam be Oh(t),  where for conciseness we use t to stand for Bthresh. Then, 
Qh(t) = a d ( t )  +Om(t) ,  where Od is the portion taken from data, and Om is the portion taken 
from the model. Another way of decomposing Qh is into a true solid angle and error terms. 
i.e., flh = i? + ed(t) + em(t) , where ed(t) is the error in the data portion for threshold t ,  and 
e,(t) is the error in the model portion. The model error can be parametrized as a fraction 
of the model solid angle, such that em(t) = afIm(t). If em is uncorrelated with ed, then the 
fractional variance in ah is 

and the hybridization threshold is chosen to be the value minimizing this variance. 

Essent'ially, the variable a in t'he above discussion is a scaling error that is common t'o all 
of the model points incorporated in the hybrid beam. A conservative method of estimating 
systematic error is to assume that it is of the same order as t,he quant,ity estimated. In t'he 
above formulation, we represent this estimate by setting a = 1. 

Figure 7 shows the fractional error in the hybrid beam solid angle for the V2 beam on 
the A side, as a function of Bthresh. TO avoid a selection bias, Bthresh is referred to the model 
rather than the data. The errors contributed by the data portion and the model portion are 
shown along with the total error, which is computed using Eq. 2 with a = I .  For the data, 
the solid-angle error is obtained as a function of Bthresh from 100 hlonte Carlo simulations 
in which model input beams are combined with white noise appropriate to the Jupiter data 



for each DA. The contribution of the data portion increases with lowered threshold as more 
of the noisy data are included in forming the hybrid beam. Conversely, the contribution 
of the tail portion decreases with lowered threshold as less of the model is included. The 
adopted Bthresh values for the five-year analysis are obtained from the locations of minimum 
total error in similar plots made for all the A- and B-side beams. These values are shown 
in Table 3 together with the three-year equivalents. The five-year thresholds are lower than 
the three-year thresholds by some 5 - 10 dB, depending on DA. Thus, we use significantly 
more of the data than we have in the past. 

3.2. Sidelobes 

For the five-year analysis, changes have been made in the sidelobe sensitivity patterns 
that are distributed as part of the data release. These patterns are in linear units of gain 
relative to isotropic, and they are assembled from several types of data, including the hIoon 
observations described above. In previous analyses, the conversion of observed XIoon bright- 
ness to gain assumed a temperature of 175K for the iLIoon. However, in K band the resulting 
gains were divided by 1.3 to match adjacent pieces of the sidelobe pattern that were derived 
from other data (Barnes et al. 2003). 

For the five-year analysis, the calibration has been improved by integrating the COBE 
DhIR model of lunar microwave emission (Bennett et al. 1992) over the spacecraft and Moon 
ephemerides. This procedure lowers the gain values in the Moon-derived parts of the sidelobe 
pattern by factors of 1.35, 1.39, 1.45, and 1.51 for the Ka, Q, V, and Mi bands, respectively, 
while confirming the earlier adopted calibration of K band. 

Additionally, some ground-based beam measurements, used within - 10" of each bore- 
sight, have been replaced with the augmented main beam models described above (52.3). 
The ground-based data were taken under ambient conditions in the Goddard Electromag- 
netic Anechoic Chamber (GEhIAC), where the primary mirror distortions are different from 
those under flight conditions. This replacement affects at most 0.5% of the sky for any 
given DA. 

In the sidelobe reponse patterns, the area inside t'he main beams is set t'o zero. This 
area is expanded for the five-year analysis (53.3). 

The differential signals tabulated in the WMAP TOD archive are corrected for sidelobe 
contamination. The overall effect can be summarized in one number for each DA, called 
the sidelobe recalibration factor, which is the factor by which the correction changes the 
instrumental gain (since the dipole is detected in the sidelobes along with other sources). 



A sidelobe recalibration factor of unity means that the sidelobe response is zero. In the 
three-year analysis, these factors differed from unity by 0.3% - 1.5% (Jarosik et al. 2007). 
and for the five-year analysis, they differ from unity by 0.05% - 1.4% (Hinshaw et al. 2008). 
The decrease in the sidelobe correction is caused by the increased mean beam area together 
with the lower calibration of the Lloon data. 

3.3. Symmetrized Beam Profiles 

If the WMAP beam patterns could be well sampled in flight over 47r steradians, then the 
distinction between main beams and sidelobes would be arbitrary. However, the two regimes 
are measured by different methods, they are treated differently in the beam analysis. and 
they are applied differently in the WMAP data reduction. so that some reasonable boundary 
needs to be drawn. We do so by using the beam models for k,,, = 24 to define a transition 
radius centered on each boresight. With the fitted mirror distortions, a separate DADRA 

computation is done to extend each beam model into a wide angular field, 11" - 13" on 
a side. Cumulative beam solid angle is computed as a function of radius, and the radius 
containing 99.9% of the solid angle in the model is determined. The transition radius is 
then fixed at a round number encompassing the computed radii for both the A and the B 
sides. The adopted values are 7?0. 5 5 ,  5?0, 4 3 ,  and 3?5 for the bands K. Ka, Q, V, and 
W, respectively. Compared to the one-year and three-year analyses, the transition radius is 
increased, as shown in Table 3. 

