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TECHNICAl PUBlICATION

NuMerICal DeTerMINaTIoN of CrITICal CoNDITIoNs for THerMal IgNITIoN

1.  INTroDuCTIoN

1.1  background

Ign�t�on or thermal explos�on of a combust�ble substance occurs when exotherm�c react�ons evolve 
heat so rap�dly that �t �s �mposs�ble to preserve a stable balance between heat product�on and the loss of 
heat to the surround�ngs. Th�s �s an essent�al feature of many technolog�cal dev�ces that employ aux�l�ary 
heat sources as a means of accelerat�ng �nternal heat generat�on and engender�ng a runaway �ncrease �n 
temperature. On the other hand, there are numerous �ndustr�al processes �nvolv�ng the product�on and stor-
age of react�ve mater�als �n wh�ch self-heat�ng effects can culm�nate �n spontaneous combust�on or explo-
s�ve effects and the pr�mary concern �s avo�d�ng the occurrence of potent�ally hazardous c�rcumstances.1

The archetypal example of self-heat�ng �s a porous p�le of mater�al �n wh�ch heat �s �nternally gen-
erated by atmospher�c ox�dat�on. If the excess heat �n the p�le can be transported and d�ss�pated to the sur-
round�ngs fast enough, an equ�l�br�um or steady state can be safely establ�shed. Under certa�n cond�t�ons, 
however, the d�ss�pat�on mechan�sm cannot keep pace w�th the self-heat�ng rate, and spontaneous �gn�t�on 
or explos�on w�ll occur. These cr�t�cal cond�t�ons depend on the s�ze and shape of the p�le, the assembly 
temperature of the mater�al, and the amb�ent temperature of the surround�ng env�ronment.

H�stor�cally, assessment and control of self-heat�ng hazards have been ma�nly conducted on an 
emp�r�cal bas�s, as establ�shed through long years of exper�ence �n the handl�ng and process�ng of suscep-
t�ble mater�als and products. The contemporary trend, however, �s towards the development of rel�able 
mathemat�cal models and quant�tat�ve pred�ct�ve procedures. In fact, the bas�c theoret�cal construct may 
be erected �n a rather stra�ghtforward manner us�ng conservat�on pr�nc�ples and well establ�shed descr�p-
t�ons of the underly�ng chem�cal and phys�cal processes. The result�ng mathemat�cal formulat�on �s com-
monly referred to as the react�on-d�ffus�on equat�on:

	 ρc
T
t

k T H Tp
∂
∂

= ∇ ∇( ) + ( ) ,	 (1)

where t �s the t�me, T �s the temperature, ρ �s the dens�ty, cp	is	the	specific	heat,	k �s the thermal conduct�v-
�ty, and H(T) �s the rate of heat product�on per un�t volume at temperature T. Th�s nonl�near part�al d�ffer-
ent�al equat�on �s a local�zed express�on of the conservat�on of energy and �mpl�es that the rate of change 
of thermal energy w�th�n a un�t volume element �s equal to the net conduct�on heat transfer through the 
bound�ng surface plus the volumetr�c heat generat�on rate.
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 For most �gn�t�on problems of pract�cal �mportance, �t �s poss�ble to �ncorporate certa�n s�mpl�fy�ng 
assumpt�ons wh�ch make the mathemat�cs more tractable. These �nclude the follow�ng:

• Negligible	reactant	consumption	and	reactant	diffusion	(i.e.,	“zero	order”	reaction).
• Constant thermal conduct�v�ty.
• Arrhen�us temperature dependence for the exotherm�c react�on rate.

Enforcement of these assumpt�ons y�elds the follow�ng work�ng form for the react�on-d�ffus�on equat�on:

	 α ρ∂
∂
T
t

T
QA
k

e E RTa= ∇ + −2 , 	 (2)

where α = ρcp /k �s the thermal d�ffus�v�ty, Q	is	the	heat	of	reaction	per	unit	mass	(i.e.,	‘exothermicity’),	A 
�s the pre-exponent�al factor �n the Arrhen�us react�on rate term, Ea �s the act�vat�on energy, and R �s the 
un�versal gas constant. When appl�ed over a bounded reg�on Ω, energy conservat�on pr�nc�ples y�eld a 
general�zed boundary cond�t�on on the smooth surface δΩ

	 k
T
n

h T Ta s
∂
∂

= −( ) ,	 (3)

where ∂/∂n �s the outward normal der�vat�ve on ∂Ω , h	is	the	convective	heat	transfer	coefficient,	Ta �s the 
amb�ent temperature of the surround�ng env�ronment, and Ts �s the mater�al surface temperature.

g�ven the shape and s�ze of a bounded reg�on, appropr�ate boundary cond�t�ons, and values for the 
fundamental mater�al propert�es, the bas�c object�ve �s to mathemat�cally explo�t the react�on-d�ffus�on 
equat�on and determ�ne the cr�t�cal parameters and cond�t�ons lead�ng to the onset of �gn�t�on or thermal 
explos�on. In part�cular, we are concerned w�th pred�ct�ons for the cr�t�cal amb�ent temperature, wh�ch 
defines	an	external	environmental	constraint	for	safe	‘storage,’	and	the	critical	initial	temperature,	which	
defines	an	internal	constraint	for	safe	‘assembly.’

1.2  scope and objective

From a mathemat�cal perspect�ve, there are two fundamental strateg�es for attack�ng the reac-
t�on-d�ffus�on equat�on and determ�n�ng cr�t�cal cond�t�ons for thermal �gn�t�on. These are the stat�onary 
(steady-state)	model	and	the	nonstationary	(transient)	model.

In	the	stationary	model,	the	time-dependent	term	in	equation	(2)	is	neglected	and	steady-state	solu-
t�ons are sought for wh�ch heat losses exactly balance heat product�on. Th�s approach assumes unl�m�ted 
reactants and �mpl�es that e�ther a small steady-state excess temperature w�ll become establ�shed �n the 
body	or	 the	 temperature	will	 increase	 indefinitely.	The	 principal	 attraction	 of	 the	 stationary	modeling	
approach �s a reduct�on of the problem to more amenable ord�nary d�fferent�al equat�on form, wh�ch has 
facilitated	the	development	and	refinement	of	standard	mathematical	methods	capable	of	accounting	for	
�nternal spat�al temperature d�str�but�ons and produc�ng rel�able est�mates for the cr�t�cal amb�ent tempera-
ture. Because the stat�onary model cannot account for t�me evolut�on, however, �t has only l�m�ted effec-
tiveness	in	the	prediction	of	critical	initial	conditions.	It	is	well	known,	for	instance,	that	many	fires	have	
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resulted from the assembly of react�ve mater�al at too h�gh an �n�t�al temperature even though the storage 
cond�t�ons were sub-cr�t�cal on the bas�s of steady state theory. See, for example, Bowes1	(who	refers	to	
th�s as thermal explos�on of the second k�nd), R�vers et al.,2 and Smedley and Wake.3

The nonstat�onary model, on the other hand, reta�ns the complete t�me-dependent form of the reac-
t�on-d�ffus�on equat�on and evolves the full temperature h�story of the self-heat�ng body. The drawback 
of th�s approach �s the general need to resort to numer�cal analys�s and the fact that a full development 
h�story must be computed for each �n�t�al/boundary cond�t�on of potent�al �nterest. The d�st�nct advantage, 
however, �s that �t can fully account for the �n�t�al assembly cond�t�ons and �s therefore able to prov�de 
accurate est�mates for the cr�t�cal �n�t�al temperature. Weber et al.,4 for �nstance, recently conducted a l�m-
�ted computat�onal study of the nonstat�onary model wh�ch clearly demonstrated that the pract�cal cr�t�cal 
assembly temperature may, under certa�n c�rcumstances, be 5–10% lower than the cr�t�cal temperature 
obtained	 from	 steady-state	 theory.	This	 has	 profound	 industrial	 implications	 in	 the	 assessment	 of	 fire	
hazards	and	the	definition	of	fire	safety	standards,	for	which	a	clear	distinction	must	be	drawn	between	
the	classic	‘storage’	problem,	where	only	steady-state	temperatures	are	important,	and	the	less	recognized	
‘assembly’	problem,	where	the	initial	temperature	threshold	for	self-ignition	is	of	vital	concern.

Phys�cal s�tuat�ons �nvolv�ng dynam�cal boundary cond�t�ons, where the amb�ent temperature or 
surface	heat	flux	has	a	known	time-dependent	variation,	represent	an	additional	class	of	problems	that	
requ�re a nonstat�onary mathemat�cal treatment for the accurate pred�ct�on of cr�t�cal �gn�t�on cond�t�ons. 
Such	‘dynamic	regimes	of	ignition’	might	include	the	behavior	of	a	combustible	material	under	the	action	
of	an	igniter	with	a	predefined	heat	deposition	rate	or	a	reactive	industrial	stockpile	exposed	to	diurnal	
variations	 in	ambient	 temperature.	Clearly,	 the	standard	stationary	model	 results	 for	 ‘static	 regimes	of	
ignition’	are	inapplicable	to	this	class	of	problem,	and	nonstationary	approaches	are	the	only	viable	course	
of act�on at the present t�me.

	 The	central	objective	of	this	research	is	the	development	and	use	of	numerical	techniques	(1)	to	
�nvest�gate the nonstat�onary solut�on sets of the full t�me-dependent react�on-d�ffus�on equat�on subject 
to	a	general	convective	boundary	condition	and	(2)	to	determine	the	critical	threshold	that	distinguishes	
between �n�t�al cond�t�ons that evolve to a low-temperature steady-state and those that evolve to a h�gh-
temperature	steady-state	attractor	(i.e.,	thermally	ignite).	This	numerical	methodology	is	then	used	as	the	
basis	for	the	following	three-pronged	research	program:	(1)	conduct	a	broad	ranging	numerical	study	of	
the	‘assembly’	problem	using	a	generalized	one-parameter	power	law	for	the	initial	temperature	profile;	
(2)	investigate	the	relationship	between	the	shape	of	the	critical	initial	temperature	distribution	and	the	
correspond�ng spat�al moments of �ts energy content �ntegral and attempt to forge a fundamental conjec-
ture	governing	this	relation;	and	(3)	investigate	the	effect	of	dynamic	boundary	conditions	on	the	classic	
‘storage’	problem	and	use	the	results	of	the	nonstationary	model	to	lay	the	groundwork	for	the	develop-
ment of an approx�mate solut�on methodology based on adaptat�on of the standard stat�onary model.

1.3  Dimensionless formulations of the reaction-Diffusion equation

Evaluat�on and analys�s of the react�on-d�ffus�on equat�on �s fac�l�tated by the �ntroduct�on of 
d�mens�onless parameters. From a h�stor�cal perspect�ve, �t �s �mportant to note the trad�t�onal group�ng 
of	dimensionless	variables	suggested	by	Frank-Kamenetskii	in	the	first	comprehensive	analytical	treat-
ment of the stat�onary model.5	This	classical	formulation	has	been	highly	influential	over	the	years,	since	
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�t fac�l�tates certa�n s�mpl�fy�ng approx�mat�ons �n the nonl�near Arrhen�us rate term, mak�ng �t amenable 
to analyt�cal attack. In fact, v�rtually all subsequent theoret�cal developments have ut�l�zed th�s standard 
form as a common start�ng po�nt. From a modern perspect�ve, however, an alternat�ve formulat�on based 
on the Burnell-grahamEagle-gray-Wake var�ables prov�des less c�rcu�tous contact w�th the pr�m�t�ve 
var�ables and enables a more d�rect phys�cal �nterpretat�on.6 Moreover, the fac�l�tat�ng features of the 
Frank-kamenetsk�� var�ables are not necessar�ly advantageous for comprehens�ve numer�cal analyses 
where there �s less need for s�mpl�fy�ng assumpt�ons. Thus, the mathemat�cal treatment �n th�s work w�ll 
be constructed exclus�vely on the modern var�able formulat�on. For the sake of completeness, however, 
and to fac�l�tate translat�on and compar�son between the two frames of reference, both formulat�ons are 
briefly	outlined	in	the	following	subsections.

1.3.1  frank-Kamenetskii Variables

The Frank-kamenetsk�� group�ng of d�mens�onless var�ables was or�g�nally �ntroduced as a means 
of s�mpl�fy�ng the temperature dependence of the Arrhen�us react�on rate term to perm�t the construct�on of 
exact analyt�cal solut�ons. Because these var�ables appeared �n the p�oneer�ng theoret�cal developments of 
the	field,	however,	they	became	a	de	facto	standard	and	tended	to	permeate	all	subsequent	developments,	
desp�te certa�n drawbacks �n clar�ty and �nterpretat�on. Thus, bas�c knowledge of the Frank-kamenetsk�� 
formulat�on �s essent�al as a frame of reference for understand�ng prev�ous theoret�cal work.

Development	of	this	formulation	begins	with	the	definition	of	parameters	for	the	dimensionless	
amb�ent temperature and the d�mens�onless reactant temperature,

	 ε θ
ε

= = −RT
E

T T
T

a

a

a

a
								and								 . 	 (4)

Note that both parameters �nclude the amb�ent temperature as a scal�ng factor and are therefore 
coupled. Thus, θ	relates	the	dimensionless	temperature	rise	(T – Ta) �n the mater�al to the character�st�c 
temperature	(εTa).	From	the	above	definitions,	one	may	readily	establish	the	identity

	 − ≡ − +
+

E
RT

a 1
1ε

θ
εθ

, 	 (5)

wh�ch leads to a d�mens�onless express�on for the temperature dependence of the Arrhen�us react�on rate 
term, e–1/ε eθ/(1+εθ). Because ε –1 = Ea /RTa �s �n the range of 10−100 for most mater�als, the nonl�near�ty 
exp[θ/(1 + ε θ)] �s convex for small pos�t�ve θ and concave for θ >(ε–ε2)/2.

We	next	rescale	and	normalize	the	spatial	and	time	coordinates	by	defining	the	following	dimen-
s�onless var�ables:

	 ξ τ
α

= =
s
L

t
L

						and						 2 ,	 (6)

where the character�st�c length L represents the half-w�dth of a symmetr�cal bounded reg�on and s �s the 
phys�cal spat�al coord�nate referenced to the ax�s of symmetry. Subst�tut�on of the above d�mens�onless 
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variables	into	the	reaction-diffusion	equations	(2)	and	(3)	yields	the	Frank-Kamenetskii	formulation	in	
convent�onal compact form:

	
∂
∂
θ
τ

θ δξ
θ εθ= ∇ + +( )2 1e       in  Ω 	 (7)

and

	
∂
∂

∂θ
ξ

θ+ =Bi 0						on		 Ω . 	 (8)

Here, Bi = hL/k �s the d�mens�onless B�ot number and δ �s a d�mens�onless e�genvalue parameter g�ven by

	 δ ρ
= −E

RT
L QA

k
ea

a

E RTa a
2

2
.	 (9)

 It �s conven�ent at the outset to develop a general�zed formulat�on that �s appl�cable to all three 
principal	centrosymmetric	solids,	commonly	referred	to	as	the	Class	A	geometries;	i.e.,	the	slab,	infinite	
cyl�nder, and sphere. Th�s �s accompl�shed by expand�ng the laplac�an operator �n cartes�an, cyl�ndr�cal, 
and spher�cal coord�nates and observ�ng that these can all be represented �n the parameter�zed form:

	 ∇ = +ξθ θ
ξ ξ

θ
ξ

2
2

2
∂
∂

∂
∂

n ,	 (10)

where n serves as a geometry select�on parameter. That �s, n	=	0,	1,	or	2	for	the	slab,	infinite	cylinder,	and	
sphere,	respectively.	Hence,	the	final	working	form	of	the	reaction-diffusion	equation	for	class	A	shapes	
may be wr�tten as

	
∂
∂

∂
∂

∂
∂

θ
τ

θ
ξ ξ

θ
ξ

δ θ εθ= + + +( )2

2
1n

e          in  Ω 	 (11)

and

	 ∂
∂

∂θ
ξ

θ+ =Bi 0						on		 Ω .	 (12)

 The Frank-kamenetsk�� arrangement of the react�on-d�ffus�on equat�on, �n the form above, con-
ta�ns no add�t�onal s�mpl�fy�ng assumpt�ons and �s appropr�ate for r�gorous analyses of stat�onary and 
nonstat�onary models of thermal �gn�t�on. In fact, �t has been the commonly used formulat�on �n almost 
all prev�ous mathemat�cal and computat�onal stud�es.

