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It has become evident that our commercial air transportation system is reaching its peak
in terms of capacity, with numerous delays in the system and the demand still steadily
increasing.  NASA, FAA, and the National Consortium for Aviation Mobility (NCAM) have
partnered to aid in increasing the mobility throughout the United States through the Small
Aircraft Transportation System (SATS) project.  The SATS project has been a five-year
effort to provide the technical and economic basis for further national investment and policy
decisions to support a small aircraft transportation system.  The SATS vision is to enable
people and goods to have the convenience of on-demand point-to-point travel, anywhere,
anytime for both personal and business travel.  This vision can be obtained by expanding
near all-weather access to more than 3,400 small community airports that are currently
under-utilized throughout the United States.  SATS has focused its efforts on four key
operating capabilities that have addressed new emerging technologies, procedures, and
concepts to pave the way for small aircraft to operate in nearly all weather conditions at
virtually any runway in the United States.  These four key operating capabilities are:  Higher
Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems
for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing
Facilities, and Increased Single Pilot Performance.  The SATS project culminated with the
2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th, by showcasing the
accomplishments achieved throughout the project and demonstrating that a small aircraft
transportation system could be viable. The technologies, procedures, and concepts were
successfully demonstrated to show that they were safe, effective, and affordable for small
aircraft in near all weather conditions.  The focus of this paper is to provide an overview of
the technical and operational feasibility of the four operating capabilities, and explain how
they can enable a small aircraft transportation system.

Nomenclature
ADS-B = Automatic Dependent Surveillance-Broadcast
AMM = Airport Management Module
ATC = Air Traffic Control
ATP = Airline Transport Pilot
CCD = Charge-Coupled Device
CDTI = Cockpit Display of Traffic Information
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DARTS = Digital Applications and Research Test System
EFB = Electronic Flight Bag
EVS = Enhanced Vision System
ERI = En Route Integration
FAA = Federal Aviation Administration
FAATC = Federal Aviation Administration Technical Center
FD = Flight Director
ft = Feet
GPS = Global Positioning System
HITS = Highway In The Sky
HVO = Higher Volume Operations
HUD = Head-Up Display
IAF = Initial Approach Fix
IFR = Instrument Flight Rules
ILS = Instrument Landing System
IMC = Instrument Meteorological Conditions
JPDO - Joint Planning & Development Office
LaRC = Langley Research Center
LLM = Lower Landing Minimums
LWIR = Long Wave Infrared
MAHF = Missed Approach Holding Fix
MFD = Multi-Function Display
NAS = National Airspace System
NASA = National Aeronautics and Space Administration
NCAM = National Consortium for Aviation Mobility
nm = Nautical Mile
PFD = Primary Flight Display
RNP = Required Navigational Performance
SATS = Small Aircraft Transportation System
SCA = Self-Controlled Area
SPP = Single Pilot Performance
SVS = Synthetic Vision System
VMC = Visual Meteorological Conditions
VHF = Very High Frequency
WAAS = Wide Area Augmentation System

 I. Introduction
Aviation has become an indispensable part of our nation’s transportation system, however, the system as it exists

today is reaching full capacity and beginning to limit mobility.  In addition, there is a demand in the nation for

“more people and goods to travel faster and farther, with fewer delays” as captured in the 2003 NASA Strategic

Plan.1  Nearly 96% of domestic air travelers are forced to fly through fewer than 500 airports, and 70% through

fewer than 35 of the Nation’s more than 18,000 landing facilities.2   Statistics show that 22% of the population lives

within 30 minutes of major/hub airports, 41% live within 30 minutes of any commercial airport, and 94% within 30

minutes of small community airports.3  One solution to increasing mobility in our nation’s transportation system is

to exploit the abundant small community airports across the country (figure 1).1
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The SATS vision is to enable people and goods to

have the convenience of on-demand point-to-point

travel, anywhere, anytime for both personal and

business travel.  The vision can be achieved by

expanding near all-weather access to more than 3,400

small community airports (with paved runways 3,000

ft or longer) that are currently under-utilized

throughout the United States.  Most of these small

airports today have no control towers and lie outside

air traffic control radar coverage.  New and emerging concepts, technologies, and operational procedures need to be