This expansion of the main beam region has the useful consequence of mitigating the 
sidelobe correction. However, the main bean1 now includes lower S /N  observations, to which 
the main beam solid angle is sensitive. Similarly, the profile-fitting algorithms of the first- 
and third-year analyses can no longer be used as previously implemented. because the fitting 
function is difficult to constrain over the entirety of the new main-bea~n radius. 

In the one- and three-year analyses of azimuthally symmetrized beams, the radial profiles 
were modeled with basis functions of the form 

where 19 is the angle from the beam center, H2n(x) is a Hermite polynomial of even order, 
and a h  determines the width of the Gaussian. The first of these basis functions is a pure 
Gaussian, which is a good fit to the main lobe of the beam, both theoretically and in reality. 
The other basis functions parameterize the deviations frorn Gaussianity. The Hermite fit 
is limited to the well-characterized part of the beam, within a given cutoff angle 0, of the 



beam peak. In the five-year analysis, 0, is increased as compared to the three-year value, 
because of improvements in the data and analysis described above. However, this presents 
two problems with the Hermite polynomials. 

First, the basis functions do not extend far enough in Q. Since the Hermite polynomial 
H2n(x) is a polynomial of order 2n, and the function x2" exp(-x2/2) has peaks at  x = 

&a, the basis functions of order 2n extend to Q ah&, beyond which, the function 
is exponentially suppressed. Because this angle increases only with the square root of the 
order, many basis functions are required to cover the required domain, e.g., Q 5 40ah in 
band. Second, numerical problems arise in computing the Hermite polynomials of higher 
order than - 150. The combination of these two problems rules out the use of Hermite 
functions in the five-year analysis. 

The use of a fitting basis provides a smooth fit through noisy portions of data, and 
also provides a convenient mechanism for the derivation of a beam covariance matrix via the 
formal statistical errors in the fit. Because of these benefits, a number of possible sets of 
basis functions have been explored for the five-year beam data using simulations. 

Beam profile simulations test the accuracy to which various sets of basis functions 
reproduce the known input beams and window functions. A variety of noisy simulated 
beams is constructed, then fitted. The simulations include pure DADRA models as well as 
hybrids of two DADRA models. In the case of hybrids, one beam model with noise added is 
used to represent the Jupiter data, and another model without noise is used for the beam 
tails. The hybridization thresholds (53.1) are also varied, as is the overall scaling of the 
beam tails. The result of this testing is that ultimately, no one set of basis functions recovers 
the input beam solid angle and window function. One of the impediments seems to be the 
nature of the five-year hybrid itself, which is noisy at intermediate angular scales within the 
transition radius. Functional fit residuals in that region typically cause a bias of - 0.5% in 
the recovered solid angle. 

Owing to this difficulty, the method of basis function fitting is not used in t'he five-year 
analysis. The adopted hybrid beam profiles are left in the radially binned form? in spite of 
the noise that remains at low gain levels. Simulations show bet'ter recovery of solid angle 
from the resulting beams than from any of the attempted basis function fits. 

The applicability of symmetrized beam profiles depends on the degree to which the 
assumption of azimuthal bearn symmetry is justified. The WMAP scan strategy mitigates 
the effect of noncircularity in the beams by sampling most sky pixels over a wide range of 
azimuth angles. The effects of residual noncircularity are of potential importance for CIIB 
power spectrum analysis primarily in Q band at ! 2 500, where the effect can reach several 



percent in Ce: however, Q-band data have low statistical weight in this ! range and are not 
used in the T T  power spectrum analysis (Nolta et al. 2008). illathematical details, together 
with plots of the relevant correction to ule, are given in Appendix B of Hinshaw et al. (2007). 

3.4. Beam Transfer Functions and Errors 

To compute beam transfer functions, the radial distance, 8, from the beam centroid is 
computed for each of the data points in the two-dimensional A- and B-side hybrid beams. 
Radial profiles bS(Q) are constructed by sorting all hybrid data into equally spaced bins of 
AQ = 0125 in width, and taking the mean of each bin. The radial profile only extends 
out to the transition radius. The beam transfer functions are evaluated using the Legendre 
transform: 

l?! = RBbr = 211 1 ~ S ( O ) P ~ ( C O S  Q)d cos Q. (*I 
Numerically, the integration is performed by summing over rectangular bins of AQ = 0125. 

As described above (52.3). the sidelobe data of the hloon motivate an attempt to aug- 
ment the fitted distortions of the primary mirror (k,,, = 24) with random distortions that 
are extrapolated to finer spatial scales, i.e., k,,, = 250. These added distortions affect 
the hybridized beam through their effect on the outermost, low-gain part of the main beam 
model. One way of testing the effect of systematic error in the modeled beam tail is to rescale 
the extrapolated distortion amplitudes up or down as a group, with 100% correlation. The 
resulting distortion amplitudes are used to compute new model beams. which are processed 
through hybridization with flight data and transformation to be. 

