

### LOX, GOX, and Pressure Relief

DIERS Users Group 2006 Spring Meeting
May 1, 2006
Las Vegas, NV

Ken McLeod
Joel Stoltzfus
NASA White Sands Test Facility



### Disclaimer

- You are responsible for the application of the principles and information presented
- Neither NASA, Jacobs Sverdrup, Muniz Engineering Inc., nor the presenter assume any responsibility for your decisions



# **Why Consider Oxygen Pressure Relief?**



### Because fires occur

- In liquid oxygen systems
- In gaseous oxygen systems
- In less then 100% oxygen

And the consequences can be severe!

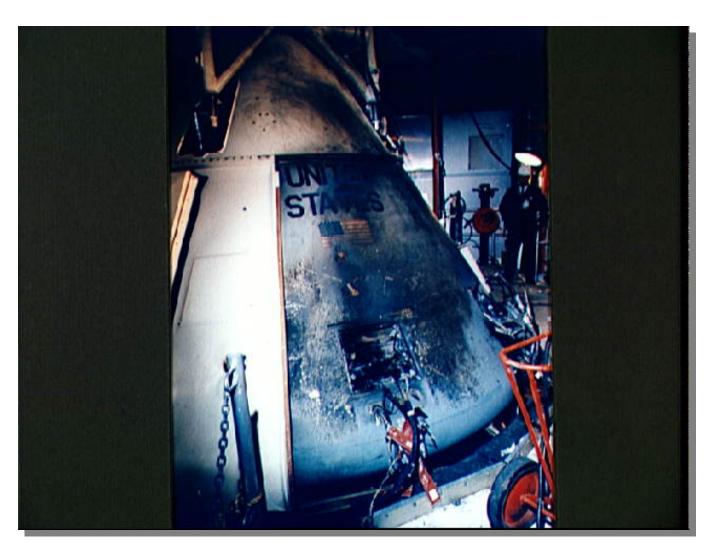




Aluminum O<sub>2</sub> regulator

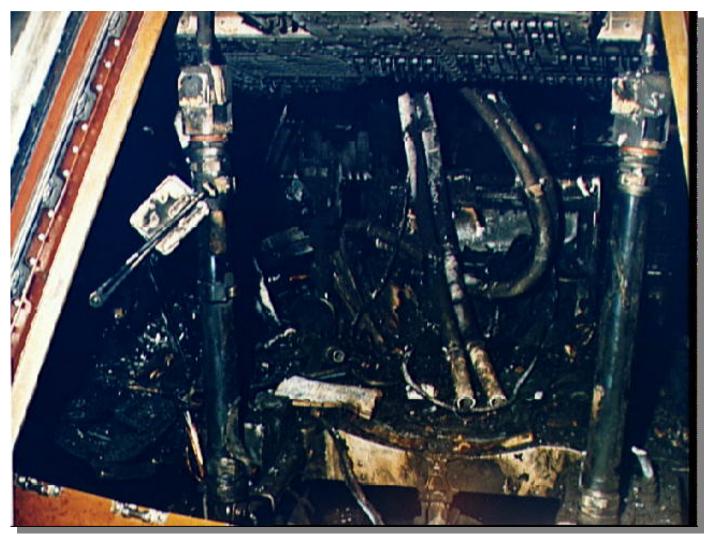





Aluminum O<sub>2</sub> regulator






