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Abstract 
There have been five Materials International Space Station Experiment (MISSE) passive experiment 

carriers (PECs) (MISSE 1-5) to date that have been launched, exposed in space on the exterior of 
International Space Station (ISS) and then returned to Earth for analysis. An additional four MISSE PECs 
(MISSE 6A, 6B, 7A, and 7B) are in various stages of completion. The PECs are two-sided suitcase to size 
sample carriers that are intended to provide information on the effects of the low Earth orbital 
environment on a wide variety of materials and components. As a result of post retrieval analyses of the 
retrieved MISSE 2 experiments and numerous prior space experiments, there have been valuable lessons 
learned and needs identified that are worthy of being documented so that planning, design, and analysis of 
future space environment experiments can benefit from the experience in order to maximize the 
knowledge gained. Some of the lessons learned involve the techniques, concepts, and issues associated 
with measuring atomic oxygen erosion yields. These are presented along with several issues to be 
considered when designing experiments, such as the uncertainty in mission duration, scattering and 
contamination effects on results, and the accuracy of measuring atomic oxygen erosion. 

Introduction 
This paper represents a collection of lessons learned with respect to atomic oxygen interactions 

resulting from a variety of space experiments, as well as retrieved spacecraft materials and components 
from NASA’s Long Duration Exposure Facility (LDEF), NASA’s Evaluation of Oxygen Interactions 
with Materials-3 (EOIM-3) experiment, the Russian Space Station Mir, NASA’s Materials International 
Space Station Experiment 2 (MISSE 2), Japanese Aerospace Exploration Agency’s (JAXA) Service 
Module/Micro-Particles Capturer & Space Environment Exposure Device (SM/MPAC & SEED) ISS 
Experiment, and the Hubble Space Telescope (HST). The collective experiences from these low Earth 
orbital flights provide useful considerations for those who plan future experiments that involve atomic 
oxygen interaction with materials. The objective of this paper is to explain and capture these experiences 
to benefit the quality of future experiments.  
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Lessons Learned 
Written Instructions and Procedures 

Written instructions and procedures used for mounting and assembly of space flight hardware are 
almost always required but occasionally glossed over by those who are tasked with final installation of 
hardware that they are not familiar with. It is very difficult to actually know who will be performing such 
tasks to be able to properly brief them. An example of this is the author’s experience regarding an 
experiment on EOIM-3 involving a pinhole camera. The cover on the experiment contained a small hole 
which was to act as a lens for the camera. A written instruction was provided in the installation 
instructions for the flight hardware with a warning to “not remove the cover of the Pin Hole Camera 
which contains the pinhole,” however, post-flight inspection of the Shuttle cargo bay containing the 
experiment revealed that the cover was, in fact, removed prior to flight. When the flight hardware was 
removed from the Shuttle bay the cover for the Pin Hole Camera was again attached to the experiment, 
hence one might have thought it was on during flight. The experiment was a total failure as a result. Thus, 
sometimes, installations and removals are performed on the basis of what seems logical as opposed to 
reading instructions. High resolution images of experiments can sometimes be taken just after being 
launched which may contribute to validating proper installation. Also pictures taken at various time 
intervals can contribute to valuable information as to experiment function and materials degradation.  

The lesson learned is that it is important to verify and witness that instructions and procedures are 
properly followed. 

Duration of Mission Estimates 

Space experiments that involve retrieval of experiments frequently are much longer than initially 
planned due to a variety of factors that cannot be accurately predicted at the time the experiments are 
being developed. Table I lists the planned and actual mission durations for four missions in which 
experiment retrievals were accomplished (refs. 1 to 4). The average mission was a factor of 2.63 longer 
than initially planned. 
 

TABLE I.—COMPARISON OF PLANNED AND ACTUAL MISSION DURATION 
Mission Planned duration, year Actual duration, year Ratio of actual/planned 

LDEF 1 5.75 5.75 
EURECA 0.83 0.89 1.07 
MISSE 1-2 1 -1.5 3.95 2.64 
MISSE 3-4 1 1.04 1.04 

 
For NASA Glenn Research Center’s MISSE 2 Polymer Erosion and Contamination Experiment 

(PEACE), the principle investigators designed the experiment so that the thickness of the samples used 
for atomic oxygen erosion yield testing were a factor of 3 thicker than what was needed to survive the 
original planned mission duration (1 year) based on estimated erosion yields. This procedure resulted in 
85 percent of the material samples surviving the mission which was 4 times longer than initially planned 
(ref. 5). 