The effect of this type of distortion rescaling on the beam transfer functions is shown 
in the bottom panel of Figure 8 for flight data, and Figure 9 for a noiseless simulation. 
Rescaling the added mirror distortions changes the slope of be between t! = 0 and P - 100, 
while shifting ba up and down for ! 2 100. Scale factors in the range 0 - 2 result in a - 0.3% 
total range of variation in the high-! value of be. 

These scalings of the added distortions have been tested for their ultimate effect on 
CILlB power spectra. Figure 10 shows the results of this test for scale factors of 2, 1, 0.5, 
0.1, and 0, respectively. Each panel shows a mean of year-by-year ChIB cross power spectra 
computed from the five-year data set for each of the 8 WMAP DAs Q1-W4. The spectra 
are all computed using the MASTER estimator, and they are corrected for be derived from 
augmented beams, characterized by distortion scale factors as indicated. For plotting, each 
such power spectrum is divided by the final LIASTER power spectrum from the three-year 



WMAP analysis3. In each case, a contribution from unresolved point sources is fitted and 
removed. In general, the result is that lower values of the scale factor give better consistency 
between microwave frequency bands for the CMB. Indeed, on this criterion, there is no clear 
reason to prefer a scale factor greater than zero. 

As a result, the way the extrapolated random-phase mirror distortions are handled is by 
omitting them from the adopted beams and be, while the actual fitted mirror distortions with 
k,, 5 24 are retained, via the model part of the hybrid beam. However. we incorporate 
into the error analysis an estimate of the systematic error in the faint part of the model, 
by assuming that this error is of the same order as the adopted model, just as we do for 
optimizing Bthresh (33.1). Monte Carlo experiments done on the primary mirror distortions 
suggest that this 100% scaling error is conservative. 

Combined errors in be, which arise both from observational scatter in the Jupiter mea- 
surements and from the scaling error in the model, are estimated using Monte Carlo simu- 
lations of the hybridization. The DADRA flight models are used to represent the true input 
beams. These models are sampled to match the observed beam positions in the five-year 
flight archive. Based on the chosen hybrization threshold, white noise is added to the model 
for the points that would be taken from Jupiter observations in the actual analysis. The 
model points that are substituted for the low-gain tail are multiplied by a common, normally 
distributed scaling factor with p = a = 1. Because the bean1 modeling is expected to be 
common mode across frequencies, the same scaling factor is used for every DA in a given 
Monte Carlo realization. A total of 5000 beam realizations is computed. each comprising all 
ten DAs. The beam transfer function is computed for each beam realization as described 
above for flight data, and the standard deviation of the realizations at  each ! is used as the 
diagonal of the covariance matrix. Figure 11 shows the resulting error bands for each DA, 
compared to the adopted errors from the three-year analysis. 

The chosen radial bin size of 0125 is the smallest width permitting all the bins to be 
populated. However, the bin sizes 015 and Oi75 have also been tested, in order to ensure that 
window function results are not affected. For the ! range of interest, the bin size contributes 
negligibly to the smearing of the beam, even in W band, and has no effect on the estimated 
error bars. 

Monte Carlo realizations of be for each DA are used in estimating the full covariance 
matrix of the coadded TT power spectrum in V and W. For ChIB analysis, the error in the 
error is important. From several independent hlonte Carlo runs of 5000 realizations apiece, 

3The ChIB spectra and point source coefficients in this plot are from a preliminary stage of analysis and 
are not the final five-year WMAP results. 



the combined VW window function covariance has an error of - &3% in the diagonal 
elements (Hinshaw et al. 2008). The beam-related errors in the coadded T T  power spectrum 
are shown as a function of t in Figure 12. 

The comparison of three-year and five-year beam transfer functions is shown in Figure 
13. Plotted is the relative change in be, i.e., (by - bzyr)/by. Each beam is integrated out 
to the five-year transition radius; for this plot, the three-year beams are extended using the 
three-year sidelobe response patterns. Also plotted are f la errors of by. The three-year 
and five-year be are consistent, with - 1g changes in V2 and W1-W4. For these DAs, 
the change has the form of a plateau for l 2 200, reflecting an increase in the main beam 
solid angle for five years. This increase raises Bo relative to Bzoo. The differences plotted 
in Figure 13 are taken with a sign convention reflecting the difference in the final power 
spectrum. Thus Ab/be = 1% implies a 2% change in tue, in the sense that the high-! power 
spectrum increases by - 2%. 