Apollo 204 Fire

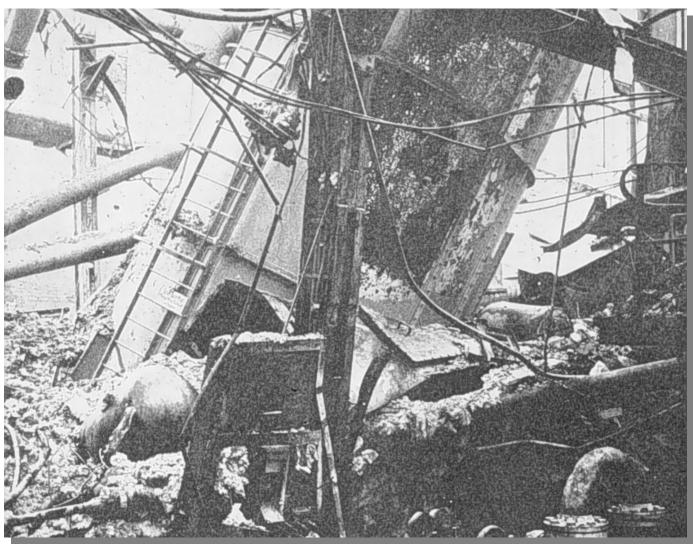





Apollo 204 Fire

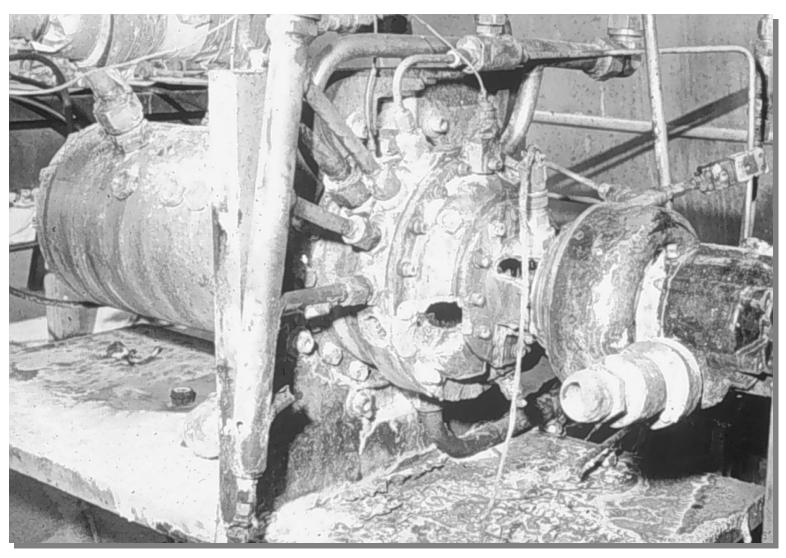





Apollo 204 Fire

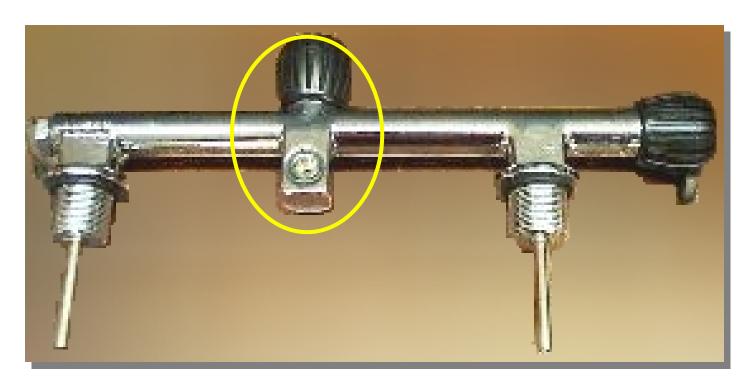






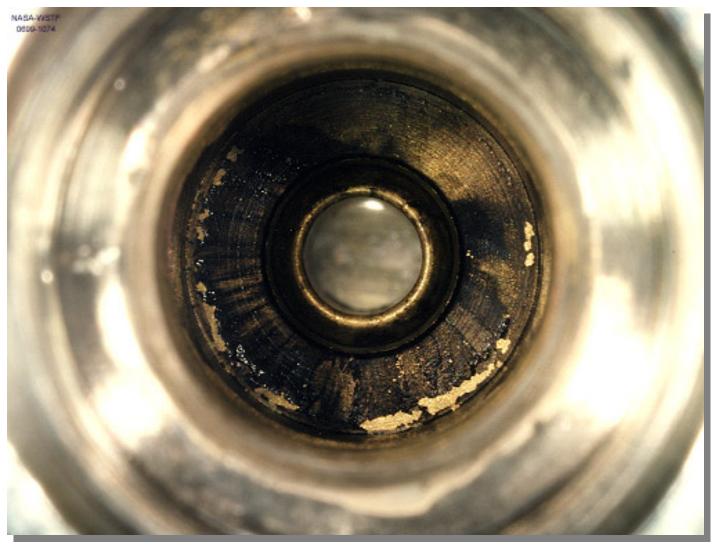






Dortmund ASU Fire






LOX Bearing Tester





Tank Cylinder Valve





Tank Cylinder Valve



# O<sub>2</sub> Fires Occur Industry Wide

- Aerospace
- Industrial gases
- Medical
- Military
- Chemical processing

- Power generation
- Scuba diving
- Metals refining
- Emergency services
- Life support





# The Oxygen System Dilemma

- Can't remove a leg of the fire triangle
- No comprehensive equations
- No comprehensive modeling packages
- How do we manage the fire hazard?