	Exact	analytical	attacks	on	the	stationary	model,	however,	require	further	simplifications	to	the	
nonl�near Arrhen�us react�on rate term, and �t �s of pass�ng h�stor�cal �nterest to note the class�c Frank-
kamenetsk�� approx�mat�on val�d when ε <<1 and θ	 is	not	 large.	Under	 this	assumption,	equation	 (5)	
takes the s�mpler form

	 − ≈ − +−E
RT

a ε θ1 .	 (13)
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One should note that the d�st�nct advantage of the Frank-kamenetsk�� var�ables—�ndeed the funda-
mental	reason	for	their	original	introduction—is	the	simplification	provided	by	this	approximation.	Other	
simplified	representations	of	the	Arrhenius	term,	such	as	the	quadratic	approximation	of	Boddington	et	
al.,7 have been explo�ted for the development of exact analyt�cal solut�ons �n the Frank-kamenetsk�� var�-
ables.

 Therefore, these var�ables have been part�cularly useful �n the construct�on of analyt�cal solut�ons 
for the stat�onary model, where we are �nterested �n the behav�or of θ under var�at�ons �n the e�genvalue 
parameter δ.	In	carrying	out	the	exact	analysis,	one	finds	that	there	are	two	solution	branches	for	θ when 
δ<δcr: the lower branch be�ng stable and the upper branch be�ng unstable. When δ>δcr, however, no solu-
t�ons ex�st. Thus, δ may be cons�dered as a b�furcat�on parameter �n the Frank-kamenetsk�� formulat�on 
such that δcr	 represents	 the	first	 limit	point	of	 the	corresponding	bifurcation	diagram.	From	a	physical	
perspect�ve, δcr	is	identified	with	the	onset	of	ignition,	since	for	δ>δcr no steady-state solut�on ex�sts and 
the temperature of the body w�ll r�se �n t�me w�thout bound.

1.3.2  burnell-grahameagle-gray-Wake Variables

 Desp�te �ts predom�nance �n the l�terature, the trad�t�onal Frank-kamenetsk�� group�ng of d�men-
s�onless var�ables has the effect of confus�ng the role of the amb�ent temperature when, �n fact, �t �s the 
most	 practically	 significant	 control	 parameter	 in	 the	 problem	definition.	To	 circumvent	 this	 difficulty,	
Burnell et al. suggested an alternat�ve d�mens�onless group�ng w�th temperature rescaled �ndependently of 
the amb�ent temperature.6

	The	major	distinction	in	the	new	grouping	is	the	definition	of	a	dimensionless	reactant	temperature	
and a d�mens�onless amb�ent temperature that are completely decoupled:

	 u RT
E

U RT
Ea

a

a
= =								and								 .	 (14)

As �n the Frank-kamenetsk�� formulat�on, we rescale and normal�ze the spat�al and t�me coor-
dinates	 using	 the	 previously	 defined	 dimensionless	 variables	 ξ = s/L  and τ = t/α L2. Then, subst�tut�on 
of	 the	 dimensionless	 parameters	 into	 the	 reaction-diffusion	 equations	 (2)	 and	 (3)	 yields	 the	 Burnell- 
grahamEagle-gray-Wake formulat�on �n compact form:

	
∂
∂

∇u
u e u

τ
λξ= + −2 1       in  Ω	 (15)

and

	
∂
∂

∂u
Bi u U

ξ
+ −( ) = 0						on		 Ω .	 (16)

Here, λ �s a new d�mens�onless e�genvalue parameter g�ven by
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	 λ ρ
=

L QAR
kEa

2
.	 (17)

In contrast w�th the e�genvalue δ, λ �s decoupled from the amb�ent temperature. Thus, U �s the only param-
eter dependent on Ta .

 The new formulat�on may also be put �n a general�zed form appl�cable to all three pr�nc�pal cen-
trosymmetr�c sol�ds. As before, we expand the laplac�an operator �n cartes�an, cyl�ndr�cal, and spher�cal 
coord�nates and observe that these can all be represented �n the parameter�zed form:

	 ∇ ∂
∂

∂
∂ξ ξ ξ ξ

2
2

2u
u n u

= + ,	 (18)

where n	is	the	previously	defined	geometry	selection	parameter.	That	is,	n	=	0,	1,	or	2	for	the	slab,	infinite	
cylinder,	and	sphere,	respectively.	Hence,	the	final	working	form	of	the	reaction-diffusion	equation	for	
class A shapes may be wr�tten as

	
∂
∂

∂
∂

∂
∂

u u n u
e u

τ ξ ξ ξ
λ= + + −

2

2
1          in  Ω 	 (19)

and

	 ∂
∂

∂u
Bi u U

τ
+ −( )= 0									on				 Ω . 	 (20)

 Th�s arrangement of the react�on-d�ffus�on equat�on conta�ns no s�mpl�fy�ng approx�mat�ons 
beyond	those	previously	contained	in	equations	(2)	and	(3)	and	is	a	mathematically	equivalent	framework	
for the analys�s of stat�onary and nonstat�onary models of thermal �gn�t�on. Indeed, for numer�cal analyses, 
there �s no d�st�nct advantage �n us�ng the Frank-kamenetsk�� var�ables and �t �s �ndeed preferable to ut�-
l�ze the Burnell-grahamEagle-gray-Wake formulat�on, wh�ch prov�des a more d�rect l�nk to the phys�cal 
doma�n. Thus, all formal developments �n th�s work are based on the latter formulat�on.

 In th�s new var�able formulat�on, the most appropr�ate b�furcat�on control parameter �s the d�men-
s�onless amb�ent temperature U w�th the d�mens�onless reactant temperature u serv�ng as the response 
funct�on. That �s, λ	is	normally	fixed	and	the	objective	is	to	determine	solution	branches	in	the	(u,U ) plane. 
In	this	case,	the	first	bifurcation	point	on	the	minimal	branch	of	solutions	occurs	at	the	critical	ambient	
temperature, Ucr.	Thus,	the	critical	ambient	temperature	can	be	inferred	directly	from	the	(u,U ) b�furca-
t�on d�agram as

	 U
RT

Ecrit
a crit

a
= , .	 (21)

	Table	1	summarizes	the	mathematical	relationship	between	the	(ε, θ, δ ) set of var�ables and the  
(u, U, δ) set of var�ables as an a�d to �nterpretat�on and translat�on between the two formulat�ons.
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Table 1.  Mathemat�cal relat�onsh�p between alternat�ve d�mens�onless var�ables.

(ε, θ, δ ) → (u, U, λ) (u, U, λ) → (ε, θ, δ )
u = ε(1+εθ) θ	=	(u−U)/U2

U = ε ε = U
λ = δε2e1/ε δ = λe–1/U/U2

1.3.3  shape factor Method for arbitrary Convex regions

 The bas�c conceptual �dea of us�ng a geometr�c select�on parameter n may be general�zed to �ncor-
porate arb�trary non class A three d�mens�onal shapes by means of the shape factor method formal�zed by 
Bodd�ngton et al.,8 wh�ch may be regarded as an extens�on of the equ�valent sphere concept �ntroduced by 
Wake and Walker.9 For arb�trary convex body shapes of volume V and surface area S, the method produces 
non-�ntegral values of n �n terms of the Semenov rad�us Rs and the harmon�c mean rad�us R0:

	 n
R
R s

+ =1 3 0
2

2 ,	 (22)

where

	 R V
Ss = 3 	 (23)

and

	 R
d
a

0
2

2
1

4
− = ∫∫π

ω . 	 (24)

Here, dω �s the sol�d angle subtended at the center O, and a �s the rad�us from O to a po�nt on the surface. 
The	dimensionless	spatial	variable	is	defined	in	the	conventional	way,

	 ξ = a
a0

, 	 (25)

and, for class A geometr�es, L �s related to n and R0 by the formula:

	 L a R n= = +
0 0

1
3

. 	 (26)
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Table 2.  Values of Rs, R0, and n for some common geometr�es.

shape rs r0 n
Infinite	slab 3.000 3.000 0.000
Rectangular	parallelepiped	(1:10:10) 2.500 1.731 0.438
Infinite	cylinder 1.500 1.225 1.000
Infinite	square	rod 1.500 1.354 1.443
Rectangular	parallelepiped	(1:1:10) 1.429 1.354 1.694
Sphere 1.000 1.000 2.000
Equ�cyl�nder 1.000 1.115 2.728
Cube 1.000 1.194 3.280
Regular tetrahedral 0.408 0.537 4.187

 A summary of results for class A and non class A shapes, as computed by Bodd�ngton et al,8 �s 
prov�ded �n table 2. Th�s method has been extended to the rev�sed var�able formulat�on and appl�ed to 
an extens�ve study of the stat�onary model by Balakr�shnan.10 Th�s was accompl�shed by apply�ng path- 
following	techniques	to	the	stationary	form	of	equation	(19)	with	the	eigenvalue	parameter	 λ . The value 
of λ for non class A geometr�es of un�t s�ze �s recovered by scal�ng λ , us�ng the relat�on

	 λ λ=
+( )

3
1 0

2n R
.	 (27)

It �s bel�eved that th�s method �s equally appl�cable to the nonstat�onary model and m�ght prove 
pract�cal for the est�mat�on of cr�t�cal �n�t�al cond�t�ons �n assembly problems.
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2.  sTaTIoNarY MoDel

H�stor�cally, greater emphas�s has been placed on theoret�cal understand�ng and mathemat�cal 
model�ng of the stat�onary model than the nonstat�onary model, because �t reduces the determ�nat�on of 
explos�on or thermal �gn�t�on to a cons�derat�on of poss�ble steady-state solut�ons of a standard nonl�near 
e�genvalue problem. These types of second-order ord�nary d�fferent�al equat�ons have been extens�vely 
stud�ed, both mathemat�cally and computat�onally, and excellent rev�ews and comp�lat�ons are ava�lable �n 
the l�terature.11,12 Such stud�es ord�nar�ly adopt the Frank-kamenetsk�� var�ables and exam�ne the behav-
�or of θ us�ng δ as a b�furcat�on parameter. Consequently, attent�on has been focused almost exclus�vely on 
determ�nat�on of δcr,	the	first	bifurcation	point	on	the	minimal	branch,	which	has	direct	practical	implica-
t�ons to the storage problem but only l�m�ted ut�l�ty, at best, to the assembly problem.

Balakrishnan,	in	one	of	the	first	attempts	to	utilize	the	Burnell-GrahamEagle-Gray-Wake	variables,	
rev�s�ted the class�c stat�onary model and carr�ed out extens�ve numer�cal analyses of the e�genvalue prob-
lem us�ng path-follow�ng techn�ques.10 Th�s work �llum�nated the character�st�c branch structure �n the 
(u,U)	plane,	including	accurate	identification	of	Ucr, and conv�nc�ngly demonstrated that these alternat�ve 
var�ables prov�de �mproved phys�cal clar�ty and more stra�ghtforward �nterpretat�on �n terms of the amb�-
ent temperature control parameter.

The major focus of th�s thes�s, follow�ng the �n�t�al lead of Weber et al.,4 w�ll be the solut�on of the 
nonstat�onary model �n alternat�ve var�able form and determ�nat�on of cr�t�cal �n�t�al cond�t�ons �n the oft 
neglected	but	practically	important	assembly	problem.	In	doing	so,	it	will	first	be	necessary	to	construct	
stat�onary model solut�ons to prov�de a frame of reference for proper �nterpretat�on of the computed cr�t�-
cal �n�t�al cond�t�on b�furcat�on branches. Thus, a numer�cal analys�s procedure �s developed here�n for the 
standard stat�onary problem �n alternat�ve var�able form. Rather than follow the soph�st�cated path follow-
�ng method outl�ned by Balakr�shnan,10 however, a more d�rect and less labor�ous route �s taken whereby 
the convent�onal two-po�nt boundary value problem �s reformulated as an equ�valent �n�t�al value prob-
lem.	Before	embarking	on	this	development	for	the	stationary	model,	it	will	prove	useful	to	first	review	the	
qual�tat�ve solut�on behav�or for the general e�genvalue problem as obta�ned from the t�me-�ndependent 
form	of	equation	(15):

	 ∇ξ λ2 1 0u e u+ =−       in  Ω	 (28)

where	the	boundary	condition	defined	by	equation	(16)	still	applies.

2.1  Qualitative structure of solution branches

Cons�der the ant�c�pated funct�onal behav�or of heat generat�on and heat loss �n a porous p�le of 
material	undergoing	chemical	oxidation	within	a	fixed	temperature	ambient	environment.	First,	we	note	
that the heat loss rate �s assumed to be proport�onal to the temperature d�fference between the body and 
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the amb�ent env�ronment and would therefore have a l�near funct�onal dependence on body temperature, 
as	illustrated	by	the	dashed	lines	in	figure	1	corresponding	to	Ta < Ta,cr, Ta = Ta,cr and Ta > Ta,cr. On the 
other hand, we clearly expect the heat generat�on rate to vary �n a nonl�near way w�th �ncreas�ng body 
temperature. At relat�vely low body temperature when the dr�v�ng potent�al for heat loss �s low, the heat 
generat�on would tend to �ncrease strongly w�th any �ncremental r�se �n temperature, whereas at h�gh body 
temperature, when the dr�v�ng potent�al for heat loss �s h�gher and d�ffus�on becomes a controll�ng factor, 
the heat generat�on rate would exh�b�t a weaker response to any �ncremental �ncrease �n temperature. Thus, 
the funct�onal dependence of heat generat�on rate on body temperature would tend to follow a s�gmo�d 
type	curve	as	illustrated	by	the	solid	curve	in	figure	1.	The	intersection	points	of	the	heat	generation	and	
loss curves represent the steady state solut�ons we seek for the stat�onary storage problem.

Ta < Ta,cr

Body Temperature

1

Ta = Ta,cr Ta > Ta,cr
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F�gure 1.  Heat balance character�st�cs for the stat�onary �gn�t�on model.

When Ta < Ta,cr,	the	body	is	able	to	efficiently	eject	heat	to	the	environment	at	a	relatively	high	rate,	
and we obta�n three steady-state solut�ons at �ntersect�on po�nts 1, 3, and 4. For th�s amb�ent cond�t�on, 
the stat�onary model �mpl�es that the body temperature w�ll always approach T1 �f Ti < T3 and T4 �f Ti > T3. 
Here, Ti �s the �n�t�al assembly temperature. The �ntermed�ate �ntersect�on po�nt at T3 �s an unstable steady 
state and cannot be real�zed. When Ta = Ta,cr, the body ejects heat at a reduced rate, and we now obta�n 
two steady-state solut�ons at �ntersect�on po�nts 2 and 5. At th�s cr�t�cal amb�ent temperature, the stat�on-
ary model �mpl�es that the body temperature w�ll always approach T2 whenever Ti < T2 and T5 whenever 
Ti > T2. When Ta > Ta,cr,	however,	the	ability	to	eject	heat	is	significantly	curtailed,	and	we	obtain	a	single	
steady-state solut�on at �ntersect�on po�nt 6. Thus, the body temperature w�ll always approach T6 for any 
�n�t�al value of Ti. In most pract�cal cases, the upper branch of steady-state solut�ons corresponds to tem-
peratures	in	excess	of	the	material	flame	temperature,	and	ignition	will	occur	before	those	conditions	can	



12

be atta�ned. Therefore, the upper branch serves as a nonphys�cal mathemat�cal attractor only. In real�ty, 
the stat�onary model neglects all trans�ent effects and �s only appl�cable to storage problems where Ti �s 
well below the �ntermed�ate steady-state solut�on. It cannot be used to rel�ably pred�ct a safe assembly 
temperature.

