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Simple, accurate buckling interaction formulae are presented for long orthotropic plates 

with either simply supported or clamped longitudinal edges and under combined loading 

that are suitable for design studies. The loads include 1) combined uniaxial compression (or 

tension) and shear, 2) combined pure inplane bending and 3) shear and combined uniaxial 

compression (or tension) and pure inplane bending. The interaction formulae are the results 

of detailed regression analysis of buckling data obtained from a very accurate Rayleigh-Ritz 

method. 

Nomenclature 

Dij  = flexural stiffnesses of classical laminated-plate theory 
Ri = critical load ratio or critical ratio of buckling coefficients 
K = buckling coefficient 
Nx = axial compression stress resultant 
Nxy = shear stress resultant 
Nb = stress resultant for maximum axial compression under bending 

β = nondimensional orthotropic material parameter defined by Eq. (6) 

δ, γ = nondimensional flexural anisotropy parameters defined by Eq. (9) 

 
subscripts 
x,b,s =  axial compression, bending or shear, respectively 
i = x,b or s 
 

superscripts 
m = exponent in interaction formula 

I. Overview 

here remains a need for utilizing materials more efficiently in aircraft and spacecraft.  For example, a small (e.g. 
1%) weight saving for a wing skin material provides significant fuel savings over the lifetime of the aircraft.  

Similarly, the cost of placing structural weight in orbit is approximately $10,000/lb.  For structural members that are 
stiffness critical, the use of laminated-composite structures and the development of the corresponding refined 
buckling design formulae may possibly lead to significant weight savings.  One structural member that is common 
in many aerospace structures is the flat plate.  Often, for laminated-composite plates subjected to combined loads, 
buckling interaction data, and simple design formulae, do not exist and these members are designed by using the 
interaction formulae for isotropic plates.1-3  This approach, when overly conservative, leads to a significant weight 
penalty.  In contrast, when this approach is nonconservative, a significant impact to schedule may result.  In this 
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paper, a first step toward refined buckling interaction formulae for laminated-composite plates is presented.  
Specifically, refined buckling interaction formulae that have been obtained by using an accurate Rayleigh-Ritz 
analysis, and recently obtained bounds on the stiffness properties of composite materials, are presented for long 
orthotropic rectangular plates subjected to combined loads.  It is important to note that results for long plates are 
applicable to plates of finite length for which the length-to-width ratio is approximately > 3. For some cases, results 
for long plates provide a meaningful lower bound to the well-known buckling curves for finite-length plates that are 
plotted as a function of the length-to-width ratio. As such, the results presented herein are of practical importance. 
The combined-load cases include uniaxial compression (or tension) and shear (Fig. 1), pure bending and shear (Fig. 
2), and uniform compression (or tension) and pure bending (Fig. 3).  The results presented indicate the possibilities 
for significant weight savings.  A description of the analysis and highlights of the key results are presented 
subsequently.   

II. Background 

Regarding combined uniaxial tension or compression and shear loads, the following interaction formula was 
derived by Chwalla4 and also independently by Stowell and Schwartz5 

 12 ≤+ sx RR  (1) 

 
for long isotropic plates.  In this 
equation, and others that follow 
herein, R represents the ratio of 
critical load for the combined-
loading state to critical value of 
the corresponding load acting 
alone.  The subscripts x and s 
refer to the axial and shear load, 
respectively.  Stowell and 
Schwartz used an energy method 
to compute buckling coefficients 
for long isotropic plates and 
found that Eq. (1) gives excellent 
correlation, to within 1%, with 
their numerical results.  In 
addition, this excellent 
correlation was obtained for 
simply supported and clamped 
boundary conditions.  However, 
they found increasingly worse 
correlation for progressively 
increasing axial tension. These 
findings have been confirmed in 
the current work. 

 
Timoshenko,6 Way,7 and 

Johnson and Buchert8 produced 
buckling data for long isotropic 
plates subjected to combined 
pure inplane bending and shear 
loads.  The first two authors 
presented their results with the 
interaction formula 

 
Figure 1. Buckle pattern of long orthotropic plate under combined axial 

compression and shear loads. 

 
Figure 2. Buckle pattern of long orthotropic plate under combined pure 

inplane bending and shear loads. 

Figure 3. Buckle pattern of long orthotropic plate under combined axial 

compression and pure inplane bending loads. 
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 122 ≤+ sb RR  (2) 

where the subscript b refers to pure inplane bending.  These authors claim Eq. (2) gives acceptable accuracy  for 
both simply supported and clamped boundary conditions. This claim was assessed in the present study and it was 
found that Eq. (2) gives a conservative estimate of buckling load to within an accuracy of 20% for isotropic plates.  
Because Johnson and Buchert presented their results as buckling-coefficient charts, the accuracy is difficult to 
assess. 