developed that will increase the accessibility to these small community airports in near all-weather conditions, with

only minimal increase in the ground infrastructure costs.  Communities with airports capable of handling small

aircraft or micro jets in near all-weather conditions create significant economic opportunities and benefits compared

to communities that are not served by such landing facilities.4

The SATS project was chartered to demonstrate that new capabilities could be developed which overcome four

obstacles to affordable, safe, and reliable on-demand point-to-point air transportation.  The SATS project has been a

Research & Technology effort focusing on the four operating capabilities:

• Higher Volume Operations at Non-Towered/Non-Radar Airports;

• En Route Procedures and Systems for Integrated Fleet Operations;

• Lower Landing Minimums at Minimally Equipped Landing Facilities;

• Increased Single Pilot Performance.

These capabilities open the door to a future of personalized air transportation using small aircraft (carrying from four

to ten passengers) and small airports to compliment the existing hub-and-spoke system.

The SATS project has been a public-private cost-sharing partnership among NASA, FAA, and the National

Consortium for Aviation Mobility (NCAM). NCAM is a consortium of public and private organizations including

130 members of industry, universities, not-for profit organizations, and state aviation authorities located throughout

the United States.  SATS has leveraged the expertise and capabilities among its partners, and collaborated with other

NASA and FAA programs and projects, to enhance the opportunities for technology development, infusion, and

Hub
Commercial
SATS Capable

Figure 1. Over 3400 SATS Capable Airports (Public
Use, Land-Based, Paved 3000 Ft. Runway
Minimum, not a Major Hub).
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transfer, along with information sharing, commercialization, and certification.  The NCAM consortium has been

structured through six labs:  Maryland Mid-Atlantic SATSLab, North Carolina & Upper Great Plains SATSLab,

SouthEast SATSLab, Virginia SATSLab, Michigan SATSLab, and Indiana SATSLab.

The goal of the five-year SATS project has been to take the first steps toward the long-term SATS vision by

fostering research and development of primarily key airborne technologies, procedures, and concepts that support

the four operating capabilities; providing an integrated technology evaluation and validation; and culminating in a

public demonstration to prove that a small transportation system is viable.

 II. Four Enabling Operating Capabilities
The SATS project has focused its efforts on four enabling operating capabilities that are believed to take a

critical step towards the SATS vision of an on-demand, point-to-point air transportation system.  These four

operating capabilities, that will be further described below, are: Higher Volume Operations (HVO) at Non-

Towered/Non-Radar Airports where more planes can access the small airports in poor weather conditions; En Route

Procedures and Systems for Integrated Fleet Operations (ERI) into the nation’s air transportation system; Lower

Landing Minimums (LLM) at Minimally Equipped Landing Facilities where planes are less affected by poor

visibility; and Increased Single Pilot Performance (SPP) so that the safety and accuracy of pilots are increased.

The project has developed and demonstrated the feasibility of the technologies, procedures, and concepts that

support these four operating capabilities through analysis, Human-In-The-Loop simulations, and single and multi-

aircraft integrated flight evaluations. The simulations and aircraft flight experiments entailed an assessment of the

pilot skills (e.g., flight technical error), workload, and situation awareness compared with today’s procedures or

technologies.

A. Higher Volume Operations at Non-Towered/Non-Radar Airports
In order to benefit from the go-anywhere, go-anytime, point-to-point air travel, both concepts and procedures

need to be developed that will allow for increasing the number of aircraft that can fly in and out of small airports

when Instrument Flight Rules (IFR) are in effect.  During Instrument Meteorological Conditions (IMC), today’s

procedural separation operations restrict traffic flow at non-towered/non-radar airports by allowing only one aircraft

to fly either an instrument approach or departure at a time.  No further operations are allowed into the uncontrolled

airspace until the instrument approach or departure is completed, thus leading to significant delays to pilots and

passengers if there is increased traffic flow.  The SATS project has developed the HVO concept and procedures to
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overcome this one-in/one-out obstacle (figure 2).  This HVO concept is to enable simultaneous operations by

multiple aircraft in non-radar airspace, at and around small non-towered airports, in near all-weather conditions,

through the use of sequencing and self-separation algorithms and flight path management systems .2,5,1