There	are	certain	mathematically	significant	conclusions	of	fundamental	importance	to	be	noted	
from th�s qual�tat�ve �nspect�on of the stat�onary react�on-d�ffus�on equat�on:

•	 At	least	one	steady-state	solution	exists	for	any	finite	value	of	physical	parameters	when	Ta > 0.

• A mult�pl�c�ty of steady-state solut�ons may ex�st whenever 0 < Ta < Ta,cr. When Ta < Ta,cr, the body of 
react�ng mater�al w�ll e�ther tend to a stable lower steady-state temperature below the �gn�t�on po�nt 
or to an upper steady state temperature above the �gn�t�on temperature. The cr�t�cal mater�al assembly 
temperature, Ti,cr, demark�ng the two poss�ble responses can only be roughly est�mated us�ng the unsta-
ble �ntermed�ate steady state solut�on branch. Accurate determ�nat�on of Ti,cr requ�res cons�derat�on of 
the fully trans�ent react�on-d�ffus�on equat�on.

• When Ta = Ta,cr,	two	steady	state	solutions	exist.	The	lower	solution	corresponds	to	the	first	bifurca-
t�on po�nt at the �ntersect�on po�nt of the lower and �ntermed�ate steady-state branches, and the upper 
steady-state temperature exceeds the value requ�red for �gn�t�on.

• When Ta > Ta,cr, only one solut�on ex�sts and the body w�ll always tend to the upper steady-state branch, 
�n wh�ch case �gn�t�on �s assured.

The character�st�c behav�or of the steady-state solut�on �s also dependent on var�at�ons �n the value 
of λ.13 If λ �s small, a un�que solut�on always ex�sts. If λ	 is	sufficiently	large,	multiple	solutions	exist	
whenever Ta < Ta,cr. When Ta > Ta,cr, a un�que solut�on ex�sts for any value of λ. The trans�t�onal value of λ 
above	which	multiplicity	first	occurs	is	denoted	as	λtr. When U = 0, the trans�t�onal value of λ above wh�ch 
multiplicity	first	occurs	is	denoted	as	λ′.

2.2  Numerical Methodology

The poss�b�l�t�es for construct�ng analyt�cal solut�ons to the stat�onary react�on-d�ffus�on equat�on 
�n the d�mens�onless set of var�ables are extremely l�m�ted for even the s�mplest shaped reg�ons. Thus, 
numer�cal methods are requ�red to obta�n accurate solut�ons and rel�able pred�ct�on of the cr�t�cal param-
eter	values.	The	mathematical	object	of	consideration	is	the	solution	set	{(u,U, λ)} to the second-order 
nonl�near ord�nary d�fferent�al equat�on for arb�trary shape factor n

	 d u
d

n du
d

e u
2

2
1 0 0 1

ξ ξ ξ
λ ξ+ + = ≤ ≤− 		,											 	 (29)

subject to the follow�ng boundary cond�t�ons at the ax�s of symmetry and the body surface:
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	 du
d

du
dξ ξξ ξ= =

=
0 1

0												and												 ++ −( ) =Bi u Us 0 , 	 (30)

where us �s the d�mens�onless temperature at the body surface.

2.2.1  reduction to first-order oDe system

 The	numerical	solution	of	equation	(29)	is	facilitated	by	reduction	to	a	first-order	system	of	dif-
ferential	equations.	By	defining	u1 = u and u2 = du1/dξ,		for	example,	we	obtain	the	first-order	system

	

du
d

u

du
d

n u e u

1
2

2
2

1 1

ξ

ξ ξ
λ

=

= − − − . 	 (31)

Note that th�s system �s nonautonomous s�nce ξ appears expl�c�tly �n the denom�nator, and there �s 
an apparent s�ngular�ty at the or�g�n, even though a solut�on must ex�st at that po�nt. The s�ngular�ty can be 
removed, however, by observ�ng that when ξ approaches zero,

	 ′ ( ) = ′′( ) =
′ ( ) − ′ ( ) ≈

′ ( )
→

u u
u u u

2 1
0

1 1 10
ξ ξ

ξ
ξ

ξ
ξξ

lim == u2
ξ

, 	 (32)

s�nce u1′	(0)	=	0.	This	approximation	may	then	be	used	to	eliminate	u2	in	equation	(31)	as	ξ → 0:

	
du
d

n du
d

e u2 2 1 1 0
ξ ξ

λ ξ= − − →− 							as		 , 	 (33)

wh�ch g�ves

	
du
d n

e u2 1
1

01
ξ

λ ξ=
+

→− 							as		 . 	 (34)

Thus,	we	may	redefine	the	first-order	system,	equation	(31),	in	piecewise	form	as

	

du
d

u

du
d

n
e u

1
2

2

1
1

1

ξ

ξ

λ ξ

=

=
−

+
≤− 		,														 ςς

ξ
λ ξ ς− − >










−n u e u
2

1 1 		,									
	 (35)

where ζ	is	a	finite	value	very	close	to	zero.	Transformation	of	the	boundary	conditions	defined	by	equation	
(30)	yields	the	relations:
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	 u U u Bi u1 1( ) = − ( )2 1 												and												 22 0 0( ) = . 	 (36)

2.2.2  Disjointedness and Redefinition

	The	first-order	system,	equation	(35),	with	boundary	conditions,	equation	(36),	defines	a	nonlin-
ear two-po�nt boundary value problem wh�ch may be solved us�ng var�ous soph�st�cated path-follow�ng 
methods.	A	serious	numerical	difficulty	arises,	however,	when	the	value	of	λ �ncreases beyond λ′ and the 
ext�nct�on po�nt—�.e., the upper l�m�t po�nt �n the b�furcat�on d�agram—�s moved �nto the phys�cally unac-
ceptable doma�n of negat�ve U values.13,14 In th�s case, the upper and lower branches of solut�ons become 
d�sjo�nt �n the phys�cally acceptable reg�on where U > 0. Furthermore, Balakr�shnan has demonstrated that 
there can be no solut�ons w�th bounded der�vat�ves �n the case U < 0 for wh�ch u(r) changes s�gn �n the 
region	0	≤	ξ	≤	1.	10

 A stra�ghtforward approach for mak�ng a connect�on between the upper and lower branches of 
solut�on curves �n the U < 0 reg�on �s to s�mply sw�tch off the source term.10 Mathemat�cally, th�s may be 
formally accompl�shed through �nclus�on of the Heav�s�de funct�on, H(u), as a mult�pl�cat�ve factor to the 
source term, �n wh�ch case,

	
d u
d

n du
d

H u e u
2

2
1 0 0

ξ ξ ξ
ξ+ + ( ) = ≤ ≤−λ 		,											 11 ,	 (37)

where

	
H u u

H u
( ) = >

( ) =

1 0

0

		,													

		,								

,

					u ≤ 0 . 	 (38)

Thus, the d�sjo�ntedness may be removed and the system made autonomous by �ntroduc�ng the 
new var�able u3 = ξ	and	redefining	the	piecewise	first-order	system,	equation	(31),	as	follows:
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=
ξ

	 (39)

w�th the boundary cond�t�ons

	 u U u Bi u1 21 0 0( ) = − ( ) ( ) =2 1 		,											 		,							and									 3u 0 0( ) = . 	 (40)
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2.2.3  Path-following Method

A numer�cal procedure �s now needed to path follow the solut�on curves for the stat�onary thermal 
ignition	model.	Standard	path-following	techniques	(viz.,	piecewise	linear	or	predictor-corrector	methods)	
are ava�lable to handle th�s problem,15−22 but we shall develop a more stra�ghtforward approach based on 
direct	numerical	integration	of	the	first-order	system,	equation	(39),	with	boundary	conditions,	equation	
(40).	Although	this	procedure	will	lack	the	sophistication	of	standard	methodologies,	it	will	be	seen	to	
be	an	efficient	and	highly	effective	means	for	constructing	accurate	bifurcation	branch	diagrams	for	the	
steady-state �gn�t�on problem.

The	central	technical	difficulty	is	that	we	are	faced	with	a	two-point	boundary	value	problem,	since	
u1(0)	=	u(0),	the	dimensionless	center-point	temperature,	is	not	known	a	priori.	Otherwise,	the	system	of	
equat�ons could be read�ly solved as an �n�t�al value problem us�ng convent�onal numer�cal �ntegrat�on 
techn�ques. Therefore, a s�mple ad hoc procedure has been adapted �n wh�ch the solut�on branches �n the  
{u(0),U} plane, w�th U as the b�furcat�on parameter, can be constructed from the solut�on of an equ�valent 
�n�t�al value problem.

The procedure �s as follows:

• Take uO as an �ndependent parameter for the d�mens�onless center-po�nt body temperature such that

	 0 ≤ ≤u uO O,max . 	 (41)

• Spec�fy a value for λ and use a standard fourth-order Runge-kutta algor�thm to numer�cally solve sys-
tem	equation	(39)	as	an	initial	value	problem	from	ξ = 0 →	1	with	the	initial	conditions	defined	by

	 u u uO1 20 0 0( ) = ( ) =		,											 		,						and										 3u 0 0( ) = . 	 (42)

• Use the computed boundary values u1(1)	and	u2(1)	from	the	preceding	step	along	with	the	specified	
B�ot number to compute the correspond�ng body surface temperature from the boundary cond�t�on

	 U u u Bi= ( ) + ( )1 1 2 1 . 	 (43)

• Repeat the procedure above for �ncremental values of uO over the range 0 → u0,max and path follow the 
solut�on branch u(0)	=	uO versus the b�furcat�on parameter U.

2.3  Validation

An extens�ve numer�cal �nvest�gat�on of the stat�onary model was prev�ously carr�ed out and thor-
oughly documented by Balakr�shnan us�ng convent�onal path-follow�ng tools,10 and h�s results are now 
adopted as a benchmark val�dat�on standard for the ad hoc path-follow�ng procedure descr�bed above. 
Thus,	 the	 solution	sets	{(u,U,λ)} are exam�ned and val�dated for the pr�nc�pal centrosymmetr�c sol�ds 
(n = 0, 1, 2), keep�ng U as the b�furcat�on parameter and allow�ng λ and Bi to vary.

For �llustrat�ve purposes, representat�ve b�furcat�on d�agrams were computed us�ng the above path-
follow�ng procedure for var�ous values of λ,	assuming	an	infinite	Biot	number.	These	results	are	shown	in	
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figures	2,	3,	and	4	for	n = 0, 1, 2, respect�vely. It �s found that these pred�ct�ons are �n excellent agreement 
with	Balakrishnan’s	calculations,	which	were	obtained	using	more	sophisticated	methods	and	standard	
algor�thms.23 Both methods y�eld �dent�cal values of λtr and λ′ for all three geometr�c shapes, as �nd�cated 
in	the	accompanying	figures,	and	the	corresponding	critical	dimensionless	ambient	temperatures	Ucr are 
�n complete accord.

U
-0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.5

1.0
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2.0
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3.5

4.0 Bifurcation Diagram: n=0, Bi

=3

tr=4.6185

=6

'=6.9560

=8

u(0)

Figure	2.		Computed	bifurcation	diagram	for	the	infinite	slab	(n = 0) w�th Bi → ∞.

As a further val�dat�on step, comparat�ve calculat�ons were completed for Ucr and u(0)	for	the	prin-
cipal	centrosymmetric	solids	(n = 0, 1, 2), keep�ng U as the b�furcat�on parameter and allow�ng λ and Bi 
to vary. The var�at�on �n the cr�t�cal parameters aga�nst λ	are	shown	in	figures	5	and	6	under	the	constraint	
Bi → ∞. The var�at�on �n the cr�t�cal parameters aga�nst Bi	are	shown	in	figures	5	and	6	under	the	constraint	
λ = 50. These results are all �n excellent agreement w�th prev�ously establ�shed theoret�cal pred�ct�ons. For 
infinite	Bi, �t �s observed that Ucr and u(0)	both	decrease	at	the	ignition	point	with	increasing	λ.	For	a	fixed	
value of λ, we observe that Ucr and u(0)	both	increase	with	increasing	Bi and asymptot�cally approach 
l�m�t�ng values as Bi → ∞	(figures	7	and	8).

Because the pred�ct�ons were found to be prec�se and accurate, under all c�rcumstances, �n com-
par�son to establ�shed theoret�cal calculat�ons, �t �s asserted that the results from the proposed ad hoc 
path-follow�ng method are fully val�d and may be used as a rel�able benchmark standard for the stat�onary 
model. Thus, results of the theoret�cal �nvest�gat�ons to follow may be referred to th�s basel�ne w�th a h�gh 
degree	of	confidence.
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Figure	3.		Computed	bifurcation	diagram	for	the	infinite	cylinder	(n = 1) w�th Bi → ∞.

U
-0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Bifurcation Diagram: n=2, Bi

=15

tr=18.9349

=25

'=29.5639

=31

u(0)

Figure	4.		Computed	bifurcation	diagram	for	the	sphere	(n = 2) w�th Bi → ∞.
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F�gure 5.  Var�at�on of Ucr aga�nst λ for n = 0, 1, 2 w�th Bi → ∞.
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F�gure 6.  Var�at�on of u(0)	against	λ for n = 0, 1, 2 w�th Bi → ∞.
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F�gure 7.  Var�at�on of Ucr aga�nst Bi for n = 0, 1, 2 w�th λ = 50.
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F�gure 8.  Var�at�on of u (0)	against	Bi for n = 0, 1, 2 w�th λ = 50.
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In most pract�cal cases, the value of λ �s orders of magn�tude h�gher than the typ�cal range assoc�-
ated w�th λtr and λ′. Flammable mater�als of common �nterest, for �nstance, w�ll normally fall �n some 
range around λ	≈	106. Therefore, the b�furcat�on d�agrams for the pr�nc�pal centrosymmetr�c sol�ds have 
been constructed for λ = 104, λ = 106, and λ = 108 w�th Bi → ∞,	and	these	results,	summarized	in	figures	
9−11, w�ll be used as a general frame of reference �n the theoret�cal �nvest�gat�ons of the nonstat�onary 
model to follow.
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F�gure 9.  Computed b�furcat�on d�agrams w�th λ = 104 and Bi → ∞.
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F�gure 10.  Computed b�furcat�on d�agrams w�th λ = 106 and Bi → ∞.
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F�gure 11.  Computed b�furcat�on d�agrams w�th λ = 108 and Bi → ∞.
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3.  NoNsTaTIoNarY MoDel

	 Real	world	problems,	 such	as	 the	 safe	 assemblage	of	hot	 reactive	materials	 and	 so-called	 ‘hot	
spot’	 ignition,	where	 localized	high	 temperature	regions	expand	and	 initiate	 thermal	explosion,	can	be	
significantly	dependent	on	the	contribution	of	transient	heating	processes.	Thus,	the	fate	of	a	self-heating	
mater�al depends upon c�rcumstances of assembly and external env�ronment, and the most �nd�scr�m�nate 
case requ�res cons�derat�on of the fully trans�ent react�on-d�ffus�on equat�on.

 Exact analyt�cal construct�ons for the general�zed nonstat�onary model have proved evas�ve, how-
ever, and progress along these l�nes has been ma�nly l�m�ted to less general problem formulat�ons der�ved 
from	simplifications	to	the	nonlinear	Arrhenius	rate	term.	The	elementary	treatment	of	Frank-Kamenetskii,	
for example, reveals sal�ent features of the solut�on,5 and gray and Harper have developed more exact 
analyt�cal representat�ons us�ng a quadrat�c approx�mat�on for the Arrhen�us temperature dependence.24,25 
More r�gorous analyt�cal work us�ng expans�on procedures �n the reg�on ε <<1 has prov�ded accurate 
self-heat�ng and explos�on solut�ons over a t�me span rang�ng from �n�t�at�on to complet�on.26–29 For a 
complete comprehens�ve treatment val�d over the ent�re parameter range, however, numer�cal �ntegrat�on 
techn�ques are requ�red.

