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Abstract

The general decomposition of the spectral correlation tensor R;;(k)
by Cambon et al. (J. Fluid Mech., 202, 295; J. Fluid Mech., 337,
303) into directional and polarization components is applied to the
representation of R;;(k) by spherically averaged quantities. The de-
composition splits the deviatoric part H;;(k) of the spherical average

of R;j(k) into directional and polarization components HZ(;)(k) and

HZ(]Z )(k) A self-consistent representation of the spectral tensor in the
limit of weak anisotropy is constructed in terms of these spherically av-
eraged quantities. The directional and polarization components must
be treated independently: models that attempt the same representa-
tion of the spectral tensor using the spherical average H;;(k) alone
prove to be inconsistent with Navier-Stokes dynamics. In particular,
a spectral tensor consistent with a prescribed Reynolds stress is not
unique.

The degree of anisotropy permitted by this theory is restricted by
realizability requirements. Since these requirements will be less severe
in a more accurate theory, a preliminary account is given of how to gen-
eralize the formalism of spherical averages to higher expansion of the
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spectral tensor. Directionality is described by a conventional expan-
sion in spherical harmonics, but polarization requires an expansion in
tensorial spherical harmonics generated by irreducible representations
of the spatial rotation group SO3. These expansions are considered
in more detail in the special case of axial symmetry.

1 Introduction

The most basic statistical property of the fluctuating velocity field in a tur-
bulent flow is its single-time second-order correlation tensor

Rij(m, a'; 1) = (ug(, t)us(a', 1)).

In homogeneous turbulence, a simpler description is possible by the second-
order spectral tensor R;;(k,t), which is a function of the wavevector argument
k. Details can be found in Batchelor [1] and Craya [2]. The dependence of R *
on the entire wavevector k and the consequent angle-dependence is involved
in various important dynamical properties like redistribution of energy by
the ‘rapid’ pressure-strain process.

Many simplified models of the wavevector dependence of the correlation
tensor R have been proposed; examples include Cambon et al. [3], Shih et al.
[4], Ishihara et al. [5], Yoshida et al. [6], Thacker et al. [7]. These models
share the generic form

Rij(k,t) = U(k,t) Py (k) + BU(k, t)Hyy(k, t) kpko Py (k)

+CU (k, t) Py (k) P (k) Hum (k. ) (1)

Complete explanation of the notation will be given later; for now, we stress
the essential point that the anisotropic properties of the correlation are de-
scribed by a single tensor function H(k, t) that depends only on the wavenum-
ber k = |k|.

These models are revisited here by comparison with an exact decomposi-
tion of the spectral tensor (Cambon and Jacquin [8], Cambon et al. [9, 10])
into terms that represent distinct properties: directional and polarization
anisotropy. This decomposition has both a physical and a geometrical basis
which we review. The replacement of fully anisotropic properties by spherical

!Here and throughout, index and index-free notation will both be used as convenient:
R and R;; denote the same tensor, and k and k; the same vector.
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averages necessarily restricts the description to weak anisotropy, yet even in
this domain, Eq. (1) is inadequate because it implicitly constrains directional
and polarization anisotropy in ways that may be inconsistent with Navier-
Stokes dynamics. Examples are given of weakly anisotropic flows that cannot
be described by a model of this form. Instead, we propose a new model in
which directionality and polarization are unconstrained. The consequent de-
scription of weak anisotropy by two tensor functions of wavenumber £ is
shown to be consistent with the dynamics.

The paper is organized as follows. General anisotropic correlation func-
tions are discussed in Section 2 without approximations. The fundamental
ideas of directional and polarization anisotropy are introduced. The first
simplification, the description of anisotropy by spherically averaged tensors,
is introduced in Section 3. The undesirable effects of not distinguishing di-
rectionality and polarization are described. Two examples of weak shear
effects: sheared isotropic turbulence at short times, and the small scales in
sheared turbulence at arbitrary times, are analyzed in Section 4, and shown
to be consistent with a description in terms of directional and polarization
anisotropy. Section 5 discusses the parametrization of spectral anisotropy
by single-point moments. A refinement of the anisotropy tensor of single-
point turbulence modeling is described, and shown to be equivalent to the
‘structure tensor’ formalism of Kassinos and Reynolds [11]. Realizability con-
straints on anisotropic models are discussed in Section 6. They make precise
the limitation of these models to weak anisotropy. Section 7 considers how
the restriction to weak anisotropy can be mitigated by more accurate, higher
order expansions based on representation theory of the rotation group SO3.
Section 8 summarizes the main results.

2 Exact relationship for arbitrary anisotropic
second-order statistics

The decomposition of a second-rank tensor into trace and deviator will be
generalized to the correlation tensor, taking into account two special features:
the solenoidal property

kiRij(k,t) = Ry;(k,t)k; = 0 (2)

that follows from the incompressibility of the velocity field, and the depen-
dence on the vector argument k. In what follows, the helicity of the velocity



field will be assumed to vanish; accordingly, the correlation tensor is sym-
metric: R;;(k,t) = Rj;(k,t). We recall that if the (nonhelical) correlation
tensor is isotropic, then elementary arguments (Batchelor [1]) show that it is
proportional to the special tensor

where k = |k| and k; = k;/k is the unit vector along k. We also recall the
elementary property
Pij(k)ki = Pij(k)k; = 0 (4)

which states that P is solenoidal, and
Pim (k) Proj (k) = Pyj(k) (5)

which states that P is a projection. The geometric meaning of Egs. (4) and
(5) is that at any vector k, P(k) is the projection onto the plane perpendicular
to k. We will also use the obvious results