Solid angle changes are necessarily attributable to changes in the symmetrized beam 
profiles. Selected beam profiles are compared in the left column of Figure 14. The right 
column partitions the solid angle difference between fivr years (OF) and three years (a?) 
into 1" radial bins. The contribution of each bin is plotted as a percentage of f l y .  In this 
case, the beam profiles are extended to a radius of 10" using the far sidelobe patterns. Also, 
solid angles are normalized in such a way as to equalize b200 between the resulting three-year 
and five-year beam transfer functions. Most of the beam profile change. and therefore most of 
the solid angle change, is just inside the three-year transition radius (dashed line). Compare 
with Figure 4. which shows, for the pure model case, how the increase in the fitted k,,, of 
the mirror distortions for five years of data increases the solid angle inside the three-year 
radius. 

In summary, the solid angle increase appears to result primarily from the improved 
beam modeling, together with the extension of the mean beam treatment to larger radii, 
both result'ing from the increased SIN of the Jupiter data. Optimally hybridized two- 
dimensional beams are symmetrized and reduced to radial profiles in an unbiased way by 
averaging in annuli, and the resulting profiles are transformed directly to be. 

4. Radiometry of Planets Useful for Calibration 

4.1. Jupiter 

We adopt the analysis approach described in Page et al. (2003a) for reduction of the 
planet observations. The WMAP full-sky maps exclude observations made with Mars, 



Jupiter, Saturn, Uranus, or Neptune near any main beam boresight, with an exclusion radius 
of 1%. In turn, the sky maps are used to remove the background sky signal from planet 
data. Since the solid angle of each planet is much less than that of the WMAP beams, a 
beam map is built up by binning observed antenna temperatures for a planet in a focal plane 
coordinate system. Rather than being normalized, this beam map may be left in antenna 
temperature and Legendre transformed (Eq. 4) to produce an unnormalized beam transfer 
function, TJ"Be, where TJ" is the peak antenna temperature of Jupiter. But Bo is the beam 
solid angle flB, SO that TJmBO = TJmOB (Page et al. 2003a), and T;"Bo/flyf = Tj, where Tj is 
the brightness temperature of the Jupiter disk, and flyf is the fiducial solid angle 2.481 x lo-' 
sr for a Jupiter- WMAP distance of 5.2 AU (Griffin et al. 1986). The error in Tj is then the 
sum in quadrature of the error in OB with the estimated WMAP gain calibration error of 
0.2% (Hinshaw et al. 2008). The results of this procedure are given in Table 5 for five years 
of Jupiter data in each DA. 

The main difference between the Legendre transform method and a direct integration 
of the two-dimensional beam map is that the Legendre transform uses a symmetrized beam 
profile. Integration of the beam map yields solid angles within the errors of the above 
approach. The results in Table 5 are consistent with the band averaged ones previously 
reported by Page et al. (2003a, 52.4). Currently, the error in Tj is limited by the 0.5% error 
in beam solid angle and the 0.2% gain uncertainty. 

Season-by-season radiometry of Jupiter is given in Table 6. The values are computed 
using a template-fitting technique. Radial profiles are produced for each DA for each Jupiter 
season, then fitted linearly against the mean five-year Jupiter radial profile. Season 2 is omit- 
ted because Jupiter is approaching the Galactic ant'icenter, making background subtract'ion 
problematic. Our data place an upper limit on the time variability of Tj as a function of 
orbital phase of 0.3% A 0.5%. We conclude that our radiometric observations are consistent 
with the absence of variability in the Jupiter brightness temperature at this level. 

In view of the stability and low errors of these measurements, Jupiter radiometry is 
the preferred method of transferring the WMAP dipole calibration to another microwave 
instrument. The key requirement for such an effort is knowledge of the beams. The error 
values given in Table 5 include WMAP beam errors via error in solid angle, as well as the 
fundamental gain uncertainty relative to the dipole. 



4.2. Other Planetary Calibrators 

hiillimeter-wave brightnesses of other planets are also of potential interest as calibrators. 
For example, for the WMAP W band beams (3.2 mm), peak antenna temperatures of - 200 
mK, N 35 mK, and - 6 mK are produced by Jupiter, Saturn, and Mars, respectively. 
A preliminary analysis of the WMAP five-year hlars and Saturn observations has been 
undertaken. 

l lars  is attractive as a calibration source because it is relatively bright. However, sig- 
nificant variations in the observed brightness temperature can occur because of the viewing 
geometry. Moreover, the radiating properties of the inhomogeneous, pitted planetary surface 
complicate the determination of an appropriate reference brightness. Figure 15 shows a ther- 
mal model developed for the infrared by Wright (1976, 2007). The model is evaluated at 3.2 
mm (W band) as a function of the time within the WMAP five-year timeline, which includes 
five hiars observing seasons (fewer than for Jupiter because of the relative orbital velocity of 
Mars). The predicted variation in brightness temperature over an observing season can be 
as much as - 20 K. The mean 3.2 mm temperature and the scatter among the four nT DAs 
are also shown for WMAP data binned by RIars observing season (Table 7). The model is 
higher than the WMAP measurements by N lo%,  so that a renormalization factor of 0.9 
is applied to the model in the plot. We use this hlars model partly because of its previous 
use for Earth-based infrared calibration and the convenient availability of the code (Wright 
2007): for a model including the effects of a dusty atmosphere and polar caps, see Simpson 
et al. (1981). The hlars data are referenced to a fiducial distance of 1.5 AU and a solid angle 
of RG,~,,, = 7.156 x 10-lo sr (Hildebrand et al. 1985). 