# Risk Management Approach

- Minimize ignition hazards
  - Identify and control ignition sources
- Maximize best materials
  - Ignition resistant
  - Flame propagation resistant
  - Low damage potential
- Utilize good practices
  - Test materials for which there is no data
  - Conduct hazard analysis on every design/change



# Ignition Mechanisms



# Adiabatic Compression Ignition

Heat generated when a gas is compressed from a low to a high pressure. Also called pneumatic impact or rapid pressurization

- High pressure ratio
- Rapid pressurization
  - Ball valves, cylinder valves, rupture discs
- Exposed nonmetal close to dead end



# Adiabatic Compression Ignition

$$\frac{T_f}{T_i} = \left[\frac{P_f}{P_i}\right]^{(n-1)/n}$$
 where  $n = C_p/C_v = 1.4$  for oxygen

| Final Pressure<br>(psia) | Pf/Pi | Final Temperature (°F) |
|--------------------------|-------|------------------------|
| 100                      | 6.8   | 453                    |
| 500                      | 34    | 986                    |
| 1000                     | 68    | 1303                   |
| 2000                     | 136   | 1688                   |
| 4000                     | 272   | 2158                   |



# Adiabatic Compression Ignition

- Most efficient direct igniter of nonmetals
- Will not ignite metals directly
- Examples
  - Regulators attached to cylinder valves
  - Components downstream of ball valves
  - Teflon-lined flex hose



# Particle Impact Ignition

Heat generated when small particles strike a material with sufficient velocity to ignite the particle and/or the material

- Assume the presence of particles
- High velocity
- Impact point and residence time
- Flammable particle and target



# Particle Impact Ignition

(continued)

- Most efficient direct igniter of metals
- Difficult to ignite nonmetals
- Particles can ignite at velocities of 150 ft/s
- Examples
  - First space shuttle flow control valve



# Mechanical Impact Ignition

Single or repeated impacts on a material with sufficient force to ignite it

- Large impact or repeated impact loading
- Nonmetal at point of impact





### Examples

- Poppet impact on valve or regulator seat
- Chatter on relief or check valve seat
- Special consideration in LOX
  - Hammer fitting on LOX tanker
  - Impacts on porous hydrocarbon materials or surfaces can be "explosion-like"



# Galling and Friction Ignition

Heat generated by the rubbing of two or more parts together...

...like the Boy Scout fire-starting trick!

- Two or more rubbing surfaces
- High speed and high loads most severe
- Metal-to-metal contact most severe
  - Destroys protective oxide surfaces or coatings
  - Generates particulate



# Flow Friction Ignition

Oxygen leaking across a polymer such that enough heat is generated within the polymer to cause ignition

- High pressure (>1000 psi)
- Leak or "weeping" flow
  - External leaks (seals)
  - Internal leaks (seats)
- Exposed nonmetal in flow path
  - Chafed or abraded surfaces increase risk



# Flow Friction Ignition

# Examples

- Dome-loaded regulator
- NASA MSFC chamber



# Kindling Chain

Ignition of an easily ignited material that, in turn, may release sufficient heat to ignite larger, harder-to-ignite materials

- Active ignition mechanism (adiabatic compression, mechanical impact)
- Ignition of an easily ignited material
- Combustion of the material releases sufficient heat energy to ignite surrounding, harder-toignite materials



# Increasing Pressure

#### Increases

- Mechanical stress
- Material flammability
- Compression ignition
- Combustion rates