The lesson learned is to design experiments for surviving a considerably longer duration (3+ times) 
than the planned mission duration, to ensure that meaningful results will be obtained even if the mission 
is factors longer than planned. For example, stack multiple layers of thin film polymers instead of flying a 
single layer. 
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Silicone Contamination Sources and Consequences 

Silicones which have not been vacuum stripped frequently contain short chain molecules which are 
volatile and are readily transported onto neighboring surfaces. When these contaminated spacecraft 
surfaces are exposed to atomic oxygen in low Earth orbit (LEO) the silicones oxidize to form silicates. 
There is also a tendency to trap hydrocarbons on the surface during the silicate formation. The resulting 
deposit can form an atomic oxygen protective coating that can darken as a result of solar radiation 
exposure. Evidence of the consequence of silicone contamination was clearly shown on selected samples 
flown on LDEF as shown in figure 1 where several samples liberated volatile silicones. 

In figure 1, some of the volatile silicones formed deposits on the sample holder plate and 
subsequently became oxidized by atomic oxygen in areas where the surface was not shadowed from 
atomic oxygen arrival by the samples. The oxides are silicates that stay fixed on the surface only to 
darken in the ultraviolet solar illumination. Where the silicone volatiles deposit and are not exposed to 
atomic oxygen, they gradually re-evaporate and no darkening results (hence the light boundary to the 
right of the samples, shown in the enlarged photo area). These silicate deposits can also shield other 
samples from atomic oxygen attack, which can adversely alter the outcome of the experiment.  

In November of 1997 Russian cosmonauts removed and retrieved a non-articulating foldable panel 
solar array from the Mir core module after 10.4 years in LEO and returned it for an international 
cooperative analysis (refs. 6 and 7). The solar array panels included a clad structure of solar cells, fiber 
glass scrim, cover glasses, optical solar reflectors and an open weave organic fabric coated with BF-4 
adhesive. Silicone adhesives and thread sutures were used to clad the solar array structure together. Over 
time, volatile silicones evolved from thread suture holes surrounding the solar cells on both sides of the 
solar array. Figure 2 shows photographs of the resulting silica deposits on the front and back of Mir solar 
cells resulting from atomic oxygen oxidization of the silicones that had been transported in the gaseous 
phase onto neighboring surfaces. The thick contamination appears as a white diffuse deposit. 

Although the solar array did not significantly degrade in performance from the silicate contamination, 
there was significant darkening of the optical solar reflector surfaces and neighboring thermal control 
white paint surfaces. This solar array technology was also used for the Russian supplied solar array for the 
ISS. Thus, silicone evolution onto surfaces and experiments on ISS from hardware such as this may result 
in contamination that could affect atomic oxygen erosion and solar absorptance. 

 

      
 

Figure 1.—Post flight photograph of Solar Array Materials Passive LDEF Experiment AO171 which exposed 
silicone RTV-511 samples (the lighter shade samples) to an atomic oxygen fluence of 7.17×1021 atoms/cm2 
with the atoms arriving from the upper left at an angle of 38° from normal incidence (ref. 2). 
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(a)  (b) 

 
Figure 2.—Oxidized silicone contamination on solar cells from a MIR solar array retrieved after 10.4 years in 

LEO. (a) Oxidized silicone contamination near suture sites on the front surface of solar array up to 
4.6 microns thick. (b) Oxidized silicone contamination on back surface solar reflector showing tape peeled 
area where contaminants between 1.06 and 1.24 microns thick were removed.  

 
Table II shows the large variation in silicate contamination on surfaces from experiments placed at 

different locations on ISS. The MISSE PEC 2 had two orders of magnitude less contaminant thickness 
than the Japanese JAXA three experiment units (units 1 to 3) (refs. 8 and 9). This is probably due to 
differences in the total arrival of silicones based on each experiment’s respective view of and distances to 
contaminant sources on ISS. 