Saturn's apparent brightness is even greater than that of Mars, but the theoretical 
understanding of the radiometry is less developed (Ulich 1981: Epstein et al. 1980; Hildebrand 
et al. 1985). A special consideration is Saturn's ring system, of which the viewing aspect 
from the Earth changes over the course of Saturn's 29 year orbital period. In Figure 16, mean 
seasonal W-band brightness temperatures as measured by WMAP (Table 7) are shown as 
black diamonds. These data show a clear decrease in observed temperature with time, a 
trend which correlates extremely well with the decreased viewing cross-section of Saturn's 
rings in the same time interval. A simple model of the form Tsat = To + a sini,  where r 
is the inclination of the ring plane from our line of sight, is fitted to the data and plotted 
in red. The fit results are cu = -132 f 16 and To = 102 k 7. Possible physical causes 
for the temperature decrease include the decreasing projected radiating area of the rings, 
a less favorable viewing angle for the "hot spot" at the south pole of Saturn, and Saturn's 
oblateness. These causes will be the subject of future investigation. The Saturn data are 
referenced to a fiducial distance of 9.5 AU, corresponding to a Saturn solid angle of R ref Sat - - 



5.101 x lo-' sr (Hildebrand et al. 1985). 

Clearly, Jupiter remains the only WMAP source that can be recommended as an in- 
strument calibrator at the 1% level. However, our preliminary results for Mars and Saturn 
suggest that with additional analysis and observations, both of these sources may be similarly 
useful in the future. 

5. Conclusions 

WMAP observes the planet Jupiter in two seasons a year, each of - 50 days. Ten 
seasons of Jupiter observations are used in this paper to measure the in-flight beam patterns 
associated with each of the multifrequency WMAP radiometers. An accurate beam pattern 
determination is critical for cosmological measurements. 

Using the TOD, beam maps are formed from the Jupiter observations for both the A-side 
and B-side optics. The A-side fitting is improved over previous analyses both by additional 
data and by extension of our analysis techniques. The B side is now directly fitted for 
the first time. The cutoff scale length of fitted primary mirror distortions is reduced from 
previous analyses by a factor of - 2. The hybridization of beam models with beam data is 
optimized explicitly with respect to error in the main beam solid angle. We transform the 
hybridized, symmetrized main beam profiles into harmonic space without an intermediate 
spatial fitting function. 

Although the beam transfer functions are statistically consistent with earlier ones, a - 1% increase in solid angle is found for the V2 and WlLW4 DAs because of improved dat'a 
and refinement of previous analysis methods. The uncertainty in the beam transfer functions 
is decreased by a factor of N 2 relative to previous WMAP beam analyses, demonstrating the 
success of continued mission operations and continued progress from data analysis efforts. 
Extended operations and analysis will further reduce these uncertainties. 
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Fig. 1.- Flow chart of beam and window function processing. Boxes are color coded as 
follows: green. starting data; pank, intermediate data; blue. computations or processing steps; 
magenta. the result, bt ,  which is the beam transfer function. The window function, we. for 
power spectra C! involving a single DA, is b;. Dashed boxes enclose iterative algorithms. 