For the case of combined uniaxial tension or compression and pure inplane bending loads, Noel9 produced 
buckling-coefficient design charts whilst Stüssi et. al.10 presented their results as  

 12 ≤+ bx RR  (3) 

The accuracy of Eq. (3) was also assessed in the present study for long isotropic plates with simply supported or 
clamped boundary conditions. For axial compression loads, the accuracy of Eq. (3) is within 2% of  the 
corresponding analysis results obtained in the present study, but for progressively larger axial tension loads Eqn. (3) 
becomes increasingly conservative and may underestimate buckling loads by 10%. 

 It is relevant to note that the three buckling interaction formulae, Eqs. (1-3), fit the general form 

 1
1

≤∑
=

n

i

m
i
iR  (4) 

where  i  represents a particular loading component, n is the number of different loading components, and the index 
on the exponent m indicates that it is a function of loading type. Although Eq. (4) has been applied in an empirical 
fashion to approximate the buckling response under combined loading, there is some underlying theoretical 
foundation for its use.  Equation (4) has its roots in Dunkerley’s formula11 and indeed simplifies to this formula 
when mi = 1 for all loading types.  Dunkerley empirically derived his expression to obtain the overall natural 
frequency of a system of vibrating entities.  Dunkerley’s formula was later shown to provide a theoretical lower 
bound on overall natural frequency by Jeffcott.12  The interaction formulae for natural frequencies were later applied 
to the buckling of flat plates under combined loading.4-10  Furthermore, Murray13 showed that Eq. (4), with mi = 1, 
provides a lower bound to the buckling load of a long, flat, isotropic plate under combined loading.  This conclusion 
was based upon prior work by Schaeffer14 who had shown that the response surface, defined in terms of Ri ratios for 
an isotropic plate, is convex.  As such, one might expect  mi >1  to provide a better correlation with buckling 
response because a response surface with greater convexity is created. In contrast, values of  mi < 1 provide a 
concave response surface.   
  The empirical formulae presented in Eqs. (1-3) were derived by curve fitting numerical data for isotropic 
plates. The current work focuses on establishing values for the exponent  mi  in Eq. (4) for long orthotropic plates, 
where  mi > 1, in a similar manner.  In particular, a general form for the interaction formula given by 

 1≤++ sb

b

x

x

m
S

mm
RRR        (5) 

was investigated in which any two permutations of the three loading components previously described were 
considered. To be useful in design, equations such as Eqs. (1-5) must be validated across the feasible design space.  
This type of validation does not appear to have been done for plates made of laminated-composite materials. 
 
 Recently, buckling formulae were presented for long orthotropic plates subjected to each single component of 
the combined-loading cases considered herein and with simply supported or clamped boundary conditions.15  It was 

shown that the buckling coefficients are a monotonically increasing function of one nondimensional parameter, β, 
given by 

 
( )

( ) 2
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where Dij are flexural stiffnesses of classical laminated-plate theory.  It was further shown that  β  has a well-defined 
range of values given by 

 31 <<− β  (7) 

with the further limitation that  β > 0  for presently known material systems.  Generally, β  takes its smallest values 

for cross-ply laminates and its maximum value for angle-ply laminates with 45–deg ply angles.  Also, β = 1 for 
isotropic materials and monotonically approaches β = 1 for quasi-isotropic lay-ups as the number of plies 
increases.16  Therefore, it is possible to produce validated interaction formulae, of the type indicated in Eq. (4), for a 

broad class of  laminated plates by curve fitting results from numerical buckling analyses over the range  0 < β < 3.  

 

Figure 4. Generic buckling interaction curves for long orthotropic plates subjected to uniaxial compression 

or tension and shear loads. 

 
Figure 5. Generic buckling interaction curves for long orthotropic plates subjected to pure inplane bending 

and shear loads. 
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III. Approach and Discussion of Results 

The approach used in the present paper to obtain buckling interaction formulae for infinitely long orthotropic 

plates is based on the fact that the buckling coefficients are functions of only  β  and the particular loading and 
boundary conditions.  This fact is illustrated in Figs. 4, 5, and 6 for plates subjected to axial compression or tension 
and shear, pure inplane bending and shear, and axial compression or tension and pure inplane bending loads, 
respectively.  The results shown in these figures were obtained by using the nondimensional Rayleigh-Ritz method 
for infinitely long anisotropic plates developed and used extensively by Nemeth.16-22  The ordinate and abscissa 
values in each of Figs. 4-6 correspond to ratios of the buckling coefficients.  Buckling coefficients with the 
superscript “o”  correspond to values associated with the implied single-component loading condition.  The negative 
values of the buckling coefficient ratios shown in Figs. 4 and 6 correspond to axial tension loads.  Four curves are 

shown in each figure that correspond to values of  β = 0, 1, 2, and 3.  In addition, it is noted that only two quadrants 
of the buckling response are shown in Figs. 4 and 6 because of symmetry of the buckling response of orthotropic 
plates under reversal of shear and pure inplane bending loads. Similarly, only one quadrant of the response in shown 
in Fig. 5. Points on and to the left of each curve correspond to stable equilibrium configurations. 