 
TABLE II.—SILICATE CONTAMINATION ON ISS EXPERIMENT SURFACES 

Location Silicate contaminant 
thickness, 

nm 

Duration of exposure, 
years 

Silicate contaminant 
thickness/years, 

nm 
MISSE 2, Tray 1 ram facing 1.3 to 1.4 3.99 0.326 to 0.351 

JAXA 
Unit 1 
Unit 2 
Unit 3 

 
30.0 
75.0 
93.5 

 
0.863 
2.37 
3.84 

 
34.8 
31.7 
24.3 

 
The lesson learned concerning silicone contamination is that one needs to be careful to avoid self 

contamination as well as be out of the view of sources of silicone to be sure that atomic oxygen does not 
produce silica deposits that can affect erosion yields or cause changes in solar absorptance. 

Scattering of Atomic Oxygen 

It has long been suspected and predicted that a portion of the atomic oxygen arriving at a surface will 
scatter with partial accommodation from surfaces that the atomic oxygen reacts with, as well as from 
nonreactive surfaces (such as most metal oxides) (refs. 10 to 12). However, only recently, has quantifiable 
scattering data been available from the results of a small scattering chamber flown on MISSE 2. The 
experiment consisted of a 2.54 cm diameter scattering chamber containing a SiO2 coated (on the RAM 
facing surface only) polyimide Kapton H disk with a 3.05 mm diameter aperture that allowed atomic 
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oxygen to enter the chamber and scatter off of an aluminum disk and then react with the Kapton on the 
bottom of the aperture disk. The bottom of the aperture disk also had many microscopic salt particles 
attached, which served as protective areas from scattered atomic oxygen attack (fig. 3). By washing off 
the salt particles and using profilometry, the amount of atomic oxygen erosion was measured as a 
function of ejection angle. Although cosine (or Lambertian) scattering had been expected, the results 
indicated that normal incident atomic oxygen scattered in a rather narrow angular distribution, at 
approximately 45° from normal. The scattered atomic oxygen produced a surprisingly high effective 
erosion yield which was 21.8 percent of that of RAM atomic oxygen for Kapton H polyimide as shown in 
figures 4 and 5. 

The lesson learned is that atomic oxygen does not scatter in a cosine distribution or in a specular 
direction but instead at 45° from normal for aluminum. This means that one may need to be careful to 
consider scattered atomic oxygen erosion of materials depending upon the particular geometry of a 
spacecraft.  

 

      
 

(a)      (b) 
 

Figure 3.—MISSE-2 atomic oxygen scattering chamber experiment. (a) Post flight photograph. (b) Section 
view drawing. 
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Sample Holder Geometry 

The geometry of sample holders can influence the flux of atomic oxygen impinging upon samples. 
The typical MISSE sample trays with chamfered circular apertures can allow atomic oxygen to scatter 
from the chamfered surfaces onto the samples, thus locally increasing the flux impinging on the samples 
as shown in figure 6. A consequence of the perimeter scattered atomic oxygen is that the erosion around 
the sample perimeter is greater than in the central area. An example of this is shown in figure 7 for 
measurements of the MISSE 2 PEACE polyethylene oxide sample. If the atomic oxygen is arriving off 
normal, then there will be a variation in flux concentrations around the perimeter of each sample 
depending upon the scattering geometry. As can be seen in figure 8 two of the MISSE 2 samples peeled 
up from their lower left edge. Atomic oxygen was found to be arriving at 8° from normal and coming 
from the upper right in the photograph. Thus, there appears to be a greater flux concentration from atomic 
oxygen that impinges closer to perpendicular from the chamfered surface. 

For the MISSE 2 trays with circular 2.54 cm diameter samples, the chamfer was at 45° and the lip 
was 0.763 mm thick. The maximum possible additional fluence for 2.54 in. diameter samples caused by 
atomic oxygen scattering would be ~15 percent and, based on the previously discussed scattering 
chamber experiments, more likely ~3.3 percent. Thus, the concern is not relating to a higher average 
fluence but rather of sample peeling and potential release prior to full erosion of samples, which could 
lead to incorrect erosion yields. 