 As recourse, we embrace a numer�cal approach to the Burnell-grahamEagle-gray-Wake form of 
the trans�ent react�on-d�ffus�on problem for class A shapes, as der�ved �n sect�on 1 and repeated here for 
conven�ence:
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2          in    Ω 	 (44)

	
∂
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ξ
+ −( ) = 0						on		 Ω ,	 (45)

where we have �ntroduced the parameter S = λe–1/u to represent the source term.

 In proceed�ng, �t �s recogn�zed that the rel�ab�l�ty of computat�onal solut�ons to part�al d�fferent�al 
equat�ons �s h�ghly dependent on the �ntegr�ty of the numer�cal scheme and the attent�on to deta�l and 
degree of care assoc�ated w�th �ts �mplementat�on. Therefore, the numer�cal methodology and �mplemen-
tat�on procedures to be used �n th�s study are thoroughly expla�ned, developed, and val�dated as a major 
po�nt of departure.

3.1  Numerical Methodology

A numer�cal solut�on of the trans�ent react�on-d�ffus�on equat�on, wh�ch �s parabol�c �n t�me and 
elliptic	in	space,	consists	of	a	finite	set	of	numbers	from	which	the	spatial	distribution	of	the	dependent	
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var�able can be constructed at some �nstant �n t�me. Thus, a numer�cal d�scret�zat�on methodology rests on 
the	construction	of	a	set	of	linear	algebraic	equations	for	unknown	dependent	variable	values	at	a	finite	
number of spat�al locat�ons—�.e., nodes or gr�d po�nts—and the prescr�pt�on of an algor�thm for solv�ng 
the algebra�c system and advanc�ng the solut�on over d�screte �ncrements of t�me.

	Systematic	 spatial	 discretization	 is	 accomplished	 by	 introducing	 finite	 difference	 expressions	
whereby the value of the dependent var�able at each node �s related to the values at a small number of 
neighboring	grid	points,	only.	The	number	of	neighboring	values	included	in	the	finite	difference	expres-
s�on, commonly referred to as the nodal support, determ�nes the numer�cal accuracy of the d�screte spat�al 
der�vat�ve. A common systemat�c approach for temporal d�scret�zat�on, wh�ch rel�es on the one-way trans-
m�ss�on of �nformat�on �n t�me, �s to s�mply relate the �n�t�al dependent var�able d�str�but�on to an evolved 
d�str�but�on over some small pos�t�ve t�me �ncrement.

3.1.1  generalized Discretization equation

3.1.1.1  Interior Nodes.  S�nce very h�gh order accuracy �s not essent�al for th�s problem, the spa-
t�al der�vat�ves �n the d�mens�onless react�on-d�ffus�on equat�on are approx�mated as three-node support 
finite	difference	expressions	via	truncated	Taylor	series.	For	equally	spaced	grid	points,	the	Taylor	series	
expans�on about any node i may be truncated after the th�rd term to y�eld the follow�ng well known central 
d�fference approx�mat�ons exh�b�t�ng second-order spat�al accuracy:
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 Introduct�on of these relat�ons �nto the cont�nuum equat�on and temporal d�scret�zat�on over a 
small t�me �ncrement ∆τ produces a general�zed d�scret�zat�on equat�on centered on each �nter�or node i:
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Note that subscr�pts and superscr�pts denote spat�al and temporal �nd�ces, respect�vely, and that f �s 
a	weighting	factor	(0	≤ f ≤	1),	which	determines	the	relative	influence	of	initial	and	final	time	step	values	
dur�ng the temporal evolut�on process.

	For	certain	specific	values	of	the	weighting	factor	f, the d�scret�zat�on equat�on reduces to one of 
the well known �ntegrat�on schemes for parabol�c part�al d�fferent�al equat�ons, as summar�zed �n table 3.
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Table 3.  Relat�onsh�p between we�ght�ng factor and �ntegrat�on scheme.

Weighting factor, f scheme
0.0 Fully expl�c�t
0.5 Crank-N�cholson
1.0 Fully �mpl�c�t

 The fully expl�c�t scheme expresses the value of the unknown dependent var�able at node i and 
future t�me step m+1	explicitly	in	terms	of	known	neighboring	values	at	the	initial	time	step	m. Conversely, 
the fully �mpl�c�t scheme expresses the value of the unknown dependent var�able at node i and future t�me 
step m+1	implicitly	in	terms	of	the	unknown	neighboring	values	at	the	future	time	step	m	+	1.	As	a	middle	
path, the Crank-N�cholson scheme expresses the value of the unknown dependent var�able at node i and 
future t�me step m+1	partly	in	terms	of	known	neighboring	values	at	the	initial	time	step	m and partly �n 
terms of the unknown ne�ghbor�ng values at the future t�me step m	+	1.

 It should be po�nted out that the fully expl�c�t scheme �s prone to numer�cal �nstab�l�t�es and requ�res 
the ut�l�zat�on of extremely small t�me �ncrements to obta�n phys�cally real�st�c results. It �s, for all prac-
t�cal purposes, not useful for ser�ous calculat�ons. The fully �mpl�c�t scheme, on the other hand, has the 
d�st�nct advantage of be�ng uncond�t�onally stable and w�ll y�eld phys�cally accurate results over relat�vely 
large t�me �ncrements. Thus, �t �s often ut�l�zed as a means of �ncorporat�ng computat�onal robustness. For 
best accuracy, the Crank-N�cholson scheme �s the super�or cho�ce, prov�ded the t�me �ncrement rema�ns 
relat�vely small.

 Here, the d�scret�zat�on equat�ons w�ll be developed �n the most general poss�ble form w�th the 
we�ght�ng factor reta�ned as an arb�trary parameter such that the t�me �ntegrat�on scheme may be selected 
as a matter of cho�ce �n the study. For pract�cal use, �t �s advantageous to mult�ply the general�zed d�scret�-
zation	equation	(48)	by	∆ξ and regroup common terms:
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or
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This	result	applies	to	all	interior	nodes	(i = 2,…, N-1).

3.1.1.2.  boundary Nodes.		Closure	of	the	computational	domain	requires	specification	of	bound-
ary cond�t�ons at the symmetry ax�s and at the external surface ∂Ω and construct�on of d�scret�zat�on equa-
t�ons val�d at the correspond�ng boundary nodes.

The development for the symmetry boundary cond�t�on, ∂u/∂ξξ=0=0, �s stra�ghtforward and 
d�rectly follows from a forward d�fference approx�mat�on,
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from	which	we	deduce	the	desired	discretization	equation	at	the	symmetry	node	(i = 1),
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2

1+ += .	 (52)

	As	a	first	step	in	the	development	of	a	discretization	equation	for	the	surface	boundary	node,	con-
s�der a 3-node support centered at i = N	where	a	fictitious	nodal	value	u* has been �ntroduced as �llustrated 
in	figure	12.	Then,	introduction	of	the	central	difference	approximation	for	the	derivative	in	the	boundary	
condition,	equation	(45),	gives	the	expression:

uN-1

Fictitious
Node

uN u*uN-1

Fictitious
Node

uN u*

Figure	12.		Computational	grid	structure	at	external	boundary,	including	fictitious	node.
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which	may	be	solved	for	the	fictitious	dimensionless	temperature	u*:

	 u Bi U u uN N* .= −( ) + −2 1∆ξ 	 (54)

Form�ng the central d�fference approx�mat�on for the second spat�al der�vat�ve at the surface boundary 
y�elds the result
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and el�m�nat�on of u*	using	equation	(54)	provides	the	relationship
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 Now, we allow U	to	be	a	time	dependent	variable,	introduce	equations	(53)	and	(56)	into	the	reac-
tion-diffusion	equation	(44),	and	discretize	over	a	small	time	increment	∆τ to produce a general�zed d�s-
cret�zat�on equat�on centered on the surface boundary node N:
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Note �n th�s case that the source term has been halved, s�nce the boundary cell volume external to 
the	computational	domain	is	half	that	of	an	interior	cell.	For	practical	purposes,	we	multiply	equation	(57)	
through by ∆ξ and regroup common terms to obta�n:

	

∆
∆

∆
∆

∆ξ
τ

ξ
τ

ξ
ξ







− 





= +
+u u f Bi

nBi
N
m

N
m

N

1 2






 + −( ) +











+U f Bi
nBi

Um

N

m1 1 2 ∆ξ
ξ

																			 f 2 2
+







+ −( )



−

+
∆ ∆ξ ξ

u fN
m

1
1 1  −

+( ) +








−

+u f
Bi nBi

uN
m

N
N
m

1
12 1 ∆

∆
∆ξ

ξ
ξ

ξ

																			 − −( ) +( ) +



1

2 1
f

Bi nBi

N

∆
∆

∆ξ
ξ

ξ
ξ




 + + −( )+u f S f SN

m
N
m

N
m∆ ∆ξ ξ

2
1

2
1 	 (58)

or
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3.1.1.3  source Term linearization.  The object�ve of the d�scret�zat�on procedure �s to reduce 
the part�al d�fferent�al equat�on problem to a set of l�near algebra�c equat�ons, wh�ch may be effect�vely 
attacked us�ng powerful l�near algebra techn�ques. Thus, an add�t�onal l�near�zat�on approx�mat�on must 
be �ntroduced for the Arrhen�us source term �n the preced�ng development, s�nce �t conta�ns a nonl�near 
exponent�al funct�on, S = λe–1/u .

The s�mplest approach �n th�s case �s to treat the source term �n a fully expl�c�t manner such that

	 S S i Ni
m

i
m+ = =1 1								;				 , , .… 	 (60)

Ut�l�zat�on of th�s approx�mat�on �s stra�ghtforward and requ�res no further explanat�on.

 An alternat�ve and somewhat more soph�st�cated method rel�es on an expans�on of the form
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= , 	 (61)

wh�ch may be temporally d�scret�zed to obta�n a l�near�zed representat�on for the source term at gr�d po�nt 
i:
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Tak�ng the �nd�cated der�vat�ve generates the follow�ng l�near algebra�c express�on �n terms of ui
m+1:
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Substitution	of	this	expression	into	the	previously	developed	discretization	equations	(50)	and	(59)	yields	
the follow�ng forms:
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Discretization	equation	(52)	at	the	symmetry	node	(i = 1) �s unaffected by th�s l�near�zat�on procedure and 
requires	no	modification.

3.1.2  solution algorithm

Now that the numer�cal solut�on has been reduced to a system of l�near algebra�c equat�ons, we 
find	it	advantageous	to	adopt	a	linear	vector	space	notation.	Application	of	the	preceding	discretization	
equat�ons at each nodal po�nt, for �nstance, y�elds a system of equat�ons that may be compactly expressed 
us�ng the matr�x equat�on

	 KU LU Mm m+ + + =1 0 , 	 (66)

where K, L, and M are N × N	square	matrices	containing	numerical	coefficients	and	U �s an N-element 
column vector conta�n�ng the dependent var�able values at the gr�d po�nts. As before, superscr�pts denote 
temporal	indices.	The	general	solution	of	equation	(66)	at	time	step	m+1	follows	immediately	and	has	the	
bas�c form:

	 U K LU Mm m+ −= +





1 1 , 	 (67)

where K-1 �s the matr�x �nverse of K.

	Equation	 (67)	may	be	 solved	by	 a	 number	 of	 algorithms,	 but	 the	most	 convenient	 and	 simple	
follows from the standard gauss�an el�m�nat�on procedure. Because the non-zero elements of K al�gn 
themselves along the central three d�agonals of the matr�x, the el�m�nat�on process turns �nto a part�cularly 
simple	recurrence	sequence.	This	method	is	commonly	referred	to	as	the	TDMA	(Tri-Diagonal	Matrix	
Algor�thm).30

	To	implement	TDMA,	we	first	proceed	by	writing	the	generalized	discretization	equation	in	the	
form
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where
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	Formal	 derivation	 of	 TDMA	may	 be	 found	 in	 standard	 textbooks	 on	 numerical	 analysis	 (see	 
ref. 30, for �nstance). The algor�thm procedures are summar�zed as follows:

• Start the recurrence process by calculat�ng the parameters.

	 P b
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d
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1
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= . 	 (73)

• Cont�nue the TDMA recurrence sequence over the range i = 2, 3, …, N us�ng the relat�ons
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• At the other end of the sequence, note that bN = 0, wh�ch leads to PN = 0. Hence,

	 u QN
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N
+ =1 . 	 (75)

•	 The	remaining	unknown	grid	values	may	then	be	determined	by	marching	backward	(i = 
  N-1, …, 1) us�ng the back subst�tut�on relat�on
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3.2  Validation

 The numer�cal methodology for nonstat�onary thermal �gn�t�on was �mplemented �n FORTRAN 
programm�ng language to enable automated mach�ne process�ng on a d�g�tal computer platform. As a 
val�dat�on measure, comparat�ve basel�ne calculat�ons were then performed w�th respect to publ�shed 
solut�ons �n the peer-rev�ewed l�terature. For s�mpl�c�ty, these calculat�ons were all performed assum�ng 
an	initially	uniform	temperature	distribution	within	the	reactive	material	as	defined	by	the	relation

	 u U Cξ, ,0( ) = + 	 (77)

where U �s the d�mens�onless amb�ent temperature and C �s an arb�trary constant represent�ng an �n�t�al 
perturbat�ve d�splacement from thermal equ�l�br�um.

 g�ven values of λ, U, and Bi, our pr�nc�pal �nterest becomes a determ�nat�on of the cr�t�cal value 
for C, denoted by Ccr, a threshold value wh�ch d�st�ngu�shes between those �n�t�al cond�t�ons that converge 
to an upper steady state branch assoc�ated w�th �gn�t�on and those that converge to a non-�gn�t�ng stable 
lower branch. Val�dat�on of the nonstat�onary numer�cal model �s establ�shed through d�rect compar�son 
of pred�cted values for Ccr w�th the publ�shed results of Weber et al.4

 Val�dat�on calculat�ons were performed for all three pr�nc�pal centrosymmetr�c sol�ds us�ng Crank-
Nicholson	time	integration	(f	=	0.5)	with	the	controlling	physical	parameters	defined	as	λ = 106, U = 0.05, 
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and Bi → ∞. Cr�t�cal �n�t�al threshold temperatures were determ�ned through tr�al and error, and represen-
tative	transients	for	the	dimensionless	centerline	temperature	are	shown	in	figures	13,	14,	and	15	for	n = 0, 
n = 1, and n = 2, respect�vely. Note that the centerl�ne temperature d�rectly corresponds to the max�mum 
value �n the mater�al due to the �mposed phys�cal symmetry for the problem.
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F�gure 13.  Centerl�ne temperature trans�ents for n	=	0	(λ = 106 and Bi → ∞).

 Numer�cally pred�cted threshold values for �gn�t�on were Ccr = 0.0043, Ccr = 0.0083, and Ccr = 0.0101 
for the planar, cyl�ndr�cal, and spher�cal geometr�es, all of wh�ch are �n exact agreement w�th the publ�shed 
results of Weber et al.4	The	stable	upper	steady	state	branches	are	not	displayed	in	these	figures	since	it	is	
several orders of magn�tude larger than the lower steady state branches. It should be po�nted out �n pass-
�ng, moreover, that the upper branch serves only as a mathemat�cal attractor and has no pract�cal phys�cal 
�nterpretat�on, s�nce �gn�t�on would occur long before the upper branch could be atta�ned. For fundamental 
demonstration	purposes,	an	upper	steady	state	branch	for	an	igniting	spherical	geometry	case	(C = 0.011) 
is	shown	in	figure	16.	The	ignition	delay,	the	period	of	time	required	for	the	initial	condition	to	evolve	to	
the upper steady state branch, may be d�rectly �nferred from these types of graphs.