P (k) = Pry (k) P (k) = 2 (6)

To begin, note from Eq. (2) that 0 is always an eigenvalue of R(k, t), and
that k itself is the corresponding eigenvector. It follows that in any frame
centered at k in which k is one of the basis vectors, R(k,t) can be represented
as the matrix

0
0 (7)
0

characterized by exactly three real scalars, where we again remark that the
absence of helicity implies that R is symmetric in any basis. A trace-deviator
decomposition in the plane normal to k yields

e 0 0 d b 0
R=|[0e¢e 0O|+]b —d 0 (8)
0 0O 0 00
where
e=3(a+c) d=3(a—c) (9)
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In this frame, P, as the projection onto the plane perpendicular to k is
represented by the matrix

P—

S O =

o = O

o O O
—
—_
=}
~—

Introducing the two independent symmetric matrices

1 00 010
Mi=|0 -1 0 My=1|1 0 O (11)
0 00 0 00
we therefore have
In terms of the complex quantities

Eq. (12) can be written alternatively as
R=eP +R(ZM) (14)

An obvious coordinate system in which k is a basis vector at every k is
the spherical coordinate system in k-space, in this context called the Craya-
Herring frame (Craya [2], Herring [12]). For the application of this coordinate
system to explicit expressions for M; and M, in terms of the helical mode de-
composition using the (complex) eigenvectors of rotations about k, see Cam-
bon and Jacquin [8] and Waleffe [13]. Egs. (12) and (14) express R in terms of
the minimal number of scalars: the three real quantities b(k, t), d(k, t), e(k, t)
or equivalently, e(k,t) and the complex scalar Z(k,t).

Defining

d b
RF'=dM; +bMy = | b —d (15)
0 0

o OO

the decomposition in Eq. (12),

R = eP + R (16)



is characterized by the properties

e=iR:P=3itrR RF:P=0 (17)

-2

Because these properties are independent of the coordinate system, we can
also arrive at Eq. (16) by coordinate-free arguments. Thus, define the pro-
jection of R along P by

R°=L(R:P)P (18)

where the factor of 1/2 is due to Eq. (6). The operation so defined is a
projection because [RP]P = RP. Accordingly, the decomposition

R=1(R:P)P+[R— L(R:P)P] (19)

coincides with Eq. (16) after introducing the definition Eq. (17) of e and
replacing Eq. (15) by the coordinate-free definition

RF'=R-L(R:P)P (20)

The polarization tensor is geometrically very simple: RP° has one zero
eigenvalue because it is solenoidal, and since R and RP? are both solenoidal,

tr RF =R/ . P =0 (21)
Accordingly, its characteristic polynomial is simply
p(A) = A — (§RPo: RPeb) )

which also follows directly from the explicit expression Eq. (15). It follows
that the eigenvalues of RP* are 0, £,/3RP° : RP?.. Since the eigenvalues of eP

are obviously just e, e,0, the eigenvalues of R are e + /2RP° : RP 0. The
realizability of R is therefore simply the condition

e > \/3RPo: RPO (22)
Note from Egs. (13) and (15) that
77* = LRvel . Ryl (23)

Thus, although the scalars d = RZ and b = IZ are coordinate-dependent,
the magnitude |Z| is a geometric invariant.
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Eq. (19) is a straightforward generalization of the trace-deviator de-
composition in which the trace, the projection along d;;, is replaced by the
operation of projection along P.

The general decomposition Eq. (16) can be rewritten in a form that
isolates the purely isotropic part by projecting e onto its spherical average,

Uk, t) = 47rlk2 ?g elk,t) K (24)

where ?{ (...)d°k denotes integration over a spherical shell of radius k. Note
Sk

that since trivially U(k,t) = 7{ U(k,t) d°k, Eq. (24) does define a
Sk

4dmk?
projection. Defining

E(k,t) =e(k,t) — U(k,t) (25)
and . .
RY (k,t) = E(k, )P (k) (26)
we have
R(k,t)= U(k,t)P(k) + R (K, t) + RP (K, t)
—_——— ——— ———
Isotropic part Directional anisotropy Polarization anisotropy
(27)

The decomposition of the correlation tensor in Eq. (27) has a simple but
important geometrical significance: just as in the trace-deviator decomposi-
tion, each component transforms into another term of the like form under
arbitrary rotation of axes.

3 Description by spherical averages alone

Even in single-point turbulence modeling, it is often useful to introduce
an ansatz for the energy spectrum. For example, such assumed spectra
have proven useful in closing the ‘rapid’ pressure-strain correlation [3, 4].
But the obvious practical difficulty of a complete description of spectral
anisotropy has motivated a search for simpler descriptions of anisotropy.
The approach adopted here is to reconstruct the angular dependence of the
spectrum through appropriate tensorial expansions, using either functions of
the wavenumber alone, as in the expression R(k,t) = U(k,t)F(k, H(k,1)),



or even more simply, functions of single-point moments as in the expression
R(k,t) = U(k,t)F(k,b(t)): in each case, F denotes a dimensionless isotropic
tensorial function of its arguments. The presence of k in the list of argu-
ments distinguishes these expansions from the tensorial expansions familiar
in single-point modeling. The Introduction briefly described some models of
this type. This type of modeling will be reconsidered in this section in the
light of the distinction between directional and polarization anisotropy.