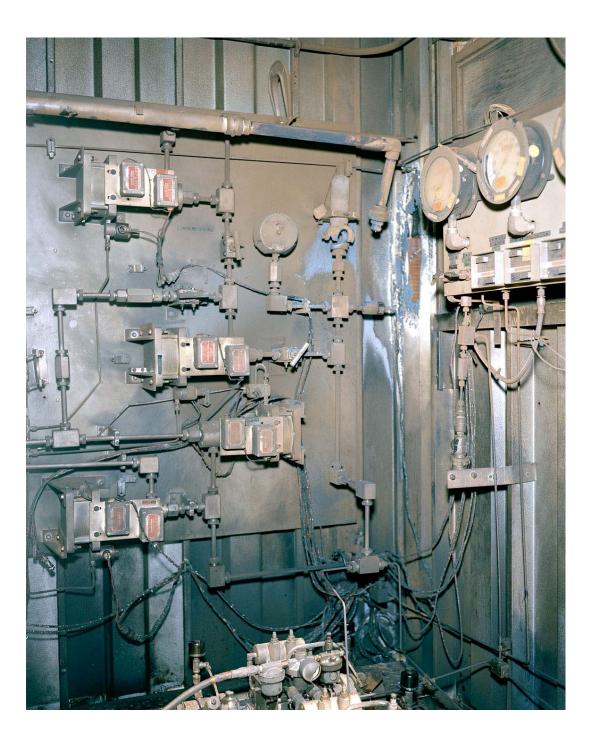
#### **Decreases**

- Energy required for ignition
- Autoignition temperature
- Oxygen index

# Independent of pressure

Heat of combustion (heat release)




# So How Do We Protect These Systems?



### Relief Valve

### Soft seat?

- Flow friction at crack pressure may ignite the seat material kindling a stem and body fire
- Seat cold flow may promote adiabatic compression ignition











### Relief Valve

#### Metal-to-metal seat?

- Valve chatter may generate particles resulting in particle impact ignition of a downstream fitting
- Valve chatter may gall the stem, disc or seat destroying the protective oxide layer



# Rupture Discs

All rupture discs produce particles when they burst even "non-fragmenting" discs.

- Rupture disc upstream of a relief valve can result in:
  - Adiabatic compression ignition of PRV softgoods
  - Particle impact ignition of PRV seat, plug, or disc
- Particle ignition of short radius elbows immediately downstream of the disc



### **Utilize Good Practices**

- Design for ballistic flow
  - Long radius elbows instead of standard 90's
  - "Y's" instead of Tees
  - Minimum fittings and pipe in discharge line
- Reduce velocity ahead of targets
- Prevent system contamination
  - Insects are extremely flammable
  - Water will freeze
  - Consider a vent cover, such as Enviro-Guard rather than a vent tee with bug screen



### **Utilize Good Practices**

- Treat the vent system with the same care as the process system
- Assemble components using "oxygen clean" techniques
- Thoroughly clean the system and sample the system
  - System must be designed for cleaning



# High Oxygen Pressure and Low Propagation Rate

| Material          | Initial Pressure | Average Propagation Rate | l |
|-------------------|------------------|--------------------------|---|
|                   | psig             | in./s                    |   |
| Monel 400         | 8000             | NP                       |   |
| Copper 102        | 8000             | NP                       |   |
| Nickel 200        | 8000             | NP                       |   |
| Yellow brass      | 7000             | NP                       |   |
| Tin bronze        | 7000             | NP                       |   |
| Red brass         | 7000             | NP                       |   |
| Inconel 600       | 2500             | 0.16                     |   |
| 304 SS            | 2500             | 0.44                     |   |
| 316 SS            | 1000             | 0.44                     |   |
| Ductile cast iron | 500              | 0.14                     |   |
| Nitronic 60       | 500              | 0.33                     |   |
| Aluminum bronze   | 500              | 1.09                     |   |
| Aluminum 6061     | 250              | 1.80                     |   |

More Compatible

Less Compatible

ASTM G94-05, Table X1.1



## Friction Ignition and Heat of Combustion

| Material        | Friction Ignition Test              | Heat of Combustions |
|-----------------|-------------------------------------|---------------------|
|                 | W/m <sup>2</sup> x 10 <sup>-8</sup> | Cal/g               |
| Nickel 200      | 2.29                                |                     |
| Copper 102      |                                     | 585                 |
| Tin bronze      | 2.15                                | 655                 |
| Red brass       |                                     | 690                 |
| Inconel 600     | 2.00                                | 1300                |
| Monel 400       | 1.44                                | 870                 |
| Yellow brass    | 0.95                                | 825                 |
| Aluminum bronze |                                     | 1400                |
| 304 SS          | 0.85                                | 1900                |
| 316 SS          | 0.53                                | 1900                |
| Nitronic 60     | 0.29                                |                     |
| Aluminum 6061   | 0.061                               | 7524                |
| Ti-6Al-4V       | 0.004                               | 4710                |