Fig. 2.- Beams in the WMAP focal plane for side A (left) and side B (right'). The top 
panels show the measured beams, the middle panels show the beam models, and the bottom 
panels show the residuals. In the top four panels, each beam is scaled to its maximum (red) 
and plot'ted logarithmically to a level of -40 dB (blue). For the bottom panels, each beam's 
residual is shown linearly as 100(data-model)/beam peak. The scales are &lo% for K ;  45% 
for Ka, Q1, and Q2; 5 3 %  for V1 and V2; and &2.5% for W. A similar depiction of t'he A 
side only for t,hree years of data is in Figure 9 of Jarosik et al. (2007). 
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Fig. 3.- Fitted distortions of the A-side (left) and B-side (right) mirrors with respect 
to nominal shapes. Y axis is negative in the sky direction and positive toward the main 
spacecraft structure. Top row: primary mirrors. The dominant feature of the primary 
mirror distortions is the central rectangle, corresponding to a frame that is part of the 
backing structure. Hints of the stiffening lugs in the backing structure may also be seen 
around the edges. Bottom row: secondary mirrors. The mirrors are constrained only where 
they are substantially illuminated by the feed horns (Page et al. 2003b). Thus, for example, 
the secondary mirror for the B side appears as a bull's-eye partly because the fit is only 
constrained near the center. Gray lzne: contour of the mean I&' band illumination function 
-15 dB from the peak. Although the mirrors are elliptical in outline. these plots are circular. 
The reason is that the distortions are parametrized as displacenlents along the axis of a 
circular cylinder containing the mirror boundary. 
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Fig. 4.- Growth of solid angle in model beams as a function of k,,,, for the V2 DA on 
the A side. Top: logarithnlically scaled images of the model beam pattern as fitted for 
k,,, = 12, 14, 16, 18, 20, 22, and 24, respectively, together with a beam that combines 
the k,,, = 24 fit with random-phase modes extrapolated to k = 250. Axis tick marks are 
at lo intervals. B o t t o m  left: azimuthally averaged beam profiles for the models pictured, 
in units of gain relative to isotropic. Indzgo-red: profiles of the seven beam models from 
k,,, = 12 through k,,, = 24, respectively. Gray: k,,, = 250 extrapolation result. Black: 
Upper limit on the main beam sensitivity from I\Ioon observations, obtained for side A by 
integrating over positive pixels in the differential sidelobe response pattern. The five-year 
model tail, which is a feature of the two-dimensional beam pattern, is the part of the beam 
that is both inside the transition radius and below the hybridization threshold (dotted lzne; 
see 53.3). The hybridization threshold and transition radius from the t hree-year analysis are 
indicated by the dashed lzne. B o t t o m  right:  model tail solid angle as a function of k,,, 
relative to the total solid angle inside the transition radius; squares, five-year; triangles, 
modified tail of five-year models, using three-year threshold and transition radius. Fitting 
to k,,, = 24 rather than k,, = 12 increases by a factor of - 2 the solid angle of the model 
tail as defined by three-year main beam limits. But note that the difference between the 
various fits is -- 0.1% of the total beam solid angle for the 5 year data. 



Fig. 5.- Power spectra of A-side (top) and B-side (bottom) primary mirror distortions as a 
function of spatial frequency on the primary mirror surface, f = k / (280  cm), where k is the 
spatial frequency index used in the physical optics fits. Vertical bars on the f axis indicate f 
corresponding to k = 12 and k = 24. Solid lines: extrapolated power-law distortion spectra 
with slopes fitted by comparison to hloon sidelobe data, namely, cu = 4.95 for the A side 
and a = 4.43 for the B side. In practice. these extrapolated distortions are used to update 
the sidelobe response patterns, but not to model the main beams. The error bars and upper 
limits show the mean absolute deviation about the mean of points with length scales less 
than 15 em, indicated by the dotted vertical line. Dashed curves: power spectra of primary 
mirror distortions from ground-based laboratory measurements of the surface, assuming a 
Gaussian form for the two-point correlation function, with correlation length 9.3 cm for the 
A side and 11.3 cm for the B side; normalized to points with f < 0.05 cm-I (top) and 
f < 0.04 cm-' (bottom). 
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Fig. 6.- A-side augmented beam profiles ( g r e e n )  compared to &loon sidelobe data ( r e d ) .  K 
and Ka appear to be dominated by diffuse reflection rather than the extended main beam, 
and so are excluded from the fit. Conspicuous DA-to-DA differences are seen in the quality 
of the fit, e.g., W1 and W2 as compared to V1 and V2. Contamination of the fit by diffuse 
reflected light cannot be ruled out even in DAs other than K and Ka; thus, the Moon data 
are best considered as upper limits. Vertical line: maximum radius of hIoon data included 
in fit, for DAs Ql-W4. 
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Fig. 7.-- Fractional error in hybrid beam solid angle as a function of hybridization threshold. 
for the V2 DA. As the hybridization threshold is raised, noisy Jupiter data are excluded, 
so that the Jupiter data uncertainty ( r e d )  falls. At the same time. the model uncertainty 
(blue), estimated as a scaling error of 100%. increases because more of the two-dimensional 
model beam is used. These contrary slopes produce a well-defined minimum in the total 
error (green). Hybridization threshold values for the five-year analysis are chosen near the 
location of this minimum, as shown by the vertical line. Plots for other DAs are similar. 
The adopted thresholds are rounded to an even dBi unit and are constant for each frequency 
band, as shown in Table 3. 
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Fig. 8.- (Top) Symmetrized radial profiles of hybridized, binned flight beams for t'he V2 DA. 
The central, high SIN part of the bea,m is taken directly from flight data of t,he planet Jupiter, 
whereas the part of the beam below a given ga,in cutoff is taken from beam models. The set 
of beam models shown comprises several normalizations of the extrapolated primary-mirror 
distortions; the normalization favored in the analysis is zero, meaning that the extrapolated 
distortions are omitted. The noise-free lines at radii 3" - 4" are port,ions of the lower- 
normalizat'ion profiles that include model points only. (Middle) Same profiles as in the top 
panel, relative to the beam with extrapolated distortions normalized by 1 .O. (Bott,om) Beam 
transfer functions corresponding to t,he depicted beam profiles. Cf. Figure 9, especially the 
bottom panel. The beam transfer functions at l 2 100 are close to what is expected from 
the noise-free simulations, implying good solid angle recovery. 
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Fig. 9 .  (Top) Radially binned noise-free simulations of hybridized beams for the V2 DA. 
The central part of the beam is taken from the adopted DADRA model without augmented 
distortions. The part of the beam below a given gain cutoff is taken from augmented bean1 
models with various normalizatio~ls of the extrapolated primary-mirror distortions. The 
analysis of hybrid beams including real Jupiter data favors the zero normalization, meaning 
that the extrapolated distortions are omitted. (hIiddle) Same profiles as in the top panel. 
relative to the bean1 with extrapolated distortions normalized by 1.0. (Bottom) Beam trans- 
fer functions corresponding to the depicted beam profiles. Fits using flight hybrid beams 
should approximate the curves shown here. 
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Fig. 10.- Consistency of CRIB power spectra across frequency bands, for window functions 
derived from various normalizations of the extrapolated primary mirror distortions. Com- 
plete omission of such extrapolated distortions from the main beam model is justified by this 
criterion. The CLIB spectra and unresolved point-source coefficients (A,,) in this plot are 
from a preliminary stage of analysis and are not the final five-year WMAP results. (a)-(e): 
Mean of year-to-year cross spectra in each DA, relative to the final combined power spectrum 
from the three-year analysis. The applied we are derived from hybridized beams in which 
the tail is from a beam model with extrapolated primary mirror distortions; hybridization 
thresholds in each DA optimize solid angle error for the nominal amplitude of these added 
distortions (Figure 5). Spectrum is binned in E with a bin size of Ae = 35. The panels differ 
in the scaling of the extrapolated distortion amplitude on the mirror: (a) ,  2; (b),  1: (c),  0.5; 
(d),  0.1: (e) no extrapolated distortions. ( f )  Scatter among the DAs in each ! bin for the five 
normalizations of the extrapolated mirror distortions. Omitting the extrapolated distortions 
(Norm 0, black) minimizes the scatter in the ChIB power spectrum over most of this ! range, 
which includes the first peak near ! - 200. 