By spherical integration, we can construct two obvious tensor measures
of anisotropy that depend only on k: they are defined by

2E(k, )HO (k,1) = 7{9 RY (k, 1) d°k (28)

2E(k, ) H® (k,t) = 72 RPL(k, 1) d2k (29)
where

E(k,t) = ?[5 e(k, t)d?k = 4nk2U (k) (30)

is the energy spectrum.? The notation follows Cambon and Jacquin [8], and
is motivated by the characterization in Section 2 of directional anisotropy
by the scalar e(k,t) and of polarization anisotropy by the complex scalar
Z(k,t). Obviously,

2E(k, t)tr H® (k,t) = o tr R (k,t)d*k = 2 (e — U)tr P(k)d’k =0 (31)
k k

and, in view of Eq. (21),

2E (k, t)tr H®) (k1) = o tr R (K, t)d?k = 0 (32)
k
so that both of H(®#) are trace-free.

We wish to construct a modeled correlation tensor that depends only
on the spherical averages H(®*). The discussion in Section 2 motivates con-
structing R¥" and RP? separately. To begin, note that R%" depends linearly
on H® and is proportional to P. The simplest assumption consistent with
with these properties is

~

RY"(k,t) = AU(k, t) [H)(k, 1) : P(k)| P(K) (33)

2Qur definition of U is somewhat nonstandard; it is customary to define it so that
E =27k%U.



with an undetermined constant A. Equivalently, in terms of the solenoidal
tensor PH®)P, Eq. (33) sets R%" = A[PH)P]%". The constant A should be
chosen to be consistent with the definition Eq. (28); the spherical average *
of each side of Eq. (33) gives

E(k,)H® (k,t) = —Z AE(k,t)H© (k, 1) (34)

so that A = —15

The treatment of the polarization tensor is somewhat less straightforward.
RP" must be solenoidal and linear in H*). These requirements suggest the
form RP? = PH®P. But in addition, we must take into account that RP% :
P = 0. A general form consistent with all constraints is therefore

Rfj?l(k’ t) = BU(kv t) [sz(k)Hr(rZ)z(k’ t)Pnj (k) - %Hé‘?(k‘, t)PIHI(k)Pz](k)]
(35)
with an undetermined constant B. Again, in terms of the solenoidal tensor
PH®P, Eq. (35) sets RP? = B[PH®)P]P?. Spherical averaging as in Eq. (34)
gives

2E(k,t)H? (k,t) = L BE(k, t)H® (k, 1) (36)

so that B = b.
Combining the results of Eqs. (33) and (35), we obtain the required
representation

Rij(k,t) = U(k, )Py (k) + 15U (k, t) Py (k) HS;) (k, £) Poq (k)
+5U (k, t) | Pin () Py (k) HE) (k, £) = 5 P (k) HEZ) (k, 1) Py (R)](37)

or equivalently,

Rij(k,t) = U(k, t)P;(k) — 15U (k, t) P (k) HS) (k, t) kg
+5U (k, t) [P (k) Py (k) HD) (k, 1) + 1Py (k) HE) (, ) kyk, | (38)

This equation is the main result of this paper. It shows that a completely con-
sistent description of weak anisotropy without arbitrary constants is possible
using independent descriptors of directionality and polarization by tensor
functions of the wavenumber £k alone.

1 .
3The derivation requires the formulas (Cambon et al. [3]) ypres 7{ kik;d’k = £6;; and
79

1 A A A A
P %kikjkmkndzk = 11_5[6ij6mn + (sim(snj + 5in6mj]-



Note that since tr H(®) = 0, the quantity H},g) (k,t)l;:pl;:q that appears in
Eq. (38) is a second order spherical harmonic: after choosing a polar axis and
introducing spherical coordinates, it would be expressed in terms of Legendre
functions in the standard way. The term in brackets containing H®*) has an
analogous interpretation as a tensor spherical harmonic (Zemach, [14]). We
will follow Zemach [14] in referring to scalar spherical harmonics (SSH) and
tensor spherical harmonics (TSH) henceforth. From this viewpoint, Eq. (38)
states the lowest order terms in expansions of R%" and RP% respectively in
scalar and tensor harmonics, or in irreducible representations of the rotation
group SO3. This connection will be developed further in Section 7.

Egs. (28) and (29) give expressions for the spherically averaged correla-
tion function

wiilkt) = ik t)dk = 2E(k,t) (30, + H (k,t) + H (k,t)) . (39)

Eq. (38) states the important conclusion that a solenoidal tensor R can
indeed be constructed from the spherical averages H¢#): this conclusion is
not obvious because the solenoidal property is lost on spherical averaging. In
modeling, it has been the general practice to characterize anisotropy by one
tensor instead of two. Thus, many models are based on

pij(k,t) = ¢ Rij(k,t)d’k = 2B (k,t) (10 + Hij(k,t)) (40)
Sk

where H = H® 4+ H®_ Such modeling mixes directional and polarization
anisotropy. We next ask whether a solenoidal correlation function can be
constructed consistent with H alone.