The HVO concept, pioneered at NASA Langley Research

Center, is based on two fundamental aspects that include a

Self Controlled Area (SCA) and an Airport Management

Module (AMM).5,6  The SCA is airspace that is established at

a SATS-type airport (non-towered/non-radar airport) during

IMC in which pilots accept responsibility for maintaining

self-separation from other traffic and for following

sequencing information on an instrument approach, using

procedures and onboard automation (figure 3).  The AMM is

an automated ground computer system, located at or near the SATS airport, that provides information regarding the

SCA status, and sequence number information to arriving aircraft, along with the ‘fix’ locations assigned within the

SCA. The fix locations include the Initial Approach Fix (IAF)

and the Missed Approach Holding Fix (MAHF).  These

assignments are based on calculations involving aircraft speed,

aircraft position [received from aircraft broadcasting state data

via Automatic Dependent Surveillance-Broadcast (ADS-B)],

and also winds in the terminal area, and missed approach

requirements.7  The maximum number of aircraft allowed in the

SCA is determined by the number of holding altitudes assigned

to the IAFs.

SATS aircraft operating within the SCA environment will need to have as a minimum:

• Global Positioning System (GPS) receiver;

• Air-to-Ground Datalink Communications (broadcast and receipt of AMM message);

• Air-to-Air Datalink Communications (broadcast and receipt of ADS-B state messages and

procedure intent messages);

Figure 3. Self Controlled Area around a
SATS-type airport.

Figure 2. SATS airport concept to allow for
simultaneous operations by multiple aircraft
at non-towered/non-radar airports in IMC.
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• Cockpit Display of Traffic Information (CDTI);

• Software to conduct the HVO procedures (display of sequencing information from AMM, and

Conflict Detection and Alerting algorithms);

• Voice Communication Radios.

While outside the SCA, the SATS aircraft will operate and interface with Air Traffic Control (ATC) in the same

manner as every other IFR aircraft.  Prior to departing controlled airspace and entering the SCA, the pilot must send

a datalink message to the AMM, requesting entry.  The AMM will send a message back to the aircraft whether an

entry or standby is granted.  The pilot must then contact ATC to get approval to depart controlled airspace, prior to

entering the SCA and following the AMM messaging.  The SCA will include an instrument approach path, such as a

GPS-T, for the pilot to follow.  The AMM message will provide information on which aircraft to follow, if more

than one HVO equipped aircraft is in the SCA, and which ‘fixes’ (IAF and MAHF) are assigned to the aircraft.

With all HVO participating aircraft broadcasting and receiving critical ADS-B flight information (e.g., position,

heading, and airspeed) with other aircraft, all SATS equipped aircraft in the area will be displayed on the CDTI

screen along with the pertinent AMM messaging (figure 4).  It is the pilot’s responsibility to stay a safe distance

from other aircraft when in the SCA.  Conflict Detection and Alerting algorithms have been developed to warn

pilots of any potential conflicts with other aircraft as well as warn pilots if their aircraft is getting off the desired

course.  When departing a SATS airport, all departure procedures are similar to today’s FAA procedures, where the

pilot files an IFR flight plan and receives a clearance time from ATC.  The pilot can then initiate a departure when

the runway is clear, no other aircraft is past the Final

Approach Fix, and when he can maintain spacing

behind any previously departed aircraft.  During

Visual Meteorological Conditions (VMC), SATS

aircraft will comply with the existing procedures for

see-and-avoid to maintain separation from other

traffic.