The whole problem of flux concentration and premature peeling could be eliminated if a reverse 
chamfer was used on the sample holders which would not allow scattering of atomic oxygen on to the 
surface of the samples. A potential disadvantage of this would be the loss of intimate contact at the edge 
of the sample for profiling purposes, which would not be a concern for mass loss measurements. 

The lesson learned is that sample holder chamfers can be a source of flux concentrations, which can 
cut out the perimeter of samples, and in some cases cause the samples to roll up or potentially be released 
prior to the full erosion of the sample. The problem could be eliminated by using a reverse chamfer on the 
sample holder. 
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Figure 6.—Flux concentration from chamfered    Figure 7.—Comparison of pre and post flight 
MISSE sample holders. surface profiles for polyethylene oxide sample. 
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Figure 8.—MISSE 2 Tray 1 E5 showing 2 films peeling up on their lower-left side. 

Documentation of Orientation of Samples With Respect to Atomic Oxygen RAM Direction 

Understanding the exact orientation of atomic oxygen arrival, or arrival of contaminants, can be very 
helpful in interpretation of environmental degradation results. Often exact information can be found if one 
documents the orientation of samples prior to removal from experiment trays. However, once the samples 
have been removed the opportunity to do this is lost. The exact orientation of the MISSE 2 atomic oxygen 
scattering chamber lid was documented. This allowed the determination that atomic oxygen had drilled 
holes that were 8° off of normal incidence and coming from the upper left of the figure 8 photograph 
(ref. 12). The knowledge of this off-angled atomic oxygen flux enabled an explanation for the preferential 
cutting out of thin samples on the lower left perimeter, as shown in figure 8, by atomic oxygen scattered 
from the lower left chamfer on the circular sample holders. 

The lesson learned is to either mark samples for orientation or photo-document them to allow their 
orientation during flight to be known for post flight analysis.  

Duration Between Retrieval and Tensile Testing 

The duration of time between retrieval of samples from space and ground laboratory tensile testing 
can have a significant impact on the elongation-to-failure for fluorinated ethylene propylene (FEP), and 
possibly other polymers, that have been exposed to the LEO environment. For example, samples of 
0.127 mm thick silvered-FEP (Ag-FEP) retrieved from the wake side (rows 1 and 4) of the LDEF in 
January 1990, and aluminized-FEP (Al-FEP) from the HST retrieved in December 1993, indicated a 
significant reduction in elongation-to-failure as time progressed beyond the retrieval dates as shown in 
figure 9 (ref. 13). Samples were taken from near-neighbor locations in both cases. 
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Figure 9.—Reduction in elongation-to-failure with time after retrieval for FEP (ref. 13). 
 
Ground testing also indicated that storage of FEP samples in vacuum as opposed to air slows the rate 

of tensile property degradation (ref. 14). Polymer chain scission is believed to be responsible for the 
reduction in elongation-to-failure, and is initiated by the impact of energetic electrons and protons, 
combined with thermal exposure (ref. 15). What is unique is that the reduction in elongation-to-failure 
appears to continue long after the radiation damaging exposure occurs. The latent damage in 
fluoropolymers is thought to be caused by the formation and presence of long-lived free radicals (refs. 16 
and 17). Storing samples in air or exposure to elevated temperatures increases degradation rates as 
compared to storage in vacuum or low temperature exposures (ref. 18).  

The lesson learned is that to properly evaluate radiation induced tensile property damage in thin film 
polymers, it is important to store samples in vacuum and at low (room) temperatures, and to test them as 
soon as possible after retrieval. Use of multiple samples, stored and tested over time after retrieval, may 
allow back extrapolation to the in-space properties if the degradation profile follows an exponential decay 
curve. 

Erosion Depth Versus Mass Loss for Erosion Yield Measurement 

Measurement of the atomic oxygen erosion yield of thin film polymers is complicated by the fact that 
cone and valley formation can result in erosion occurring in more than one stacked polymer sheet, as can 
be seen in figure 10 for the MISSE 2 polyetheretherketone (PEEK) sample stack. Figure 11 illustrates 
how the valleys between the cones can extend down into a lower sample layer. This situation makes 
erosion yield measurement based on profilometry erroneous because the erosion is on two separate layers. 