Proceding as before, we set

R¥ = AU(k,t)(H:P)P
R = BU(k,t) [PHP — L(H : P)P] (41)

We already note that these equations implicitly impose some relation between
R% and RP? and therefore cannot be entirely satisfactory. On spherical

averaging, we find
H= (%A + %B)H (42)

The solution is not unique: it is

A=15+3a B=—a (43)
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where @ can be a function a = a(k,t). Thus, the spectral tensor is
R(k, 1) = Uk, )P (k) + (1 + 50)U (k. t) (H(k, 1) : P(k)P(k)
—3aU(k,t) [P(k)H(k, )P (k) — 5 (H(k, 1) : P(k))P(k)] (44)

and
H® = (1+2a)H, H® =-2aH (45)

which implies the relation

[S1]

aH® = —(1 + 2a)H®). (46)

Eq. (44) is exactly the proposal of Cambon et al. [3] for the first general
model linking R with . The aim was to derive an equation for the spherical
average @(k,t) from the evolution of R in the presence of mean flows with
constant mean velocity gradients. The basic problem is that spherical aver-
aging introduces a closure problem for the pressure-strain and transfer terms,
so that a model for R(k) was needed, parametrized by functions of k only,
and so related in a straightforward way to ¢ (k,t). Starting from an equation
for R(k,t) that includes the exact linear terms (recalled at the beginning
of the next section) and contributions from triple correlations closed by an
anisotropic EDQNM theory, Eq. (44) allowed Cambon et al. [3] to system-
atically derive a closed equation for ¢(k,t), but involving a(k, t) from (44) as
an ajustable parameter. Other more empirical models in which anisotropy is
parametrized entirely by a tensor function of wavenumber k£ have been pro-
posed [15, 16]; they explicitly use some approaches of single-point turbulence
models to close the pressure-strain correlation.

4 Application: short and long time behavior
of weakly sheared turbulence

We have noted that Eq. (38) can be understood as a lowest order expansion in
anisotropy valid only for small departures from isotropy; the restrictions will
be clarified shortly by analysis of the realizability of the correlation proposed
in Eq. (38). This section will give examples of weakly anisotropic flows that
permit direct analysis, and will show that the correlation tensor is indeed
described by Eq. (38). The first example is homogeneous shear flow with
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isotropic initial conditions treated by rapid distortion theory (RDT) in the
short-time limit in which anisotropic effects are necessarily small.

Using the notation of Cambon and Scott [17], we begin with the general
RDT equation

8Riﬂ'( )__%i
ot~ dt Ok,

R;j(k,t) — My (k)Rn;(k,t) — Mjn(k)Rin(k,t) (47)

where M;; = ((5,~m—2/%il%m)Amj, A, = 0U; /0, is the mean velocity gradient,
and the wavevector k, satisfies dk;/ dt = —A,;k;. We will consider evolution
away from an isotropic initial condition R(k,0) = U(k)P(k); we analyze the
evolution at very short times, when the effects of shear remain weak.

Consider the first order Taylor series expansion R(k, t) = U(k)P+tR(k, 0).
Evaluating Eq. (47) at ¢ = 0 using the isotropic initial condition R(k,0)
= U(k)P(k) leads easily to

ag;,] (k,0) = ApnkpknkU' (k) Py;(R) + U(k)kikypAp, P (K)
+U (k) kjky Ay Poi(k) — U (k) Ain Poj (k) — U (k) Ajy Pos ()
= SpnkpknkUl( ) ( ) U( ) zzl(k)Pnj(k)Spn (48)

where S;; = 2(A;; + Aj;) is the strain rate. It follows that

dir
Rij (ka t)
R (K, t)

3t Spokpk (KU (k) + U (k)] Py (k) (49)
~tU (k) | Pim () Pjn (k) Smn + 3 Spakoky Pi(k)] (50

We remark that the U’ term comes from the 0/0k effect in the RDT equa-

tions: it is a conservative linear energy transfer mechanism in k-space, which

therefore appears as a directionality effect; polarization effects instead arise

when energy is transferred between different tensor components of the cor-

relation. We see from Eqs. (49)-(50) that both effects are relevant.
Spherical integration gives

. 1 k dE 2 2

This leads to a(k) = 15/(5 + (k/E)dE/dk) in Eq. (45), which is constant in
any k-space region where E obeys power-law scaling.
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It is useful to supplement this short-time analysis by long-time nonlinear
analysis, as proposed by [18, 19, 20] and others. In these computations, it is
assumed that at least for some range of scales, the shear may be treated as a
weak perturbation of isotropic turbulence: the calculation itself will identify
an appropriate small parameter. The most recent such analysis, by Yoshida
et al. [5, 6] overcomes some limitations of previous work, and introduces a
Lagrangian viewpoint, with important conceptual and computational advan-
tages. Yoshida et al. refer to this calculation as ‘linear response theory’ for
turbulence, since it is accomplished by linearizing about an isotropic nonlin-
ear state. As in the RDT problem above, anisotropy is therefore weak, and
we can again expect Eq. (38) to describe the spectral tensor.