The results in Figs. 4-6 indicate that the buckling interaction curves vary with  β  for each combined loading case 
considered, as expected.  The greatest variation is exhibited by the plates subjected to pure inplane bending and 
shear loads and the least variation occurs for combined compression or tension and pure inplane bending.  Overall, 
the results in these figure led to use of the general buckling interaction formula given by Eq. (5), except with each 

exponent being a different linear function of the nondimensional parameter  β. A linear function for each exponent 
was used to provide the simplest function that fits the analytical results to within a practical 5% difference.  
Furthermore, the exponents chosen were required to degenerate to the interaction formulae for long isotropic plates 
given by Eqs. (1-3). Finally, expressions for the exponents mx, mb, and ms  were determined by a least squares fit to 
the numerical solutions obtained by using the nondimensional Rayleigh-Ritz method.  Sample results obtained in the 

present study are shown in Figs. 7-9 for simply supported plates with  β = 3, 2, 1 and 0.  The thick solid line in these 
figures correspond to the numerical solutions obtained by using the nondimensional Rayleigh-Ritz method and the 
thin solid line with the circular symbols represent the corresponding curve fit.  Dashed lines in the figures represent 
the corresponding isotropic-plate solution described previously herein and are included to illustrate potential pitfalls 
of their application to laminated-composite plates. 

As a result of the studies used to obtain Figs. 7-9, the following interaction formulae were derived 
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The formulae have been found to be valid for long orthotropic plates with either simply supported or clamped 
edge conditions.  It is demonstrated in Figs. 7-9 that the existing isotropic interaction formulae may be up to 20% 
conservative for combined compression and shear loads and that for combined pure inplane bending and shear loads 
the degree of conservatism may be 25%.  The modified interaction formulae, developed herein, show accuracies to 
within 5% of the Rayleigh-Ritz method, irrespective of loading combination, material system, or lay-up.  However, 
the case of axial tension or compression and pure inplane bending loads exhibits very little variation with orthotropy 
and, as a result, the formula for isotropic plates is sufficient for this loading case.  

The formulae given by Eqs. (7) may also be applicable to symmetrically laminated-composite plates for which 
anisotropies associated with coupling between membrane and bending action (characterized by the [B] matrix) and 
coupling between pure bending and twisting action (characterized by D16 and D26) are negligible.  It has been shown 
in Refs. 16-22 that the importance of neglecting flexural anisotropy on the buckling of long plates can be assessed 
by using the nondimensional parameters 

 
2211

6612

4
22

3
11

16

4 3
2211

26 2
 and ,

DD

DD

DD

D

DD

D +
=== βγδ . (9) 



 
American Institute of Aeronautics and Astronautics 

 

6 

However, the results presented in Refs. 16-22 indicate that the importance of neglecting flexural anisotropy also 

depends substantially on loading conditions and boundary conditions. As a result, specific values of  δ  and γ,  
defined by Eq. (9), for which Eqs. (8) remain valid requires an in-depth study that is beyond the scope of the present 
paper.  

 
 

      
Figure 6. Generic buckling interaction curves for long orthotropic plates subjected to uniaxial compression or 

tension and pure inplane bending loads. 
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Figure 7. Curve fit of generic buckling interaction curve for long simply supported orthotropic plates with  

ββββ = 3 = 3 = 3 = 3, 2, 1 , 2, 1 , 2, 1 , 2, 1     and 0 and subjected to uniaxial compression or tension and shear loads.  
 

ββββ = 3 ββββ = 2 

ββββ = 1 ββββ = 0 
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Figure 8. Curve fit of generic buckling interaction curve for long simply supported orthotropic plates with  

ββββ = 3 = 3 = 3 = 3, 2, 1 , 2, 1 , 2, 1 , 2, 1     and 0 and subjected to pure inplane bending loads and shear loads. 
 

ββββ = 3 ββββ = 2 

ββββ = 1 ββββ = 0 
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Figure 9. Curve fit of generic buckling interaction curve for long simply supported orthotropic plates with  

ββββ = 3 = 3 = 3 = 3, 2, 1 , 2, 1 , 2, 1 , 2, 1     and 0 and subjected to uniaxial compression (or tension) loads and pure inplane bending loads. 
 

ββββ = 3 ββββ = 2 

ββββ = 1 ββββ = 0 
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IV. Conclusion 

Buckling interaction formulae have been derived for long orthotropic plates with simply supported or clamped 
edges and subjected to combined loading.  Loading combinations include uniaxial tension or compression and shear, 
pure inplane bending and shear, and uniaxial tension or compression and pure inplane bending loads.  These new 
formulae are an extension of the well-known formulae for isotropic plates that are sometimes applied erroneously to 
orthotropic and more general symmetrically laminated composite plates.  The results demonstrate the accuracy of 
the new formulae, compared with highly accurate results obtained by using a Rayleigh-Ritz analysis method.  As 
such, the new formulae will facilitate high-quality rapid design and optimization studies, and should be of great 
interest to designers and engineers.  
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