Fig. 1 1 .  Relative error in beam transfer functions (Abr/be) for the five-year beams (black) 
vs. the three-year errors (red) (Jarosik et al. 2007). The five-year uncertainties are typically 
a factor of - 2 better than three-year uncertainties. 
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Fig. 12.- Relative error component that is due to estimated beam errors in the final WMAP 
TT power spectrum, which is combined from V and W band data. Cyan: eight independent 
instances of the square root of the diagonal of the covariance matrix for the coadded VbT 
Ce: each instance is based on 5000 Monte Carlo realizations of V and W bean1 errors. Black: 
the instance that has been chosen for the Ce error bar, because it is approximately the upper 
envelope. 



Fig. 13.- Consistency within - la of five-year beam transfer functions with three-year 
beam transfer functions. Black: difference of three-year minus five-year bp. relative to the 
five-year be; the low-4 rise or fall for several DAs reflects solid angle changes detailed in 
Figure 14. Red: three-year la errors. For this plot, the beam profiles used to compute bp 
are extended by including the profile of the inner portion of each sidelobe response pattern, 
and the resulting composite profiles are integrated out to the five-year transition radii. This 
removes the effect of the larger five-year transition radius. 
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Fig. 14.- hluch of the solid angle change between the three-year and five-year beams arises 
inside the three-year main-beam boundaries. In this figure, the beam profiles are extended 
to a radius of 10" using the three-year or five-year sidelobe response pattern, respectively, 
and the beams are normalized to give the same b2O0 for both three years and five years. 
Solid angle changes by lAflB1/flB < 0.5% for the K1, Kal ,  Q1, Q2, and V1 DAs, and by 
0.8% 5 AflB/ f lB 5 1.5% for the V2 and W1-W4 DAs. Left: Five-year symmetrized hybrid 
beam profiles (red) and three-year Hermite-fitted beam profiles (black) for selected DAs. 
The five-year profiles include Jupiter data and so are noisy, whereas the three-year profiles 
are the functional fit only. Dashed line: three-year transition radius (Table 3). Dotted line: 
radius where five-year hybrid beams consist of 50% data and 50% model. Rzght: Change in 
beam solid angle from the three- to the five-year analysis, as a function of radius, in annuli 
of lo, expressed as a percentage of the five-year f lB .  Dashed lines: Transition radii for three 
years and five years, respectively. Dotted lines: 50% data radius of hybrids, as in left column. 
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Fig. 15.- Comparison of WhfAP observations (Table 7) to the 1Iars brightness model 
of LtTright (1976, 2007), evaluated at a wavelength of 3.2 mm (W band). hIean WMAP 
nleaurements are shown for each observing season (dzamonds), with error bars indicating 
the scatter among WMA4P DAs PVl-LV4. Llodel values (red) are rescaled by 0.9 to bring 
them into overall agreement with the measurements; thick portions of the line indicate 
observing seasons. WhfAP data are referenced to a fiducial distance of 1.5 AU and a solid 
angle of Ref,,, = 7.156 x 10-lo sr (Hildebrand et al. 1985). There are significant variations in 
the observed brightness temperature due to both geometric and physical factors. and thus, 
some care must be exercised before taking hIars as a calibration source. 
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Fig. 1 6 .  Season-by-season WhfAP radionletry of Saturn in the LV band (Table 7). Di- 
amonds: Mean WMAP measurements for each of eight observing seasons, with error bars 
indicating the scatter among WhfAP DAs bV1-W4. WMAP data are referenced to a fiducial 
distance of 9.5 AU, corresponding to a Saturn solid angle of REt  = 5.101 x 10V9 sr (Hilde- 
brand et al. 1985). Red line: simple fitting model of the form Tsat = To + a sin i ,  where i is 
the inclination of the ring plane from our line of sight. Thick portions of the line indicate 
observing seasons. Fitted parameters are a = -132 k 16 and To = 102 f 7. Although the 
model appears to capture geometric aspects of the observations surprisingly well, it lacks the 
physical underpinning to be used predictively. 