General kinematic considerations (the same as in [3, 4]) lead again to

Rij(k) = U(k)Py;(k) + b(k) Py (k) Spgkpkq + 20 (k) Py (k) Pjr (k) Sy (52)
from which we immediately deduce
R;'i;r = (b- a') (Spql%pl%q)Pij(’;’)
R = 20 (P (k) Pju () Sn + 5Spgkinky Pij (k) ) (53)

exactly the same structure as in Egs. (49)-(50) except for the scalar functions
of k; consequently,
H® = —Lo)s, Hi(jZ) = 295, (54)

v

where §) (k) = [b(k) —d'(k)]/U (k) and ) (k) = 24’ (k)/U (k) are time scales.
In a Kolmogorov inertial range, we will have

0 = (A—B)e P23 9 = AT B3 (55)
where A and B are universal constants. In this case,
2AH® = L(B — A)H® (56)
and the anisotropic part of the spectrum satisfies
EH®) ~ EH® ~ /3 (57)

the scaling suggested by dimensional analysis since H®) oc S (see Yoshida et
al. [6] for more details and references to earlier work).
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Yoshida et al. find theoretical values from spectral closure theory A =
—0.16 and B ~ —0.40. Experimental and DNS measurements give values
closer to A ~ —0.12 and B =~ —0.009. It is found that making realistic
corrections to the theoretical values to account for the finite inertial range
in the measurements, results in much closer agreement. However, for our
purposes, the actual values are not so crucial; the important observation is
that a weakly anisotropic spectral model based on a single tensor H imposes
some fixed proportionality H® = AH®) as shown by Eq. (46); such models
cannot be consistent with both the short- and the long-time results Egs. (51)
and (56). On the other hand, the model Eq. (38) can be consistent with
both limits.

In the case of pure rotation, where A is antisymmetric and hence the strain
S vanishes, no information is given by the previous ‘linear’ approaches. Nev-
ertheless, rotating turbulence provides another example of how directionality
and polarization must be separated in general. The inviscid RDT equation
(e.g. Cambon and Jacquin [8]) for this problem implies

R (k,t) = R¥ (k,0), R (k,t) = exp(4iQkst)RP (k,0) (58)

which yields
H(k,t) = HY (k,0), HS (k1) — 0. (59)

The damping of polarization anisotropy reflects the angular phase mixing
due to the anisotropic dispersivity of inertial waves. We see then that the
kinematics of turbulence under rapid rotation is dominated by directional
anisotropy alone. Spherically averaged polarization can be neglected even
in the presence of nonlinearity, but directional anisotropy can be created by
nonlinearity, even if it is initially zero, in an incomplete transition from 3D
to 2D structure [8, 10, 21].

5 Parametrization by single-point moments

In Reynolds stress modeling, the basic descriptor is the anisotropy tensor b
which can be recovered in the present notation by

/Ooo dk b(t)E(k, 1) = /OOO dk E(k, H(k, ) (60)
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with the classical definitions for kinetic energy X and Reynolds stress anisotropy
tensor b:

00 ubu!, 1

K(t) = swar = [ Bk, t)dk, by (t) = -4 L5,

2 " 0 ulu

AT
n-n

An example of a parametrization of the correlation tensor by single-point

moments is the proposal of Shih et al. [4]; written in terms of directional
and polarization anisotropy components, it is

Rij(k) = Ul(k,t)Py(k) + vs(k, t) Py (k) (v — L)bpgpk,
+443(k, ) P (k) Py () (b + 36nmbyg

This expression can be identified with Eq. (38) with the particular choices

@ — (150D e _ Yk ?)
so that
5H() = 3(y — 5)HE (63)

Since this result fixes a definite proportionality between H®) and H®), how-
ever, it is really a special case of Eq. (44), so that the constant 7 could be
related to the parameter a. It is not necessary to give the explicit relation;
the important fact is such models cannot be consistent with the equations
of motion or the general kinematics. Considerations of realizability which
will be discussed later, led to the choice v = %, which removes directional
anisotropy entirely, which is clearly inconsistent with the problems of shear
and rotating turbulence just analyzed. The important conclusion is that the
spectral tensor cannot be uniquely reconstructed from the stress anisotropy
alone.

Another model of this type recently proposed by Thacker et al. [7] has
the form

Ris 1) = Uk, )P (k) + P () P (YU (5, )l () + 5 Gunbya (1)

This model is essentially the same as Eq. (61) with the special choice v =
which removes directional anisotropy.

15



The fundamental decomposition of anisotropy into directionality and po-
larization suggests introducing two additional single-point descriptors

/Ooo dk b (1) E(k, 1) = /Ooo dk E(k, t)HO (k, 1)
/0 Tk bD B, D) = /0 " dk Bk, OH® (k, ) (65)

so that
b = b + b (66)

which can be considered a refined decomposition of the Reynolds stress
anisotropy.

As an example of Eq. (66), consider the short time RDT results of the
previous section. Multiplying each result in Eq. (51) by 2F and integrating
over k gives

bij=—1Sit b5 = ZSyt bY = -2t (67)

so that bl = —(1/3)b(®), or equivalently, —2b(®) = b. This condition, re-
ferred to by Kassinos et al. [11] as ‘dimensionality and componentality having
the same anisotropy’ although strictly derived only at short times, is con-
sidered to be valid at large time provided that the mean flow is irrotational.
Comparison with Eq. (51) shows that Eq. (67) certainly does not hold for
spectral quantities, because the ratio of H® to H(®) at the first order in time
depends on the initial spectrum through the ‘linear transfer’ generated by
the time dependence k(t).