	The	numerical	methodology	was	also	evaluated	for	finite	surface	convective	heat	transfer	rates	to	
val�date proper response to arb�trary env�ronmental boundary cond�t�ons. These calculat�ons were per-
formed	for	the	planar	slab	geometry	using	Crank-Nicholson	time	integration	(f = 0.5) w�th the controll�ng 
physical	parameters	defined	as	λ = 106 and U = 0.03. The result�ng var�at�on �n Ccr as a funct�on of B�ot  
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F�gure 14.  Centerl�ne temperature trans�ents for n	=	1	(λ = 106 and Bi → ∞).
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F�gure 15.  Centerl�ne temperature trans�ents for n	=	2	(λ = 106 and Bi → ∞).



33

0.0 0.2 0.4 0.6 0.8 1.0
0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

2.0E+05

2.2E+05

2.4E+05

u m
ax

0.0110
c

= 106

U = 0.05
Bi

spherical geometry
u( ,0) = U + C

Upper Steady State Branch
(non-physical mathematical attractor)

F�gure 16.  Upper steady state branch for n	=	2	(λ = 106 and Bi → ∞).

number	is	shown	in	figure	17,	with	the	exact	numerical	values	tabulated	as	an	inset	to	the	graph.	These	
results are also �n excellent agreement w�th the publ�shed data of Weber et al.,4 and demonstrate that the 
�n�t�al cond�t�on threshold for �gn�t�on becomes relat�vely �nsens�t�ve to changes �n Bi once �t exceeds a 
value of about 5.

	As	a	final	validation	step,	calculations	were	performed	for	a	practical	case	involving	the	self-heat-
�ng of aerated m�lk powder, wh�ch �s frequently stored �n an amb�ent temperature env�ronment �mmed�-
ately follow�ng a h�gh-temperature dry�ng procedure. Th�s part�cular case, based on an actual self-heat�ng 
fire	in	New	Zealand,31 was also analyzed by Weber et al., and the�r results are aga�n used as a comparat�ve 
basel�ne.4 The character�st�c phys�cal parameters for m�lk powder are well establ�shed, and the planar slab 
geometry was cons�dered an adequate approx�mat�on to the actual phys�cal cond�t�ons assoc�ated w�th the 
�nc�dent. The establ�shed d�mens�onless parameters for the thermal �gn�t�on model are λ = 2.88 × 1012, 
g�ven a half-w�dth of 0.2 m, and λ = 11.5 × 1012, g�ven a half-w�dth of 0.4 m, w�th U = 0.0241. Represen-
tative	transients	for	the	dimensionless	centerline	temperature	are	shown	in	figures	18	and	19	yielding	the	
cr�t�cal threshold values Ccr = 0.0058 and Ccr = 0.0044 for slab depths of 0.2 m and 0.4 m, respect�vely. 
These results are aga�n �n excellent agreement w�th publ�shed results.4

 Based on the demonstrated agreement and excellent concordance w�th establ�shed results for a 
var�ety of problem cond�t�ons, �t was concluded that the proposed numer�cal methodology had been tested 
and	validated	to	a	satisfactory	extent.	Although	not	discussed	in	specific	detail,	the	methodology	was	also	
thoroughly exerc�sed w�th both expl�c�t and �mpl�c�t source term l�near�zat�on schemes, and the result�ng  
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numer�cal pred�ct�ons were found to be completely �nsens�t�ve to the l�near�zat�on method be�ng ut�l�zed. 
On the bas�s of these extens�ve val�dat�on efforts, �t was concluded that the numer�cal methodology estab-
l�shed �n th�s study could serve as a rel�able and dependable tool for undertak�ng a thorough study of the 
cr�t�cal �n�t�al cond�t�ons for thermal �gn�t�on.
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4.  asseMblY ProbleM aND CrITICal INITIal CoNDITIoNs

With	the	establishment	of	validated	stationary	(steady-state)	and	nonstationary	(transient)	models	
for thermal �gn�t�on/explos�on, �t becomes poss�ble to undertake a jud�c�ous exam�nat�on of the so-called 
‘assembly’	problem	(see	section	1.2),	in	which	the	fate	of	a	self-heating	material	can	be	strongly	depen-
dent on �n�t�al cond�t�ons. Relevant phys�cal examples �nclude the safety of processed react�ve mater�als 
when placed �nto p�les or b�ns wh�le hot and the �n�t�at�on of explos�ves by local�zed hot spots. From a 
practical	perspective,	it	is	extremely	important	to	know	the	models’	respective	ranges	of	applicability	for	
arb�trary c�rcumstances of assembly; therefore, a deeper understand�ng of the underly�ng mathemat�cal 
structure �s h�ghly des�rable.

The central �ssue at hand �s whether the �n�t�al temperature excess �n the assembly w�ll cont�nue 
to	rise	indefinitely	or	dissipate	through	conductive	transport	and	Newtonian	cooling	to	the	surroundings.	
Of part�cular �nterest to th�s study �s the cr�t�cal demarcat�on boundary between those �n�t�al cond�t�ons 
serv�ng as an onset to �gn�t�on/explos�on and those wh�ch ult�mately decay to a self-ext�ngu�sh�ng quench 
state. For the general case of a non-un�form assembly, the trans�ent solut�on for the evolved state may be 
expected to d�splay a marked sens�t�v�ty to the spat�al concentrat�on of thermal energy at the outset, and 
cr�t�cal�ty w�ll depend on the �n�t�al temperature d�str�but�on. In th�s sect�on, we exam�ne such subtle math-
emat�cal �ssues �n deta�l by �ncorporat�ng a general�zed self-cons�stent treatment of the �n�t�al tempera-
ture d�str�but�on for the non-stat�onary model, wh�ch perm�ts d�rect compar�son of cr�t�cal�ty pred�ct�ons 
aga�nst the stat�onary model.

The purpose �s to prec�sely determ�ne the cond�t�ons under wh�ch use of the steady-state model-
�ng approach �s leg�t�mate or �lleg�t�mate, and to establ�sh deeper �ns�ght �nto the structure of the solut�on 
space. It should be noted as a warn�ng, however, that reactants are consumed �n all real systems and no true 
steady states are phys�cally poss�ble. As such, the temperature r�se accompany�ng self-heat�ng can only 
exh�b�t a max�mum before ult�mately decay�ng to amb�ent as the exotherm�c react�on approaches comple-
t�on and �s overtaken by cool�ng, even after large �ncreases assoc�ated w�th explos�ve effects, and �t �s no 
longer poss�ble to recogn�ze �gn�t�on/explos�on as a fundamental d�scont�nu�ty. Here, we have followed 
convent�onal pract�ce and neglected reactant consumpt�on by reason�ng that �f the heat of react�on �s h�gh 
enough, concentrat�on changes preced�ng the onset of a large and sudden temperature r�se, correspond�ng 
to explos�on or �gn�t�on, w�ll be negl�g�bly small. The val�d�ty of conclus�ons drawn from th�s study �s 
therefore l�m�ted by the val�d�ty of th�s bas�c underly�ng assumpt�on.

4.1  Initial Shape Profile

As part of the prev�ous val�dat�on exerc�ses �n sect�on 3, we adopted the follow�ng conven�ent 
express�on for an �n�t�ally un�form temperature d�str�but�on w�th�n the mater�al assembly:

	 u U Cξ, ,0( ) = + 	 (78)
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where U �s the d�mens�onless amb�ent temperature and C �s an arb�trary constant represent�ng the �n�t�al 
perturbat�ve d�splacement from amb�ent cond�t�ons. The pr�nc�pal object�ve �n that case, g�ven values for 
U, λ, and Bi, was determ�nat�on of the cr�t�cal value for C, denoted by Ccr,	which	defines	the	watershed	
threshold	between	those	initial	conditions	that	evolve	to	an	upper	steady-state	(i.e.,	 ignition/explosion)	
and those that evolve to a self-ext�ngu�sh�ng steady-state quench.

We	now	extend	this	basic	approach	by	introducing	a	one-parameter	shape	profile	g(ξ)	to	define	a	
general�zed nonun�form �n�t�al temperature d�str�but�on hav�ng the form

	 u U Cgξ ξ, .0( ) = + ( ) 	 (79)

Aga�n, we seek cr�t�cal values, Ccr, such that any �n�t�al cond�t�ons w�th C < Ccr	evolve	to	the	lower	(cool)	
steady state and any cond�t�ons w�th C > Ccr	evolve	to	the	upper	(hot)	steady	state.	The	initial	shape	profile	
is	defined	by	the	one-parameter	function:

	

g A

g

ξ ξ ε

ξ

ε
ε( ) = −( ) ≥

( ) →

1 0

1

	,													

		,																									ε → ∞ , 	 (80)

where ε	is	the	initial	profile	shape	factor	and	Aε �s a normal�zat�on factor for preserv�ng total heat content 
irrespective	of	profile	shape.	With	this	definition,	we	anticipate	the	existence	of	a	family	of	critical	initial	
condition	profiles	for	each	value	of	the	initial	shape	factor,	ε.

Normal�zat�on �s ach�eved through a constra�nt on the spat�al �ntegral of g(ξ) such that �t �s �nvar�-
ant w�th ε. The value of th�s �ntegral �s taken to be un�ty for conven�ence:

	 I g d= ( ) =∫ ξ ξ
0
1 1	 .	 (81)

Thus,	 substitution	 of	 equation	 (80)	 and	 execution	 of	 elementary	 integration	 steps	 yield	 the	 following	
express�on for the normal�zat�on factor:

	 Aε
ε

ε
= +1 , 	 (82)

wh�ch clearly demonstrates that Aε must decrease as ε �ncreases �n order to preserve energy content �n the 
distribution.	Normalized	initial	shape	profiles	for	representative	values	of	the	shape	factor	are	shown	in	
figure	20.	These	include	linear	(ε	=	1),	parabolic	(ε	=	2),	and	uniform	(ε = ∞) �n�t�al temperature d�str�bu-
t�ons for the three pr�nc�pal centrosymmetr�c sol�ds of �nterest to th�s study. The correspond�ng normal�za-
t�on factors are summar�zed �n table 4.

4.2  Criticality in Nonuniform assemblies

Our pr�nc�pal concern �s to extend the scope of analys�s to nonun�form assembl�es and determ�ne 
the var�at�on �n Ccr w�th U,	provided	there	are	fixed	values	of	λ and Bi, us�ng ε as an �ndependent param-
eter for �n�t�al heat concentrat�on. We may reasonably ant�c�pate from phys�cal �ntu�t�on the follow�ng  
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Figure	20.		Normalized	initial	shape	profiles	for	representative	values	of	ε.

Table	4.		Summary	of	profile	shape	factors	and	normalization	factors.

Profile Shape Factor (ε) Normalization factor (Aε)
1		(linear) 2
2		(parabolic) 3/2
∞		(uniform) 1

functional	dependence:	(1)	Ccr w�ll decrease as U	increases;	(2)	Ccr w�ll decrease as λ	increases;	and	(3)	
Ccr w�ll decrease as Bi decreases. It �s �ntu�t�vely obv�ous, however, that AεCcr would better serve as the 
parameter	of	choice	in	defining	the	critical	threshold,	since	Aε exh�b�ts a strong dependence on the value of 
ε. Prev�ous cursory numer�cal �nvest�gat�on has supported the bas�c preced�ng conclus�ons,4 and the �ntent 
here �s to buttress th�s argument w�th add�t�onal computat�onal results. An add�t�onal outcome from the 
extended numer�cal analys�s �s �mproved understand�ng and deeper �ns�ght �nto the mathemat�cal structure 
of the solut�on sets to the model problems.

To	implement	this	numerical	study,	it	was	first	necessary	to	construct	an	automated	search	proce-
dure by wh�ch the nonstat�onary model could be used to determ�ne Ccr for arb�trary values of U, g�ven 
fixed	values	for	λ, Bi, and ε. Th�s was accompl�shed �n pract�ce by assum�ng a very small value for C  
and comput�ng a fully evolved temporal solut�on for a selected value of U us�ng the coded numer�cal 
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methodology for the nonstat�onary model. If the long-term solut�on �s found to evolve to the lower steady 
state solut�on, the results are recorded, C �s g�ven a small �ncremental �ncrease, and the calculat�on �s auto-
mat�cally repeated aga�n and aga�n. The value of Ccr �s ult�mately resolved when a fully evolved solut�on 
to the upper steady state attractor �s obta�ned. By start�ng w�th a very small value for U and repeat�ng the 
above procedure w�th �ncrementally �ncreas�ng values, �t �s poss�ble to fully construct the cr�t�cal �n�t�al 
threshold curve out to the b�furcat�on po�nt, Ucr.

The above automated search procedure was �mplemented �n computer code, and calculat�ons were 
then carr�ed out for the three pr�nc�pal centrosymmetr�c sol�ds g�ven λ = 104, 106, 108, assum�ng Bi → ∞. 
Although th�s crude search procedure proved effect�ve and accurate for the purpose at hand, �t �s obv�ously 
inefficient	and	computationally	expensive;	the	exact	computing	time	being	dependent,	of	course,	on	the	
s�ze of the step �ncrements and the speed of the m�croprocessor. In pract�ce, �t was necessary to balance the 
need	for	fidelity	and	resolution	against	the	time	required	to	construct	a	solution.	Construction	of	a	single	
threshold curve of sat�sfactory accuracy, for �nstance, would normally take several days of cont�nuous run 
t�me on a ded�cated personal computer.

Computational	results	for	the	nonuniform	assembly	problem	are	shown	in	figures	21–38,	which	
summarize	criticality	characteristics	for	the	planar	slab,	infinite	cylinder,	and	sphere	using	linear	(ε = 1), 
parabolic	(ε	=	2),	and	uniform	(ε = ∞) �n�t�al temperature d�str�but�ons. For each value of λ and geometry 
shape, the cr�t�cal threshold curves of u(0)	=	U	+	Ccr g (0)	versus	U as well as the quench state curve u (0)	
versus U	for	each	of	the	three	simple	geometric	configurations	under	consideration.	For	purposes	of	com-
par�son, stable lower and unstable �ntermed�ate branch solut�ons of the stat�onary model are also d�splayed 
on these graphs as dashed l�nes. The correspond�ng curves for AεCcr versus U are also d�splayed s�nce they 
will	prove	to	be	of	significant	importance	in	the	analysis	to	follow.

The stable upper steady state curve �s not shown s�nce �t �s several orders of magn�tude larger than 
the cr�t�cal�ty and lower steady state branches and �s of no phys�cal consequence other than serv�ng as a 
mathemat�cal attractor for �gn�t�on.

The mathemat�cal feature of essent�al �mportance and �nterest to be extracted from these results 
is	 the	 fact	 that	 the	exact	criticality	 threshold,	as	predicted	by	 the	nonstationary	model,	 is	 significantly	
d�fferent from the unstable �ntermed�ate steady state, as pred�cted by the stat�onary model. Although the 
models y�eld �dent�cal pred�ct�ons for the b�furcat�on po�nt cr�t�cal amb�ent temperature, Ucr, the �gn�t�on 
threshold for assembly of �n�t�ally hot mater�als �s found to be cons�derably lower than that deduced from 
the stat�onary model. Th�s has ser�ous �mpl�cat�ons s�nce the w�dely held consensus v�ew has always been 
that the unstable �ntermed�ate steady-state solut�on prov�des an adequate est�mate for safe assembly of 
potent�ally hazardous self-heat�ng mater�als. It �s clear from these results, however, that th�s �s a severely 
flawed	postulate,	the	careless	use	of	which	could	have	grave	practical	consequences.