†
More
Compatible

Less Compatible

Ignitability in Supersonic Particle Impact Test with 2000 µm Aluminum Particles, Oxygen Pressure 520 to 580 psia

| Material          | Highest Temperature without Ignition of Target | Lowest Temperature with Ignition of Target |            |
|-------------------|------------------------------------------------|--------------------------------------------|------------|
|                   | °F                                             | °F                                         |            |
| Monel K500        | 700                                            |                                            | <b>↑</b>   |
| Monel 400         | 650                                            |                                            | More       |
| Copper 102        |                                                |                                            | Compatible |
| Yellow brass      | 600                                            |                                            |            |
| Inconel 600       | 600                                            |                                            |            |
| Tin bronze        | 550                                            |                                            |            |
| Aluminum bronze   | 500                                            | 600                                        |            |
| Ductile cast iron | 300                                            | 400                                        | Less       |
| 316 SS            | 50                                             | 100                                        | Compatible |
| Nitronic 60       | 0                                              | 250                                        | Ţ          |
| 304 SS            | 0                                              | 100                                        | *          |
| Aluminum 6061     | None                                           | -50                                        |            |





#### Autoignition Temperature and Heat of Combustion

| Material                   | Autoignition<br>Temperature | Heat of Combustion |  |
|----------------------------|-----------------------------|--------------------|--|
|                            | °F                          | Cal/g              |  |
| Teflon PFA                 | 795                         | 1250               |  |
| Teflon A                   | 813                         | 1526               |  |
| Rulon E (glass filled TFE) | 801                         | 1700               |  |
| Kalrez                     | 671                         | 2090               |  |
| PCTFE (Kel-F 81)           | 712                         | 2500               |  |
| Viton B                    | 554                         | 3089               |  |
| PVDF (Kynar)               | 514                         | 3277               |  |
| Tefzel (ETFE)              | 469                         | 3538               |  |
| Viton A                    | 514                         | 3603               |  |
| Vespel SP-21               | 649                         | 6100               |  |
| Zytel (Nylon 6/6)          | 498                         | 7708               |  |
| PEEK                       | 581                         | 6665               |  |
| EPDM                       | 318                         | 11299              |  |

† More Compatible

Less Compatible





# Mechanical Impact Sensitivity

| Material                   | Impact Sensitivity |
|----------------------------|--------------------|
|                            | Reactions/tests    |
| Rulon E (glass filled TFE) | 0 / 20             |
| PCTFE (Kel-F 81)           | 0 / 20             |
| PVDF (Kynar)               | 79 / 100           |
| Viton A                    | 3 / 20             |
| Zytel (Nylon 6/6)          | 21 / 60            |

ASTM G63, Table X1.4





# **Autoignition Temperature**

| Material                    | Autoignition Temperature |
|-----------------------------|--------------------------|
|                             | °F                       |
| Brayco 667 (grease)         | 801                      |
| PTFE pipetape               | 801                      |
| Fluorolube GR362 (grease)   | 801                      |
| Fluorolube LG160 (grease)   | 720                      |
| Fomblin RT-15 (grease)      | 801                      |
| Halocarbon X90-15M          | 801                      |
| Krytox 240                  | 801                      |
| Oxygen System Antiseize     | 424                      |
| Utility pipe joint compound | 421                      |

ASTM G63, Table 1.3



# Summary

#### Problem

- Fire hazard risk is real in O<sub>2</sub> Relief systems
- Fire consequences are often severe

#### Solution

- Use Risk Management Strategy
  - Minimize ignition hazards
  - Maximize best materials
  - Utilize good practices



# Summary

- Design relief system for cleanability
- Design relief system for ballistic flow
- Specify the right metals, softgoods, and lubricants
- Specify the best assembly techniques
- Have materials tested if data is not available
- Conduct a full hazard analysis

# NASA

# Summary

#### Resources

- ASTM
  - Manual 36, Safe Use of Oxygen and Oxygen Systems
  - G 88 system design
  - G 63 & G 94 material selection and data
  - G 93 oxygen system cleanliness
- CGA G04, Oxygen
- NFPA 53, Manual on Fire Hazards in Oxygen-Enriched Atmospheres
- Other options
  - Material testing, NASA White Sands Test Facility
  - Joel Stoltzfus, NASA White Sands Test Facility

## **Conclusions**



- Safe oxygen use and relief is possible
- This is not an exact science
  - Many variables are involved
  - But applicable data and knowledge exist
  - And good principles have been established
- A conservative approach is essential Key element is judgment!