We can also compute b(>?) for the results of Yoshida et al. [6]. To obtain
a definite result, we will follow previous calculations of this type ([18, 19,
20] to name just a few) and integrate the inertial range spectrum E(k) =
Cre?/3k=%/3 over a range of scales k > kg, where k' is an integral scale of
the turbulence. The result is

b(e)

5= w0 (B A kS
e = Lo A PRy PS (68)

In comparing the results Egs. (67) and (68), we see that the time-scale in
short-time RDT is simply elapsed time ¢, whereas it is a turbulent time-
scale oc e /3Ly 2% in the linear response theory. Moreover, the ratios of
components bz(;) / bg;f) are not the same.

We would like to add some brief remarks on the use of the refined single-

point anisotropy measures b(®?) in turbulence modeling. One attempt to
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improve the prediction of RANS models, and especially to enforce greater
consistency with rapid distortion theory, has been to introduce new ten-
sors in the models. After Cambon et al. [9], the most prominent exam-
ple is the structure tensor formalism proposed in Kassinos et al. [11]. Two
kinds of anisotropy, called ‘componentality’ and ‘dimensionality’ were consid-
ered. Since ‘componentality’ is nothing else than the Reynolds stress tensor
anisotropy identified by b;;, new information is carried only by the ‘dimen-
sionality’ tensor

W_z/ (K, )ik d®

A trace-deviator decomposition for this tensor can be expressed as
1 (e)

so that the ‘dimensionality’, measured by the deviatoric part of Dj;, is in-
duced by directional anisotropy alone, and ‘componentality’ mixes direction-
ality and polarization, via b = b(®) +b(®). The reader is referred to Salhi and
Cambon [22] for more complete relationship with ‘circulicity’ and ‘strophol-
ysis’ tensors from Kassinos et al. [11].

6 Realizability

The construction of a modeled correlation tensor in terms of spherical aver-
ages leaves open the question whether the result Eq. (38) in fact describes a
possible correlation. This is the issue of realizability. Obviously, in the con-
text of weak anisotropy, the anisotropic part is a small perturbation of the
isotropic part U (k, t)P(l;:), and as this part is realizable, it remains realizable
under sufficiently small perturbations.

Realizability is imposed in RANS models through the positivity of the
Reynolds stress. But in a model in which directionality and polarization are
treated separately, it is natural to impose realizability conditions on each
component. Recall in the case of Eq. (38), that e = U (1 — 15H§§)l%pfcq).
Thus the simple necessary realizability condition e > 0 is violated if the
largest positive eigenvalue of Hi(;) is larger than 1/15: this tensor being
tracefree, at least one positive eigenvalue must exist; * therefore, this realiz-

. 1
‘In fact, from f. (k,t)P;j(k)d’k = 2E(k) (56“- +Hi(;)), these eigenvalues are
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ability constraint quantifies precisely how ‘small’ the anisotropy must be to
admit description by Eq. (38).

These difficulties are not unexpected, because we have formulated an
expression applicable only to weak anisotropy. The most direct remedy is
to introduce higher order angular harmonics in the expression for R. This
problem is considered in the next section. We thus find that strong anisotropy
is reflected not only in large values of the lowest order harmonics but also by a
large number of angular harmonics expansion needed for a correct description
of e — Z angle-distribution.

So far, we have only treated the condition e > 0; the stronger condition
e > |Z| is not discussed here for the sake of brevity. We can just note that the
condition e > 0 which depends only on the magnitude of Hz-(je) in (38) is the
most sensitive condition; this could explain why the directional anisotropy
is neglected in some ad hoc models, for examply by choosing v = 1/2 in Eq.
(61): even if H®) is never zero in ‘true’ anisotropic homogeneous flows, it
is safer to suppress its contribution in some spectrum models to avoid too
much sensitivity to realizability issues. Even the value of the constant in the
quasi-isotropic model by Launder et al. (1975) [23] seems (fortuitously ?) to
reflect this condition, as shown by [3, 4].

This problem does not occur for simpler models based only on H or b, both
of which can be computed for any anisotropy whatsoever, although there is
no guarantee that the predicted dynamics will be realistic (Rubinstein and
Girimaji [24]). Thus, the inclusion of b(?) will improve a model only for weak
anisotropy, as the low order suggests. Although, as noted earlier, it is possible
to derive from Eq. (38) closed equations without adjustable parameter for
E(k,t), HO(k,t), H?(k,t) from any closed equation for R;;, and the same
procedure also yields closed equations for single-point moments K, b(¢), b(2),
the disappointing result, found independently by Cambon et al. [9] and
Kassinos et al. [11], is that the resulting model behaves in the RDT limit
worse than a conventional RST model, because of possible loss of realizability
when the anisotropy is not necessarily small.

bounded by +1/3, as they are for any deviatoric tensor derived from a definite-positive
matrix.
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7 SO’ decomposition

The realizability constraint restricts the application of a theory based on
spherical averages alone; this section will describe how to construct more
accurate approximations using higher order expansions based on irreducible
representations of the rotation group SO3. This representation theory has
recently been found very useful in clarifying the scaling properties of corre-
lation functions in turbulent flows (Arad et al., [25]).

7.1 Directional anisotropy

The spectrum models that have been considered so far suggest how the
anisotropic part of the correlation can be expanded in powers of k. For
example, we can continue the development of the first term on the right side
of Eq. (38) beyond the second order by writing

E=U2 (k,)kpkn + UL (k,t)kmknk ks + ... (70)

where U? = —15H(®). The expansion is restricted to polynomials of even
order because of the parity property Ry;(—k) = R;;(k).