A part�cularly �nterest�ng po�nt of add�t�onal note �s the observat�on that the threshold temperature 
for �gn�t�on �ncreases as ε decreases and the �n�t�al heat d�str�but�on becomes more concentrated near the 
centerl�ne. Th�s seems somewhat counter�ntu�t�ve, but can be expla�ned from a heat balance perspec-
t�ve. That �s, the h�gher temperature grad�ent assoc�ated w�th more concentrated heat depos�t�on near the 
centerl�ne �ncreases outward heat conduct�on toward the surface boundary enough to outpace the self  
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Figure	21.		Criticality	characteristics	of	nonuniform	planar	slab	assemblies	(λ = 104).

heating	rate.	It	might	be	anticipated	that	this	rate	imbalance	could	be	reversed	given	a	sufficiently	high	
exotherm�c�ty, but most pract�cal substances of �nterest would not y�eld values very much beyond λ = 108. 
Thus, a un�formly d�str�buted assembly of hot mater�al �s potent�ally more dangerous than a nonun�form 
assembly w�th a hotter �nter�or, g�ven the same total heat content. The shape of the assembly also has a 
notable effect on �gn�tab�l�ty �n that the cr�t�cal �n�t�al threshold temperature �ncreases as we go from planar 
to cyl�ndr�cal to spher�cal geometry. Th�s �s partly a surface-to-volume effect and �s partly caused by the 
change �n heat concentrat�on.

Based on the preced�ng observat�ons, one m�ght speculate that the cr�t�cal�ty threshold should 
somehow be correlated w�th the spat�al moments of the �n�t�al heat d�str�but�on. The val�d�ty of th�s math-
emat�cal conjecture w�ll be taken up �n sect�on 5.
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F�gure 22.  AεCcr versus U	curves	for	nonuniform	planar	slab	assemblies	(λ = 104).
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Figure	23.		Criticality	characteristics	of	nonuniform	cylindrical	assemblies	(λ = 104).
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F�gure 24.  AεCcr versus U	curves	for	nonuniform	cylindrical	assemblies	(λ = 104).
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F�gure 26.  AεCcr versus U	curves	for	nonuniform	spherical	assemblies	(λ = 104).
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F�gure 28.  AεCcr versus U	curves	for	nonuniform	planar	slab	assemblies	(λ = 106).
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Figure	29.		Criticality	characteristics	of	nonuniform	cylindrical	assemblies	(λ = 106).
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F�gure 30.  AεCcr versus U	curves	for	nonuniform	cylindrical	assemblies	(λ = 106).
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Figure	31.		Criticality	characteristics	of	nonuniform	spherical	assemblies	(λ = 106).
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F�gure 32.  AεCcr versus U	curves	for	nonuniform	spherical	assemblies	(λ = 106).
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Figure	33.		Criticality	characteristics	of	nonuniform	planar	slab	assemblies	(λ = 108).
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F�gure 34.  AεCcr versus U	curves	for	nonuniform	planar	slab	assemblies	(λ = 108).
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Figure	35.		Criticality	characteristics	of	nonuniform	cylindrical	assemblies	(λ = 108).
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F�gure 36.  AεCcr versus U	curves	for	nonuniform	cylindrical	assemblies	(λ = 108).
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5.  CorrelaTIoN aND reDuCTIoN of CrITICal asseMblY CoNDITIoNs

In the prev�ous sect�on, an extens�ve numer�cal parametr�c study was undertaken to �dent�fy the 
cr�t�cal threshold separat�ng those �n�t�al cond�t�ons wh�ch lead to �gn�t�on/explos�on and those wh�ch 
ultimately	decay	to	a	self-extinguishing	quench	state.	Specifically,	this	study	examined	the	influence	of	
nonun�form thermal assembl�es w�th�n the pr�nc�pal centrosymmetr�c sol�ds. The outcome, a broad set of 
numer�cally constructed �gn�t�on thresholds over a w�de range of values for the d�mens�onless e�genvalue, 
provided	a	reliable	database	for	precisely	determining	ignition	hazards	given	very	specific	physical	con-
d�t�ons. From a deeper theoret�cal perspect�ve, however, there �s a natural des�re to seek further means 
of reduc�ng, order�ng, and correlat�ng these results such that the underly�ng mathemat�cal structure may 
be revealed and expressed �n the most compact and econom�cal form poss�ble. In th�s sect�on, we pursue 
var�ous methods of attack for ach�ev�ng th�s object�ve.

F�rst, we demonstrate that the cr�t�cal threshold curves from the parametr�c study can be accurately 
correlated us�ng a general second degree con�c sect�on. We then �ntroduce a new d�mens�onless parameter 
�nto the result�ng hyperbol�c correlat�on and develop a s�mple relat�onsh�p that collapses the ent�re data set 
from the parametr�c study onto a s�ngle un�versal l�ne. Th�s �s an ent�rely new result wh�ch packs accurate 
pred�ct�ve power w�th�n a h�ghly compact form. Second, we formulate a conjecture and exam�ne spat�al 
moments of the �n�t�al energy content �ntegral as an alternat�ve means of reduc�ng and correlat�ng the cr�t�-
cal threshold cond�t�ons.

5.1  Correlating forms and structural Compaction

At th�s stage, we are confronted w�th a large parametr�c database for wh�ch there are no obv�ous 
means of order�ng and reduc�ng the results �n a stra�ghtforward deduct�ve way. What we are seek�ng, of 
course, �s a means of d�scover�ng and reveal�ng h�dden mathemat�cal structure through an �nd�rect process 
of �ntu�t�ve reason�ng. Under these c�rcumstances, �t �s natural to exam�ne the data �n search of bas�c math-
emat�cal forms that can organ�ze the results and prov�de �mproved �ns�ght. Of the numerous correlat�ng 
forms that could be cons�dered, con�c sect�ons offer one of the s�mplest and most w�dely useful constructs 
ava�lable. Here, we exam�ne �n deta�l the appl�cat�on of a second degree con�c sect�on correlat�on to the 
critical	initial	condition	thresholds,	and	demonstrate	effective	compaction	of	the	solution	space’s	math-
emat�cal structure.

5.1.1  Hyperbolic Correlation

Close exam�nat�on of the threshold curves �n the {AεCcr,U} plane reveals structural features that 
tend to be assoc�ated w�th a hyperbol�c con�c sect�on. To pursue the mathemat�cal �mpl�cat�ons of th�s 
observat�on, we beg�n by recall�ng the general form of the or�g�n centered hyperbola from elementary 
analytic	geometry,	as	illustrated	in	figure	39.	In	this	case,	a	point	(x,y) �s on the hyperbola w�th vert�ces 
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F�gure 39.  Or�g�n-centered hyperbola.
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(± a,0)	and	foci	(± c,0)	if,	and	only	if,	it	satisfies	the	equation	where	b2 = c2– a2. Recall also that a hyper-
bola has a pa�r of slant asymptotes w�th slope ±b/a, a d�st�nct property that �s �n close correspondence to 
structural character�st�cs exh�b�ted by the cr�t�cal threshold curves.

To develop the des�red hyperbol�c correlat�on for the threshold curves �n the {Aε Ccr,U} plane, �t 
�s now necessary to translate the coord�nate axes accord�ng to a well known theorem wh�ch states that a 
point	(x, y)	is	on	the	hyperbola	with	center	(h, k),	vertices	(h ± a,k),	and	foci	(h ± c,k)	if	and	only	if	it	satisfies	
the equat�on

	
x h

a

y k

b

−( ) −
−( ) =

2

2
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2 1 .	 (84)

where b2 = c2 – a2. In th�s part�cular case, we �dent�fy the transverse and conjugate coord�nates �n the 
{AεCcr,U} plane as x = U and y = AεCcr	and	define	a	new	parameter	Γ = AεCcr to arr�ve at the relat�on
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At th�s po�nt, we �mpose the obv�ous constra�nts h = Ucr	+	a and k = 0 and deduce our essent�al correlat�on 
equat�on

	
U U a

a b
cr− −( ) − =

2

2

2

2 1Γ . 	 (86)

Ut�l�zat�on of th�s correlat�on equat�on requ�res the �ntroduct�on of certa�n add�t�onal assumpt�ons 
in	order	to	fully	define	values	for	the	vertices	and	the	foci.	As	a	basis	for	the	first	assumption,	we	note	
that the slope of the cr�t�cal threshold curve Γ = AεCcr away from the cr�t�cal amb�ent temperature, Ucr, �s 
approx�mately un�ty. S�nce th�s slope should match the slope of the slant asymptotes for the hyperbola, 
which	by	definition	must	take	the	value	± b/a, we �mmed�ately deduce the constra�nt b ≈ –a. In th�s case, 
equation	(86)	takes	the	simpler	form

	 Γ 2 2 2= − −( ) −U U a acr .	 (87)

The	final	remaining	issue	concerns	definition	of	the	vertex,	a. From casual �nspect�on of the cr�t�-
cal threshold curves, we clearly ant�c�pate that the value of a must decrease as ε �ncreases. As such, we 
�ntroduce the follow�ng two-parameter correlat�ng express�on:

	 a = +






α β

ε
2 , 	 (88)

where α and β	are	fitting	parameters	and	a �s assumed to vary �nversely w�th ε. Note that a mult�pl�cat�ve 
factor	of	2	was	introduced	into	equation	(88)	as	a	means	of	scaling	β such that a = α	+	β when ε = 2.

The	objective	now	is	to	deduce	the	best	parameter	values	for	fitting	equation	(87)	to	the	precise	
cr�t�cal threshold curves �n the {Γ,U} plane based on the complete data set from the parametr�c study of 
section	4.	The	results	of	this	fitting	exercise	yielded	an	array	of	optimal	fitting	parameters	having	a	one-
to-one	correspondence	with	the	array	of	(n,λ)	values	from	the	parametric	study.	These	fitting	parameters	
are summar�zed �n table 5. The actual hyperbol�c correlat�on curves are shown w�th the prec�se computa-
tional	threshold	curves	in	figures	40−48 for each cons�dered value of ε. F�gures 40−42 dep�ct results for 
the	slab	geometry	(n = 0) for λ = 104, 106, 108, respect�vely. F�gures 43−45 dep�ct results for the cyl�ndr�cal 
geometry	(n = 1) for λ = 104, 106, 108, respect�vely. F�gures 46−48 dep�ct results for the spher�cal geometry 
(n = 2) for λ = 104, 106, 108, respect�vely.

Inspection	of	these	figures	clearly	demonstrates	that	the	hyperbolic	correlation	provides	an	excel-
lent	fit	 to	 the	precise	computational	 results	over	 the	 full	 range	of	ε and λ values under cons�derat�on. 
Thus, we conclude that the mathemat�cal structure of the complete solut�on space �s accurately captured 
by	a	simple	hyperbolic	conic	section,	as	defined	by	equation	(87),	when	using	a	two-parameter	correlat-
ing	expression	for	the	vertex,	as	given	by	equation	(88).	Variations	in	the	fitting	parameters	appear	to	be	
smooth and well behaved, and �t �s clear that α and β could further be expressed as analyt�cal funct�ons of 
n and λ, as well. Here, however, we shall be content to leave them �n tabulated form, only.
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Table	5.		Optimal	fitting	parameters	for	hyperbolic	correlation.

slab  (n = 0) λ = 104 λ = 106 λ = 108

α 0.0200 0.0100 0.0060

β 0.0170 0.0080 0.0052

Cylinder  (n = 1) λ = 104 λ = 106 λ = 108

α 0.0200 0.0097 0.0056

β 0.0250 0.0110 0.0065

sphere  (n = 2) λ = 104 λ = 106 λ = 108

α 0.0200 0.0090 0.0050

β 0.0300 0.0130 0.0075
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F�gure 40.  AεCcr versus U	results	for	nonuniform	planar	slab	assemblies	(λ = 104).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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F�gure 41.  AεCcr versus U	results	for	nonuniform	planar	slab	assemblies	(λ = 106).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.

Bi

A
C

cr

U
0 0.01 0.02 0.03 0.04 0.05

0.00

0.01

0.02

0.03

0.04

0.05

0.06

=

=2
=1

Slab
= 108

=

F�gure 42.  AεCcr versus U	results	for	nonuniform	planar	slab	assemblies	(λ = 108). 
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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F�gure 43.  AεCcr versus U	results	for	nonuniform	cylindrical	assemblies	(λ = 104).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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F�gure 44.  AεCcr versus U	results	for	nonuniform	cylindrical	assemblies	(λ = 106).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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F�gure 45.  AεCcr versus U	results	for	nonuniform	cylindrical	assemblies	(λ = 108).  
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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F�gure 46.  AεCcr versus U	results	for	nonuniform	spherical	assemblies	(λ = 104).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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F�gure 47.  AεCcr versus U	results	for	nonuniform	spherical	assemblies	(λ = 106).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on— curves.
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F�gure 48.  AεCcr versus U	results	for	nonuniform	spherical	assemblies	(λ = 108).
 Prec�se computat�onal value—symbols. Hyperbol�c correlat�on—curves.
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5.1.2  reduction to Compact universal form

Appl�cat�on of the hyperbol�c correlat�on to the complete parametr�c solut�on space prov�ded pleas�ng 
enough results to encourage further exam�nat�on of the mathemat�cal �mpl�cat�ons. For example, an �mme-
d�ate follow-on quest�on ar�ses as to whether �t �s poss�ble to ach�eve add�t�onal reduct�on through the 
deduct�on of a compact un�versal correlat�ng form. To pursue th�s quest�on �n deta�l, we rev�s�t our hyper-
bolic	correlation	in	the	simplified	form	of	equation	(87).

Our	first	course	of	action	is	to	define	a	new	dimensionless	temperature	∆U = Ucr − U so that equa-
tion	(87)	may	be	written	as

	 Γ ∆2 2 2= − −( ) −U a a .	 (89)

Then,	we	expand	the	bracketed	square	in	order	to	find

	 Γ ∆ ∆2 2 2= +U a U 	 (90)

or

	 ∆ ∆ ΓU a U2 22 0+ − = . 	 (91)

Not�ng that th�s equat�on �s quadrat�c �n ∆U,	we	may	immediately	write	an	expression	defining	∆U expl�c-
�tly �n terms of Γ:

	 ∆ ΓU a a= + −2 2 . 	 (92)

We now have a conven�ent expl�c�t correlat�ng form that completely captures the essent�al math-
emat�cal structure of the parametr�c solut�on space, and �t �s str�k�ngly s�mple. An even s�mpler form can 
now	be	had	by	defining	the	right	hand	side	of	equation	(92)	as	a	new	dimensionless	criticality	parameter,	

Γ̂ Γ= + −2 2a a . We therefore arr�ve at the un�versal l�near correlat�ng form

	 ˆ .Γ ∆= U 	 (93)

Th�s result �s utterly s�mple and, �n a sense, mathemat�cally beaut�ful s�nce �t collapses the ent�re solut�on 
space onto a s�ngle l�ne �n the { Γ̂ ,∆U}	plane.	The	results	of	this	exercise	are	summarized	in	figures	49,	
50, and 51 for the slab, cyl�nder, and sphere, respect�vely. Although all of the data collapses to the same 
un�versal l�ne, the results are dep�cted separately by geometry �n order to avo�d excess clutter.
 

The	fit	to	the	universal	line	is	generally	good	except	for	some	slight	deviation	in	the	low	ambi-
ent temperature reg�on where U<<Ucr. Th�s dev�at�on ar�ses from the fact that the actual threshold curve 
begins	to	inflect	as	it	nears	and	passes	through	the	U = 0 ax�s, whereas the hyperbol�c correlat�on requ�res a 
cont�nuous merg�ng w�th the slant asymptote. Even there, the dev�at�on �s not extremely large. In general, 
the	fit	is	better	at	large	ε and sl�ghtly degrades as the value becomes smaller and the �n�t�al thermal d�str�-
but�on has a h�gher degree of nonun�form�ty.
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Figure	49.		Universal	correlating	line.	Slab	(n = 0).
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Figure	50.		Universal	correlating	line.	Cylinder	(n = 1).
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Figure	51.		Universal	correlating	line.	Spherical	(n = 2).