Thus, dehydrated weight loss measurements can easily take this erosion complication into account as 
one would weigh the entire stack before and after flight. But, for erosion yield determination based on 
mass loss, the density needs to be accurately known. Dehydration of samples is also very important to 
avoid weight inaccuracies due to variations in the degree of absorbed water in the samples. 

The lesson learned is to use dehydrated weight measurements for erosion yield measurement of 
stacked thin film polymers to avoid complications due to atomic oxygen texturing of samples. 
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Figure 10.—MISSE-2 PEEK sample stack showing partial erosion of the 4th and 5th sample down from space 
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Figure 11.—Atomic oxygen texturing occurring in two layers of a flight stack of polymer samples. 
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Polymer Ash Content Effects on Atomic Oxygen Erosion Yield 

Most polymers contain some fraction of inorganic material. As atomic oxygen erodes a polymer that 
contains inorganic material, the resulting nonvolatile ash begins to accumulate on the eroded surface of 
the polymer. For high fluence missions, such as MISSE 2 PEACE polymers where the fluence was 
8.43×1021 atoms/cm2 (ref. 19), this can cause the atomic oxygen to gradually become somewhat shielded 
from reacting with the underlying polymer. As a result, it is believed that the ash content of polymers can 
have an influence on the erosion yield of a polymer. Table III lists the erosion yield for a few pairs of 
MISSE 2 PEACE polymers that had similar chemical structure. The data (ref. 19) shows that in spite of 
the pairs being very similar in chemical structure they had different erosion yields based largely on their 
ash content. The ash content was measured by simply exposing and weighing samples of the polymers 
(held in small aluminum foil cups) to atomic oxygen in an RF plasma asher until no further polymer 
remained. 

 
TABLE III.—COMPARISON OF THE EROSION YIELDS OF TWO PAIRS OF CHEMICALLY SIMILAR 

POLYMERS HAVING DIFFERENT ASH CONTENTS 
Polymer Ash content, 

% by weight 
MISSE 2 Atomic oxygen erosion yield, 

cm3/atom 
Polyimide Kapton H 0.028 3.0×10–24 

Polyimide Kapton HN 0.289 2.81×10–24 
Nylon 6 0.112 3.51×10–24 
Nylon 6,6 0.361 1.80×10–24 

 
The lesson learned is that ash content in polymers can result in a reduction in erosion yield especially 

for high fluence missions. 

Summary 
As a result of the data and experiences obtained from numerous space flight experiments and 

investigators, several lessons learned stand out as worthy of note for consideration by prudent 
investigators designing experiments for space environmental durability of materials. They include: 

 
(1) It is important to verify and witness that instructions and procedures are properly followed. 

Design your experiments to provide useful results even if the mission is factors longer than planned 
(hence plan for 3X or greater then the planned mission duration, stack multiple thin film samples together, 
etc.). 

(2) Be careful to avoid self contamination and to be out of the view of sources of silicone to reduce 
the possibility that volatile silicone deposits and atomic oxygen do not produce silica deposits that can 
affect erosion yields or cause changes in solar absorptance. 

(3) Atomic oxygen does not scatter in a cosine distribution or in a specular direction but instead at 
45° from normal for aluminum. This means that one may need to be careful and take into consideration 
the geometry of the spacecraft that may lead to scattered atomic oxygen erosion of materials. 

(4) Sample holder chamfers can be a source of flux concentrations which can cut out the perimeter of 
thin samples, and in some cases cause the samples to roll up or potentially be released prior to the full 
erosion of the sample. 

(5) Mark samples for orientation or photo-document them to allow their orientation to be known for 
post flight analysis.  

(6) To properly evaluate radiation induced tensile property damage in thin film polymers, it is 
important to store samples in vacuum and at low or room temperatures and then to test them as soon as 
possible after retrieval. 
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(7) Use dehydrated weight measurements for erosion yield measurement of stacked thin film polymers 
to avoid complications due to atomic oxygen texturing of samples. 
(8) The ash content in polymers can result in a reduction in erosion yield, especially for high 
fluence missions. 
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