Although the notation suggests that Eq. (70) proceeds in powers of k;,
it does not do so without some restrictions on the coefficients. For exam-
ple, Ur . = 6mnAss + -+ will generate a term A,;k.ks that could be in-
cluded in the U? term. Without presenting any details, suffice it to say
that if all such redundancies are eliminated, then U* will belong to a 9-
dimensional representation of SO3 on homogeneous quartic polynomials sat-
isfying VU, kikjkmkn = 0. This is discussed in detail in standard ref-
erences such as Weyl [26]. Equivalently, after choosing a polar axis n, the
expansion could be described in terms of Legendre functions as a spherical
harmonics decomposition following Cambon and Teissedre [27],

E(k) = Zl _Z_ e, (k1) PRcos®) explum). (71)

Yz%(a,sﬂ)
where 6 = arccos(n-ic) is the polar angle and ¢ is the azimuthal angle in a

system of polar-spherical coordinates with axis m, and Pj are the associated
Legendre polynomials of degree 2n and order m.
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7.2 Polarization tensor

The analogous higher order expansion of the second term on the right side
of Eq. (38) is

R (k) = § [Pon (k) Pyu (k) + Pn(K) Py () — Pij (k) P (k)] x
{Tr(:m(kﬂ t) + Tr?mrs(k’ t)];"rifs + - } (72)

where T? = 5H(%).

The structure of the higher order terms in the expansion of polarization
is not so simple as the higher order terms in the expansion of directional
anisotropy, and the steps which make Eq. (72) an orthogonal expansion in
irreducible representations are less obvious and standard than the steps lead-
ing from Eq. (70) to Eq. (71). Although T° (< H®)) is simply a constant
trace-free second-rank tensor, T2 consists of matrices with quadratic polyno-
mial entries; their decomposition into irreducible representations or tensor
spherical harmonics (TSH) can be summarized as follows (compare also the
discussion in Arad et al. [25] for more general tensor quantities): invariant
tensors of differential operators can be constructed. Their action on homoge-
neous polynomials belonging to a representation on scalar functions generate
the appropriate representations on tensors. In the case just mentioned, we
find that T2 belongs to a 25-dimensional representation that is decomposed
into irreductible representations of dimensions 1,3,5,7,9. The representation
of dimension 1 cannot contribute to polarization, and the representation of
dimension 3 does not survive solenoidal projection. The remaining repre-
sentations of dimensions 5,7,9 define solenoidal TSH. In the interest of con-
creteness, we list the TSH that correspond to the irreducible representation
of dimension 5. To compute it, we use the infinitesimal generators of SO3:

L, = k,d/0k, — k,0/0k,
Ly = k,0/0ky — k,0/0k,
L, = ky0/0k, — ky0/0k, (73)

Let P; denote any five harmonic quadratics, for example, {kJ — k7, k. —

k2, kyky, kyk,, k,k; } The representation of dimension 5 is defined by

N} = (LiLj + L;L; — 3L, Ly6;) P} I =1,..5 (74)
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Examples are the matrix so generated from k2 — k-

2k —k2)  2k,k, 3kok,
2.k, 2(k2—K2)  —3kk, (75)
Bkok,  —3kyk, 2K —K2)

and two others obtained by simultaneous cyclic permutations of x,y, z and
of tensor indices (note that the three tensors so generated sum to zero), and
the matrix generated from kgk,

2koky, K24+ K2—2k2  3kyk,
K24 K2 -2k 2Kk, 3k, k. (76)
3k, k. 3kyk, —dkyk,

and two others obtained by the same cyclic permutations.

This analysis shows that it is only a coincidence that at the lowest order of
anisotropy, directionality and polarization are both described by a constant
trace-free second-rank tensor. At even the next order, the descriptions are
quite different: as noted above, directionality is described by a homogeneous
fourth degree polynomial, but polarization is described by three distinct types
of second rank tensors with quadratic polynomial entries.

We believe that these expansions in scalar and tensor spherical harmonics,
which clearly have very different mathematical origins, again underscore the
difficulties of confounding directional and polarization anisotropy along the
lines of the standard anisotropic models.

7.3 Axisymmetric turbulence

The problems raised by extending the description from weak anisotropy to
arbitrary anisotropy can be better understood in the comparatively simple
case of axial symmetry. Let the unit vector n be the axis of symmetry. In this
case, any tracefree tensor function of £ alone obtained by spherical averaging,
or any single-point moment obtained by integration over all Fourier modes
can be expressed as H;; = %Hn(?)ninj — ¢;;) in terms of the single axial
component H, = H;;n;n;. As for the k-dependent spectra, a polar-spherical
system of coordinates can be introduced, so that Eq. (71) reduces to

E(k,t) = % eon(k, ) Py, (cos 6) (77)

n=1
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in which only terms with m = 0 appear. In addition, the polarization
anisotropy also can be expanded as

N1
Z(k,t) =sin*0 > z,(k,t)P.(cos ) (78)
n=0
in which the complex-valued Z is defined as in Cambon and Jacquin [8], us-
ing the symmetry axis n to define the helical modes. In Eq. (78), z, is real
for even n and purely imaginary for odd n due to the hermitian symmetry
property Z(—k) = Z*(k); imaginary terms can represent the breaking of
mirror symetry present, for example, in rotating turbulence and also yield
some ‘stropholysis’ terms (Kassinos et al. [11]). If axial symmetry is un-
derstood to include invariance under reflections through planes containing
the polar vector m, then Z is real, and only terms of even order appear in
the expansion of Z. Restricting to even orders with N; = 2Ny, Eqs. (77)
and (78) can be recovered from Sreenivasan and Narasimha [28] and from
Cambon & Teissedre [27].