5.2  spatial Moments of energy Content Integral

Intu�t�vely, we expect that the ult�mate fate of a combust�ble assembly should have a d�rect math-
emat�cal coupl�ng to �ts �n�t�al energy d�str�but�on. We further ant�c�pate that the pred�spos�t�on for th�s 
assembly to e�ther �gn�te or quench may be conven�ently and compactly expressed as an �ntegral over th�s 
initial	energy	distribution.	Our	purpose	then	is	to	rigorously	define	the	initial	energy	content	integral	and	
prec�sely state a mathemat�cal conjecture relat�ng spat�al moments of th�s �ntegral to the fate of thermally 
nonun�form assembl�es of combust�ble substances. The results of the prev�ous computat�onal parametr�c 
study may then used as a bas�s for thoroughly test�ng the conjecture and establ�sh�ng a prov�s�onal bas�s 
for	its	acceptance	and	application	to	industrial	fire	problems	of	great	practical	interest.

5.2.1  Definitions and Conjecture

 From phys�cal reason�ng, we assert that the cr�t�cal cond�t�on for �gn�t�on of a thermally nonun�-
form combust�ble assembly depends largely upon the �n�t�al energy concentrat�on or dens�ty, part�cularly 
within	a	centralized	hot	region	as	represented	by	the	one-parameter	shape	profile	of	figure	20.	Here,	the	
hot spot has been centered on the ax�s of symmetry as a worse case representat�on s�nce the d�spers�on and 
removal of excess heat �s most �mpeded under these c�rcumstances.

	We	therefore	begin	our	development	with	a	fundamental	definition	of	energy	density	e:

	 e c Tp= ρ , 	 (94)
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where	the	variables	on	the	right	hand	side	are	all	as	previously	defined.	The	total	energy	content	E must 
then follow from a volume �ntegral over the full assembly:

	 E e dV= ∫∫∫ 	 . 	 (95)

Now,	recall	our	previous	definitions	for	the	nondimensional	variables	α = ρcp/k and u = RT/Ea and 
el�m�nate cp and T	in	equation	(94)	to	obtain	a	dimensionless	local	energy	density	in	the	form:

	 ˆ .e e kE
R

ua= 



 =α 	 (96)

Pursuing	 a	 similar	 train	 of	 thought,	we	 introduce	 the	 following	 definition	 for	 the	 dimensionless	 total	
energy content:

	 Ê E kE
R

a= 





α 	 (97)

and	reformulate	the	volume	integral	of	equation	(95)	to	obtain

	 ˆ ˆ .E e dV u dV= =∫∫∫ ∫∫∫ 	 	 	 (98)

Note that the total energy content w�th�n the assembly has been succ�nctly and conven�ently expressed as 
the volume �ntegral of the d�mens�onless reactant temperature over the complete assembly volume. W�th 
more	specificity,	we	now	apply	the	energy	content	integral	to	the	principal	centrosymmetric	solids	and	
reduce	to	the	simplified	expression

	 ˆ ˆ , , ,E e t d u t d= ( ) = ( )∫ ∫ξ ξ ξ ξ
0

1

0

1

	 (99)

wh�ch �s to be evaluated at t�me t	=	0.	As	a	point	of	clarification,	it	should	be	noted	that	certain	geometrical	
mult�pl�cat�on factors have been neglected here �n order to ach�eve commonal�ty of form.

let us proceed further by cons�der�ng spat�al moments of our d�mens�onless energy content �nte-
gral.	The	conventional	approach	for	defining	a	spatial	moment	is	to	weight	the	kernel	of	the	integral	by	the	
distance	from	the	origin	(i.e.,	the	moment	arm)	raised	to	some	arbitrary	power,	which	defines	the	order	of	
the moment. Naturally, th�s places less we�ght on contr�but�ons to the �ntegral that are closer to the or�g�n 
than those that are farther away.  Because our hot spot �s located on the ax�s of symmetry, however, we 
w�sh to place more we�ght on �ntegral contr�but�ons that are closest to the or�g�n. Thus, we henceforth 
define	our	moment	arm	using	the	factor	(1−ξ)	and	define	the	mth order spat�al moment for the nth class 
geometry as

	 ψ ξ ξ ξm n
m u d, .= −( ) ( )∫ 1

0

1
,0 	 (100)
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Recalling	 the	 generalized	 one-parameter	 initial	 shape	 profile	 from	 section	 4,	we	 deduce	 the	 practical	
work�ng form

	 ψ ξ ξ ξ ξm n
m

cr
m

crU C g d U C A, = −( ) + ( )  = −( ) +∫ 1 1
0

1
	 εε

εξ ξ1
0

1
−( )



∫ 	d .	 (101)

It should be clear that th�s express�on �s expl�c�tly dependent on the geometr�cal �ndex n	and	that	the	influ-
ence of geometry on the spat�al moment �s carr�ed ent�rely w�th�n the cr�t�cal constant, Ccr.

We now state, based pr�nc�pally on �ntu�t�ve reason�ng, the follow�ng mathemat�cal conjecture:

g�ven any thermally nonun�form assembly �n the form of a pr�nc�pal centrosymmetr�c sol�d, 
there ex�st nonstat�onary solut�ons to the Burnell-grahamEagle-gray-Wake react�on-d�ffus�on 
equat�on, under the constra�nt Bi→∞, for wh�ch certa�n order-m spat�al moments of the cr�t�cal 
total energy content �ntegral, ψ n m, , are �nvar�ant w�th changes �n the d�mens�onless amb�ent tem-
perature, U,	and	the	initial	shape	profile	parameter,	ε,	within	some	quantifiable	error	band,	and	
are therefore funct�onally dependent on the d�mens�onless e�genvalue, λ, only.

5.2.2  Provisional Validation

 As a means of generat�ng rel�able quant�tat�ve ev�dence for the prev�ously stated conjecture, we 
now	consider	the	first	and	second	order	spatial	moments	(m=1,2) of the cr�t�cal total energy content �nte-
grals over the full parameter space of the computat�onal study. Evaluat�on of these �ntegrals was effected 
by	numerically	integrating	equation	(101)	using	a	cubic	spline	interpolation	procedure	to	define	Ccr Aε 
between	available	data	points.	The	results	of	these	evaluations	are	summarized	in	figures	52−57, wh�ch 
d�splay the var�at�on �n ψ m n,  w�th U/Ucr over the ent�re parameter range of the study.
 

Inspection	of	the	resulting	first-	and	second-order	spatial	moments	provides	provisional	confirma-
t�on of our conjecture and �nd�cates that the second-order moment, wh�ch has a narrower error band, may 
serve as a more accurate bas�s of pred�ct�on. It should also be noted that the error band exh�b�ts a tendency 
to narrow as the value of λ �ncreases. Results for the th�rd order spat�al moments, wh�ch were also com-
puted but not d�splayed, showed a re-w�den�ng of the error band. Apparently, the second order spat�al 
moment	 satisfies	our	conjecture	with	 the	 least	variance	and	 the	 smallest	 realizable	error	band.	Spatial	
moments of non�nteger order were not cons�dered.

If we accept these results as prov�s�onal val�dat�on for the conjecture, we now have at hand  
a	simple	method	for	 rapidly	calculating	fire	hazard	 risks	 for	 thermally	nonuniform	assemblies	of	self- 
heating	materials.	Assuming	that	the	assembly	temperature	profile	u (ξ) �s known w�th a reasonable degree 
of	confidence	and	that	the	physical	characteristics	of	the	substance	are	well	enough	defined	to	compute	
λ	to	good	accuracy,	one	may	simply	evaluate	the	spatial	moment	from	equation	(100)	and	compare	this	
result w�th the mean value of the moments determ�ned by th�s study. If the computed spat�al moment �s 
near	to	or	greater	than	the	mean	reference	value,	at	the	specified	value	of	λ, then the r�sk for spontaneous 
�gn�t�on should be cons�dered h�gh. If the computed spat�al moment �s less than that mean reference value, 
one may safely assume that the r�sk �s low or negl�g�ble, depend�ng on the magn�tude of the d�fference. 
Ar�thmet�cally averaged values for the spat�al moments �ntegrals ψ n m,  are summar�zed �n table 6 for con-
ven�ent use and are also plotted as a funct�on of λ	in	figure	58.
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F�gure 52.  ψ n m,  versus U/Ucr	for	nonuniform	slab	assemblies	(n = 0, m = 1).
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F�gure 54.  ψ n m,  versus U/Ucr	for	nonuniform	cylindrical	assemblies	(n = 1, m = 1).
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F�gure 56.  ψ n m,  versus U/Ucr	for	nonuniform	spherical	assemblies	(n = 2, m = 1).
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Table 6.  Ar�thmet�cally averaged values of spat�al moment �ntegrals, ψ m n, .

slab  (n = 0) λ = 104 λ = 106 λ = 108

m = 1 0.041 0.028 0.0022
m = 2 0.028 0.019 0.015

Cylinder  (n = 1) λ = 104 λ = 106 λ = 108

m = 1 0.045 0.030 0.022
m = 2 0.031 0.021 0.015

sphere  (n = 2) λ = 104 λ = 106 λ = 108

m = 1 0.047 0.031 0.023
m = 2 0.033 0.021 0.016
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F�gure 58.  Ar�thmet�cally averaged values of spat�al moment �ntegrals, ψ m n, .
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6.  DYNaMIC bouNDarY CoNDITIoNs

 Frequently, self-heat�ng assembl�es of hazardous mater�als are �nadvertently exposed to t�me-vary-
�ng amb�ent temperature cond�t�ons that can affect the cr�t�cal threshold for thermal �gn�t�on/explos�on. 
Th�s m�ght occur, for �nstance, �f the mater�al were stored �n a locat�on hav�ng �nadequate cl�mate control 
provisions	and	the	diurnal	temperature	variations	happened	to	be	sufficiently	large.	It	could	also	occur	dur-
ing	the	transport	of	a	holding	container	if	it	were	to	be	haphazardly	placed	near	a	fluctuating	heat	source.	
How a part�cular assembly would respond to such dynam�c reg�mes of �gn�t�on �s therefore a quest�on of 
great pract�cal �mportance.

 Phys�cal s�tuat�ons �nvolv�ng dynam�c boundary cond�t�ons, where the amb�ent temperature or 
surface	heat	flux	has	a	known	time	dependent	variation,	represent	a	class	of	problems	that	require	a	for-
mal nonstat�onary mathemat�cal treatment. The standard stat�onary model for stat�c reg�mes of �gn�t�on 
�s not d�rectly appl�cable to th�s s�tuat�on, and no v�able construct has ever been found that would allow 
�ts use for approx�mat�on purposes. In the most general case, the trans�ent solut�on may be expected to 
display	a	marked	sensitivity	to	ambient	temperature	fluctuations,	and	we	may	anticipate	that	this	will	have	
a	significant	impact	on	the	threshold	of	criticality.	The	objective	of	this	chapter	is	to	examine	the	effects	
of	dynamic	boundary	conditions	on	the	classic	‘storage’	problem	and	to	use	the	results	of	the	nonstation-
ary model to lay the foundat�ons for the development of an approx�mate solut�on methodology based on 
adaptat�on of the standard stat�onary model. For clar�ty, th�s �nvest�gat�on w�ll only cons�der the exposure 
of s�mple centrosymmetr�c geometr�es to per�od�c osc�llat�ons �n amb�ent temperature.

6.1  Nonstationary Model Development

Recall that U was treated as a t�me dependent var�able �n the numer�cal development of the non-
stationary	model,	which	allows	the	surface	boundary	condition	to	be	arbitrarily	specified	as	a	dynamic	
external dr�v�ng force. Therefore, Um and Um+1	are	directly	specified	in	equation	(72,	i = N) at each t�me 
step	according	to	some	predefined	temporal	variation	in	the	ambient	environment.	Although	this	dynamic	
var�at�on can, �n pr�nc�ple, obey any conce�vable mathemat�cal construct, the most frequently encountered 
situation	of	practical	physical	significance	involves	oscillatory	patterns	associated	with	diurnal	variations	
in	temperature.	Here,	we	shall	confine	our	attention	to	the	classic	storage	problem	assuming	an	infinite	
B�ot number and t�me-vary�ng amb�ent temperature. To l�m�t the scope of study, we restr�ct attent�on to the 
un�form �n�t�al temperature d�str�but�on only.

6.1.1  sinusoidal ambient Temperature oscillation

The s�mplest construct represent�ng per�od�c osc�llat�on �s the s�nuso�dal harmon�c osc�llator w�th 
arb�trary ampl�tude and per�od. For our purposes, th�s �s a conven�ent and useful representat�on for �nvest�-
gating	the	influence	of	an	oscillatory	surface	boundary	condition,	and	we	adopt	the	following	simple	form	
for the �nstantaneous amb�ent temperature:
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	 U U U T= + ′ +( )sin ,2πτ ϕ 	 (102)

where U  �s the t�me-averaged mean value, U′	is	the	fluctuation	amplitude,	T �s the per�od of osc�llat�on, 
and ϕ �s the phase angle. Our pr�nc�pal �nterest �s to exam�ne the behav�or of the cr�t�cal �gn�t�on threshold 
under	the	influence	of	this	dynamic	boundary	condition	over	a	limited	range	of	parameter	values.

6.1.2  Provisional Verification

Prev�ously, �n sect�on 3.2, we exam�ned representat�ve �gn�t�on threshold calculat�ons assum�ng 
an �n�t�al un�form temperature d�str�but�on w�th�n the react�ve mater�al and constant amb�ent temperature. 
g�ven values for λ, U, and Bi, our pr�nc�pal �nterest was to determ�ne the cr�t�cal value, Ccr, and ver�fy 
nonstat�onary model performance. Here, we extend these calculat�ons to �nclude dynam�c boundary cond�-
tion	effects	and	present	provisional	verification	results.

The prev�ous val�dat�on calculat�ons were performed for all three pr�nc�pal centrosymmetr�c sol-
ids	using	Crank-Nicholson	time	integration	(f	=	0.5)	with	the	controlling	physical	parameters	defined	as	
λ = 106, U = 0.05, and Bi → ∞. Cr�t�cal �n�t�al threshold temperatures were determ�ned through tr�al and 
error,	and	representative	transients	for	the	dimensionless	centerline	temperature	were	shown	in	figures	13,	
14, and 15 for n = 0, n = 1, and n = 2, respect�vely.

In th�s sect�on, we rev�s�t calculat�ons for the n = 0 and n = 2 cases under the act�on of a s�nuso�dal 
oscillating	ambient	boundary	condition	where	a	very	small	ambient	temperature	fluctuation	(U′=0.001) �s 
imposed	on	the	mean	ambient	temperature	(U = 0.05). The per�od of osc�llat�on was T=0.1, a value wh�ch 
�s substant�ally less than the character�st�c �gn�t�on �nduct�on t�me, τind. For s�mpl�c�ty, we have assumed 
ϕ = 0.

These	results	are	summarized	in	figures	59	and	60	for	the	planar	and	spherical	geometries,	respec-
t�vely. Note that the cr�t�cal �gn�t�on threshold values for the osc�llat�ng amb�ent temperature cases are less 
than	those	obtained	using	fixed	ambient	temperature	conditions.	In	the	planar	slab,	for	instance,	we	observe	
that Ccr = 0.0042 for the dynam�c boundary cond�t�on compared to Ccr = 0.0043 for the stat�c boundary 
condition.	Similarly	for	the	spherical	geometry,	we	find	that	Ccr = 0.0100 for the dynam�c boundary cond�-
t�on �n compar�son to Ccr	=	0.0110	for	the	static	boundary	condition.	The	significant	conclusion	appears	to	
be	that	fluctuating	dynamic	boundary	conditions	generally	act	to	reduce	the	ignition	threshold	below	that	
assoc�ated w�th the correspond�ng stat�c env�ronment.