Table 1. Abbreviated Fit History for Side A 

Primary Primary Secondary 
Modes Modes 2 

kmax )Cu 

is approximate and indicates the 
progress of the fit. Residuals are shown 
in Figure 2. 



Table 2. Abbreviated Fit History for Side B 

Primary Primary Secondary 

hlax LIodes Modes X: 

is approximate and indicates the 
progress of the fit. Residuals are shown 
in Figure 2. 

bNot refitted. 



Table 3. Main Beam Limits 

3-Year Radius 5-Year Radius 3-Year Bthresha 5-Year Bthresha 7-50 
b 

DA ("1 (" > (dBi) (dBi) (") 

K1 
Kal  

Q1 
Q2 
v 1  
v2 
14' 1 
FV2 
Mi3 
Lt-4 

"Threshold in beam model gain relat,ive to isotropic, below which rnodel point's 
are substituted for data points in two-dimensional hybrid beams. 

bRadius in hybrid beam at which 50% of radial profile points are from data 
and 50% from bean1 model. 



Table 4. llain-Beam Solid Angles, Gains, and r for Combined &laps 

For 10 Maps 

K1 2.447 x 10W4 
Kal  1.436 x lo-" 
Q1 8.840 x 
Q2 9.145 x 10-' 
V1 4.169 x lo-" 
V2 4.240 x lo-' 
W1 2.037 x lo-' 
W2 2.206 x lo-' 
W3 2.149 x lo-" 
kV4 1.998 x lo-" 

For 5 Maps 

"Solid angle in azimuthally symmetrized beam. 

'Relative error i11 RS 

'Forward gain = maximum of gain relative to isotropic. 

dConversion factor to obtain flux density from WMAP 
antenna temperature, for a free-free spectr~lm. The in- 
dividual DA frecluencies are taken from Table 3 of Page 
et al. (2003a). The band average frequencies are taken to  
be 22.5, 32.7, 40.6, 60.7, and 93.05 GHz. for K-W respec- 
tively (Page et al. 2003b), and the band average Tfl tab- 
ulated here are those used in the WMAP five-year source 
catalog (Wright et al. 2008). 



Table 5. Five-Year hlean Jupiter Temperatures 

K1 22.8 135.2 0.93 
Ka l  33.0 146.6 0.75 

&1 40.9 154.7 0.96 
Q2 40.9 155.5 0.94 
V1 61.0 165.0 0.80 
V2 61.6 166.3 0.77 
W1 93.8 172.3 0.78 
W2 94.1 173.4 0.82 
W3 93.2 174.4 0.87 
XT4 94.1 173.0 0.86 

"&lean of A- and B-side values from 
Table 3 of Page et al. (2003a) 

bBrightness temperature calculated 
for a solid angle flyf = 2.481 x lo-" 

sr at a fiducial distance dJ = 5.2 AU 
(Griffin et al. 1986). 

"Computed from errors in RS (Ta- 
ble 4) summed in quadrature with a 
calibration error of 0.2%. 



Table 6. Jupiter Temperature Changes by Season 

Seasona Start End AT/T (%) r / i "d  
Meanb Scatterc 

"Season 2 omitted because Jupiter is in the Galactic plane. 

b;llean of the percentage brightness temperature change 
among the DAs for each season, relative to the 5-year mean. 

' l a  scatter in the percentage temperature change among 
the DAs for each season. 

*hIean Jupiter- WMAP distance for each season, relative 
to the 10-season mean= 5.34 AU. 
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Table 7. W-Band Observations of XIars and Saturn 

Julian Daya Tplanet b Scat terC 

-2450000 (K)  (K) 

Saturn 

"Approximate mean time of observations 
in each season. 

b51ean of L$' band brightness temperatures 
from the WMAP DAs LY1-LV4. Fiducial 
solid angles are 7.156 x 10-lo for LIars and 
5.101 x 10-'sr for Saturn (Hildebrand et al. 
1985). 

" l a  scatter among the four LIT-band DAs. 