Note that the factor sin?f is essential in the expansion of Z in Eq. (78)
because polarization anisotropy must vanish when the wave-vector is parallel
to the axial vector m: reference to Eq. (15) shows that RP? can only be
axisymmetric if b = d = 0. The expansion of Z in Eq. (78) therefore is
somewhat special. The general spherical harmonics expansion for Z in [12]
is not consistent with this property. At the lowest order (Ny = 1, N; = 0),
HYkik; = HE P with P) = 1(3cos?0 — 1), and Z = 2H{ sin?, defining
Z as in Cambon and Jacquin [8].

Since the spherical harmonic decomposition required for the expansion of
directionality to higher order is entirely standard, we consider the expansion
of polarization to higher order. We will construct the axisymmetric tensor
spherical harmonics of the first order beyond H#), without however present-
ing derivations. We noted at the end of Section 7.2 the existence of TSH
belonging to the irreducible representations of dimensions 5,7, and 9. We
find exactly one axisymmetric TSH belonging to each of these representa-
tions. That corresponding to the irreducible representation of dimension 5 is
generated by the (unique) axisymmetric quadratic polynomial 2k2 — k2 — k?
by the differentiation process described in Section 7.2. The corresponding
TSH is

—2k2 + 4k — 2k2 —6k,k,y 3ksk,
As = —6k,k, 4k — 2k} — 2K2 3kyk, (79)
3kzk, 3kyk, —2k2 — 2k2 + 4k?2
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so that
As : P =2k72((K2 + k7)) — 2k2) (80)

Recalling the relation Eq. (23),
Z = k=" (6(k2 + ky)? + 6(k2 + k2)k?) = 6sin” 0 (81)

in agreement with (78) for n = 0.

The TSH belonging to the irreducible representation of dimension 7 prove
to change sign under inversion through planes containing the polar axis. We
simply note the (again unique) axisymmetric TSH

Ar=| —k2+ k2 2.k, 4kk,

—dkyk,  Akgk, 0

(82)

ok, —k2+ K2 —4kykz]

for which e = 0 and Z = 100k™%k, (k2 4 k2) = 10zsin® f cos 0, in agreement
with (78) for n = 1. The inversion antisymmetry implies that Z is purely
imaginary.

The axisymmetric TSH belonging to the irreducible representation of di-
mension 9 is

—Ak? + 3k2 + k2 2k, k, —8kyk,
Ay = 2k, ky —4k2 + 3k2 4k —8kyk, (83)
—8kk, —8kyk, 8k2 — A(kZ + k)
so that
Ao : P = k=" (24K2(k2 + k2) — 3(k? + k7)* — 8k?) (84)

and
Z =k * (30k2(k2 + k2) — 5(k? + k7)?) = 5sin?0(Tcos’0 — 1) (85)

in agreement with (78) provided terms with both n = 0 and n = 2 are
included.

8 Conclusions and perspectives

We summarize the main points of this paper as follows:

23



1. The description of weak anisotropy by tensor functions of wavenumber
k alone requires two tensors as in Eq. (38). These tensors represent the
distinct effects of directional anisotropy and polarization anisotropy as
defined by Cambon et al. [8, 9, 10]. The reduction to a single ten-
sor function of k compromises the kinematics by introducing implicit
assumptions about anisotropy, usually that directional anisotropy van-
ishes. We emphasize in particular that the correlation tensor cannot be
uniquely and self-consistently reconstructed in terms of the Reynolds
stresses alone.

2. Some special cases of anisotropy were considered: short time response
of turbulence to arbitrary strain and the long time nonlinear response
of turbulence to small strain. Polarization and directional anisotropy
are related differently in each limit; consequently, a model based on a
single spherical average cannot be consistent with both limits. Turbu-
lence under rapid rotation leads to a conclusion opposite to that usually
adopted in models, namely dominant directional anisotropy and van-
ishing polarization.

3. The description of anisotropy by two tensor functions H®?) (k,t) was
exhibited as the lowest order in an infinite expansion in scalar and
tensor spherical harmonics generated by the SO?® decomposition. In
this case, polarization and directional anisotropy are both described
by a traceless second rank tensor, but the description becomes more
complex at higher order.

To conclude, we note some important open issues for anisotropic turbu-
lence. The first is the question of connecting the higher order coefficients
in SSH and TSH expansions to spherically averaged higher order moments
of the spectral tensor. A related question is whether it is possible to model
the higher order terms by tensor products of H), H®) and the mean ve-
locity gradient OU;/0z; if a mean flow is present. Recent studies in rotating
(Bellet et al. [21]) and/or in stably stratified turbulence have confirmed that
the anisotropy identified by the angle distribution of £(k) can be very large,
and is only reflected by small or moderate values of Hfj or bg;). In such
cases, the SSH expansion of R would need to be carried out to extremely
high order. This expansion is unlikely to be practical; this raises the ques-
tion whether a different characterization of large anisotropy than spherical
harmonics expansions may be required.
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