Th�s conclus�on has �mportant pract�cal consequences for the class�c storage problem when the 
env�ronment �s known to exh�b�t nonnegl�g�ble temporal var�at�ons �n temperature. Moreover, the pr�nc�-
pal	effect	of	these	fluctuations	is	to	lower	the	ignition	threshold	and	increase	the	risk	for	an	accidental	fire.	
Th�s r�sk �s further accentuated when the stat�onary model �s bl�ndly appl�ed to the storage problem under 
env�ronmental cond�t�ons known to have �nherent dynam�cal var�at�on. The purpose of the current study 
�s to ra�se awareness of these oft neglected cons�derat�ons and po�nt the way toward the development of 
pract�cal pred�ct�ve capab�l�t�es.
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6.2  Parametric survey

We now extend the scope of our dynam�c boundary cond�t�on survey and exam�ne �gn�t�on charac-
ter�st�cs over a w�der range of parameter values. To avo�d undue clutter at the expense of m�nor add�t�onal 
insight	gained	from	completeness,	we	restrict	attention	to	the	planar	slab	geometry	(n = 0) assum�ng an �n�-
tial	uniform	temperature	distribution	and	impose	the	sinusoidal	ambient	temperature	oscillation	defined	by	
equation	(102).	Again,	the	controlling	physical	parameters	are	taken	to	be	λ = 106, U  = 0.05, and Bi → ∞.

 
Before	 proceeding	with	 detailed	 calculations	 of	 the	 critical	 ignition	 threshold,	we	first	 use	 the	

nonstat�onary model to compute �gn�t�on �nduct�on t�mes, as measured from the cr�t�cal �n�t�al tempera-
ture ucr,	for	the	fixed	boundary	state.	The	results	are	plotted	in	figure	61,	which	shows	the	variation	in	
τind as a funct�on of U.	If	the	time	to	ignition	is	computed	from	some	fixed	initial	temperature,	we	would	
expect that τind ∝ exp[1/U]	(ref.	1,	p.	208).	However,	when	the	time	to	ignition	is	based	on	the	critical	
�n�t�al threshold temperature correspond�ng to the value of U,	we	find	that	the	induction	time	is	relatively	
small when U �s much less than Ucr and grows slowly unt�l U approaches Ucr, at wh�ch po�nt �t exper�-
ences explos�ve growth �n magn�tude. When U << Ucr, τind ≈ 0.1 – 0.3 , but as U → Ucr, we observe that 
τind → 0.1 very rap�dly �n the ne�ghborhood of Ucr. Th�s result w�ll appear counter-�ntu�t�ve unless one 
keeps	in	mind	the	fact	that	the	induction	time	defined	here	is	based	on	the	critical	initial	temperature,	ucr, 
wh�ch decreases as U �ncreases.
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F�gure 61.  Var�at�on �n τind as a funct�on of U for n	=	0	(λ = 106 and Bi → ∞).
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Based on the preced�ng observat�ons, we �ntu�t�vely reason that per�ods of osc�llat�on longer than 
the �gn�t�on �nduct�on t�me should have m�n�mal effects on the pred�cted cr�t�cal threshold cond�t�ons. 
Therefore, the pr�mary range of �nterest for the per�od of osc�llat�on extends over values less than or 
equal to τind.	In	order	to	establish	representative	test	cases,	two	specific	values	for	the	period	of	oscilla-
t�on were chosen for deta�led �nvest�gat�on. These �ncluded a basel�ne case where T �s on the order of the 
m�n�mum value of τind	(i.e.,	T = 0.1) and an add�t�onal spec�al case where T	is	significantly	less	than	τind 
(i.e.,	T = 0.05). We do not exam�ne any effects assoc�ated w�th var�able phase angle and s�mply take ϕ = 0 
to sat�sfy the l�m�ted purpose of th�s study.

Nonstat�onary model calculat�ons were then undertaken us�ng the selected values for the per�od of 
oscillation	with	fluctuation	amplitudes	ranging	from	0	to	0.025.	The	results	of	these	survey	calculations	
are	summarized	in	figures	62	and	63,	which	depict	the	critical	threshold	curves	u(0)	=	U	+	Ccrg	(0) versus 
U 	as	well	as	the	stationary	model	bifurcation	curve	corresponding	to	the	fixed	ambient	temperature	condi-
t�on.

 There are several noteworthy po�nts of observat�on that may be der�ved from these graphs. Most 
significantly,	it	is	evident	that	the	oscillating	ambient	temperature	acts	to	substantially	reduce	the	criti-
cal �gn�t�on threshold across the ent�re range of mean amb�ent temperatures. Th�s reduct�on becomes 
gradually	more	pronounced	as	the	fluctuation	amplitude	increases.	Furthermore,	the	degree	of	reduction	
is	found	to	be	highly	magnified	when	U  �s small and the �gn�t�on �nduct�on t�me �s relat�vely short. As 
U  �ncreases, however, the cr�t�cal threshold curves are found to undergo a strong nonl�near�ty and are 
observed to exh�b�t an almost d�scont�nuous jump �f U ′	is	sufficiently	large.	From	a	practical	perspective,	
�t �s �mportant to note that Ucr decreases w�th �ncreas�ng U ′, although the magn�tude of th�s reduct�on does 
not appear to be strongly affected by changes �n the per�od of osc�llat�on over the parameter range of the 
study.

6.3  Correlation

From an appl�ed mathemat�cs perspect�ve, the �mportant quest�ons are assoc�ated w�th how dynam�c 
boundary cond�t�ons �n the assembly problem affect the cr�t�cal amb�ent temperature and whether any 
�ns�ght may be der�ved from th�s behav�or that m�ght prov�de a useful pred�ct�ve capab�l�ty for hazard 
analys�s and r�sk assessment purposes. The parameter space under the act�on of dynam�c boundary cond�-
t�ons �s �mmense and essent�ally �ntractable from an analyt�cal perspect�ve, but some construct�ve progress 
may be expected from an attempt at correlat�on of numer�cal results. let us beg�n by exam�n�ng how the 
critical	ambient	temperature	varies	with	fluctuation	amplitude	and	period	of	oscillation	for	the	special	test	
case under cons�derat�on.

Var�at�on �n Ucr w�th U′ and T �s summar�zed �n table 7. These results are also dep�cted graph�-
cally	in	figure	64.	Note	that	Ucr decl�nes as the magn�tude of U′ �ncreases and that the reduct�on effect 
becomes less pronounced as the per�od �s decreased from T = 0.1 to T = 0.05. The greatest effect occurs for 
large values of U′, as would be �ntu�t�vely expected. Apparently, the longer per�od makes the system more  
prone	to	ignition	by	allowing	the	upper	half	cycle	to	exert	more	influence	in	comparison	to	the	lower	half	
cycle. That �s, cr�t�cal�ty seems to be affected more by prolonged heat loss suppress�on dur�ng the upper 
half cycle than by prolonged heat loss enhancement dur�ng the lower half cycle. Th�s result should not 
be	blindly	accepted	as	a	definitive	deduction,	however,	since	it	is	impossible	to	draw	general	conclusions	 
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Figure	62.		Criticality	characteristics	(n = 0, λ = 106, U  = 0.05, and Bi → ∞) w�th s�nuso�dal 
	 oscillating	ambient	temperature	(T = 0.1).
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Figure	63.		Criticality	characteristics	(n = 0, λ = 106, U = 0.05, and Bi → ∞) w�th s�nuso�dal 
	 oscillating	ambient	temperature	(T = 0.1).
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Table 7.  Var�at�on �n Ucr w�th U′ and T.

U′ Ucr (T = 0.1) Ucr (T = 0.05)
0 0.05033 0.05033
0.001 0.05028 0.05028
0.005 0.05022 0.05022
0.010 0.05010 0.05019
0.015 0.04991 0.05006
0.020 0.04951 0.04991
0.025 0.04903 0.04971
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F�gure 64.  Var�at�on �n Ucr w�th U′ and T for n	=	0	(λ = 106 and Bi → ∞) w�th s�nuso�dal 
 osc�llat�ng amb�ent temperature.

from th�s prel�m�nary and cursory analys�s. Ult�mately, more �n-depth analys�s and study w�ll be needed to 
fully resolve such �ssues to reach rel�able deduct�ons.
 

The quest�on that needs to be addressed �s how such results can be used for pred�ct�ve purposes. Is 
there	some	way,	for	instance,	that	the	stationary	model	can	be	modified	and	effectively	utilized	to	generate	
useful pred�ct�ons? Here, we suggest one s�mple approach based on the �ntroduct�on of an effect�ve B�ot 
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number to represent the effect of osc�llat�ng amb�ent temperature. To do so, Bi �s var�ed �n the stat�onary 
model �n order to obta�n a value for Ucr wh�ch �s �n agreement w�th the tabulated values of table 7 and 
thereby deduce an effect�ve B�ot number, Bieff. The results of th�s correlat�ng exerc�se are summar�zed �n 
the	graph	of	figure	65,	which	depicts	Bieff as a funct�on of U′ for both osc�llat�on per�ods of �nterest. The 
accuracy of th�s correlat�on �s qu�te good and opens the door to a potent�ally s�mple pred�ct�ve methodol-
ogy for the dynam�c boundary storage problem. A cr�t�cal assessment of feas�b�l�ty and comprehens�ve 
development of the approach �s beyond the current scope of study and �s left for future exam�nat�on.
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F�gure 65.  Stat�onary model correlat�on for Bieff as a funct�on of U′ and T for n = 0
	 (λ = 106 and Bi → ∞) w�th s�nuso�dal osc�llat�ng amb�ent temperature.
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7.  CoNCluDINg reMarKs

Pr�or to th�s work, a number of pract�cally �mportant quest�ons rema�ned unanswered concern�ng 
the cr�t�cal threshold for thermal �gn�t�on, g�ven an assembly problem w�th a nonun�form �n�t�al tempera-
ture d�str�but�on. To seek answers to such quest�ons, the react�on-d�ffus�on equat�on �n the d�mens�onless 
form ∂tu =∇2 u + λe–1/u over the bounded reg�on Ω of the pr�nc�pal centrosymmetr�c sol�ds was cr�t�cally 
reexam�ned from the perspect�ve of modern numer�cal methodolog�es. The purpose was to broadly and 
deeply penetrate the solut�on space �n order to reveal a more deta�led descr�pt�on of the underly�ng math-
emat�cal structure, wh�ch could be further used to establ�sh conjectural and correlat�ng pr�nc�ples of gen-
eral pred�ct�ve ut�l�ty.

As	part	of	this	undertaking,	the	classic	stationary	model	was	first	revisited,	and	an	innovative	solu-
t�on methodology was developed whereby the two-po�nt boundary value problem could be reexpressed 
as	an	initial	value	problem	for	a	system	of	first-order	ordinary	differential	equations.	Careful	validation	
calculations	demonstrate	that	this	simplified	approach	was	capable	of	yielding	bifurcation	diagrams	just	
as accurate as more soph�st�cated path follow�ng techn�ques.

A numer�cal procedure was then �mplemented for solv�ng the full t�me-dependent form of the 
react�on d�ffus�on equat�on and establ�sh�ng a nonstat�onary thermal �gn�t�on model. Th�s numer�cal devel-
opment comb�ned second-order central d�fferenc�ng for the spat�al der�vat�ve w�th a general�zed t�me 
integration	scheme,	including	a	time-dependent	convective	boundary	condition,	to	produce	an	efficient	
and accurate solver rout�ne.  The result�ng methodology was successfully val�dated aga�nst publ�shed 
solut�ons �n the peer-rev�ewed l�terature and found robust and rel�able.

Hav�ng developed and val�dated stat�onary and nonstat�onary models, a jud�c�ous exam�nat�on of 
the assembly problem was undertaken to expose how the fate of a self-heat�ng mater�al �s dependent on 
the �nternal spat�al concentrat�on of thermal energy at the t�me of assembly. By �ntroduc�ng a normal�zed 
shape	profile	for	the	initial	temperature	distribution,	as	defined	by	a	single	geometric	parameter,	it	was	
then poss�ble to compute cr�t�cal�ty threshold character�st�cs over a broad range of pract�cal values for the 
d�mens�onless e�genvalue parameter.

It was shown how the result�ng mathemat�cal structure for the �gn�t�on threshold curves could be 
correlated	by	a	hyperbolic	conic	section	with	a	high	degree	of	fidelity	over	the	full	range	of	positive	ambi-
ent temperature values. Moreover, the clever �ntroduct�on of new d�mens�onless parameters w�th�n th�s 
hyperbolic	correlating	form	was	found	to	generate	further	simplification	leading	to	a	universal	correlating	
form capable of collaps�ng the ent�re solut�on space onto a s�ngle l�ne �n the plane of the new var�ables. 
Th�s result was found to hold over a w�de range of shape parameters and �s therefore bel�eved to be of 
general	significance.

One of the major open quest�ons addressed by th�s study of the assembly problem concerned the 
widely	held	conviction	that	certain	spatial	moments	of	the	initial	temperature	profile	ought	to	possess	a	
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d�rect mathemat�cal l�nk to the cr�t�cal �gn�t�on threshold. As such, the mth order spat�al moment of the 
critical	 total	energy	content	integrals	was	defined,	and	a	conjecture	was	formulated	stating	that	certain	
orders of th�s moment would rema�n �nvar�ant w�th changes �n amb�ent temperature and �n�t�al shape 
profile	and	would	therefore	be	functionally	dependent	on	the	dimensionless	eigenvalue	only,	within	some	
quantifiable	error	band.	Evaluations	of	the	spatial	moment	integrals	demonstrated	this	conjecture	to	be	
prov�s�onally val�d, w�th the best accuracy obta�ned for second order moments. The �nvar�ance property 
for the spat�al moment turns out to be qu�te powerful and y�elds a s�mple but fa�rly accurate method for 
estimating	fire	hazard	risks	for	thermally	nonuniform	assemblies	of	self-heating	materials.	The	framing	
and	verification	of	this	conjecture	represents	a	significant	accomplishment	and	greatly	expands	our	math-
emat�cal understand�ng of th�s pract�cally �mportant problem.

As	a	final	focal	point	for	this	work,	an	attempt	was	made	to	undertake	a	preliminary	and	cursory	
analysis	of	the	classic	storage	problem	with	dynamic	boundary	conditions	assuming	infinite	Biot	num-
ber.	Specifically,	an	examination	was	made	of	ignition	characteristic	for	the	planar	slab	geometry	with	
�n�t�ally un�form temperature and s�nuso�dal osc�llat�ng amb�ent temperature. The cr�t�cal threshold l�m�ts 
were	computed	assuming	a	range	of	fluctuation	amplitudes	for	two	representative	periods	of	oscillation.	
It was found that an osc�llat�ng boundary cond�t�on generally acts to reduce the cr�t�cal �gn�t�on threshold 
w�th the degree of reduct�on �ncreas�ng w�th �ncreas�ng osc�llat�on ampl�tude. It was also shown how the 
stat�onary model could be used to correlate var�at�ons �n the cr�t�cal amb�ent temperature w�th changes �n 
the	fluctuation	amplitude	by	defining	an	effective	Biot	number	to	represent	a	virtual	heat	loss	suppression	
mechanism.	That	 is,	 there	is	an	equivalent	finite	effective	Biot	number	for	which	the	stationary	model	
accurately pred�cts the cr�t�cal amb�ent temperature correspond�ng to the dynam�c boundary storage prob-
lem	with	infinite	Biot	number.	It	should	be	emphasized	that	this	cursory	result,	based	on	a	limited	explora-
t�on of an �mmense solut�on space, must be v�ewed as prel�m�nary �n nature and not a statement of general 
val�d�ty. However, �t �s bel�eved that th�s result �s h�ghly suggest�ve of a potent�ally prom�s�ng approach to 
an otherw�se �ntractable problem and �s deserv�ng of further study and �nvest�gat�on.
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