The HVO concept and its procedures have been

developed and validated through both simulation and

flight tests.  The simulations and flight tests have

Figure 4. Multi-Function Display showing HVO
functionality to the pilot.
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shown that low-time instrument rated pilots could fly the procedures safely, proficiently, and with acceptable levels

of workload and situation awareness.8,6  These results also showed that the volume of aircraft into and out of small

airports could increase by four times by following HVO procedures compared to today’s procedural separation by

air traffic controllers.8  This gain can be realized without an increase in workload or complexity.  The impact of the

HVO concept and procedures not only leads to an increase in mobility, but also a cost savings in fuel by reducing

delay time.  The HVO concept and procedures can help enable efficient point-to-point travel and allow bypassing of

saturated hubs, which could have a significant impact on our transportation system.

Although much progress has been made relative to the HVO concept and procedures, additional research is still

required to optimize and assess procedures that could be used in the HVO environment, specifically issues of mixed

equipage (both HVO and non-HVO equipped aircraft flying within the defined SCA) and off-nominal procedures

(e.g., emergency landings, cancellation of approach request, and failure of the datalink radio).  Pilots of HVO

equipped aircraft can only separate themselves from other aircraft broadcasting ADS-B state data.  In a worst case

scenario, HVO procedures degrade to one-in/one-out procedural separation if limited to one IAF with one holding

altitude, or if following a non-HVO equipped aircraft.  In terms of off-nominal procedures, reference 9 presents

results from selected off-nominal operations researched at NASA Langley Research Center (LaRC), with discussion

of further research to be conducted in reference 7.

B. En Route Procedures and Systems for Integrated Fleet Operations
In order for SATS to become a viable transportation system, the National Airspace System (NAS) must be able

to support the transition of aircraft into and out of the Self Controlled Areas, and also handle the increased point-to-

point traffic between small airports.10,11,12  This concern has led to the second key operating capability effort, En

Route Procedures and Systems for Integrated Fleet Operations (figure 5), otherwise know as ERI, which focuses on

two areas:

• Impact mitigation through the development of technologies and procedures to facilitate SATS interaction

with the NAS (e.g., transfer of separation responsibility to pilots once inside the SCA, ensuring aircraft

departing the SCA are within the acceptance rate for ATC) and working with the FAA to assess operational

effectiveness of SATS concepts, technologies, and procedures;
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• Traffic modeling to assess the impact of emerging numbers of SATS enabled aircraft on NAS traffic

density and flow, project future point-to-point traffic demand triggered by SATS, and assess the ability of

the NAS infrastructure to absorb increased traffic.4

NASA LaRC and FAA W. J. Hughes Technical Center (FAATC)

have worked closely together developing and assessing the language

used between the pilots and the controller for entering and exiting the

SCA.  In addition, proof-of-concept simulation experiments for two

east coast regions (which include an en-route sector and a terminal

sector) along with a joint FAATC/NASA LaRC simulation (a linked

en-route sector) have been conducted.  The two east coast regions

chosen were the Philadelphia Terminal Radar Approach Control, for

its high traffic and complexity, and Danville, Virginia for its relatively low volume and little to no congestion.  The

simulation experiments included pilots at NASA LaRC and Certified Professional Controllers from both the

Philadelphia Terminal Radar Approach Control and Washington Air Route Traffic Control Center.  These

simulations evaluated the Air Traffic Controllers acceptability of SATS procedures, their ability to control SATS

traffic into and out of the SATS airports, as well as the ability to flow high volumes of SATS equipped aircraft into

the NAS (figure 6).  These simulations were conducted to determine the future feasibility of SATS procedures

within the NAS compared to current day one-in/one-out operations.  Simulation results into and out of the SCA

indicated that SATS would be likely to have minimal or no impact on ATC workload, with the potential to ease

future congestion and delays.  The preliminary results have determined that the SATS procedures were viable and

could prove beneficial for non-towered airports.  Most controllers viewed SATS HVO favorably due to the

transferring of responsibility from ATC to the flight crew

once an aircraft entered the SCA.  Issues that controllers did

note that need to be addressed before the HVO concept could

be operationally feasible include: the need to more clearly

define roles and responsibilities for ATC and pilots; reduce

or tailor size of SCA to specific airspace for which it is sited;

refine clearance procedures and phraseology into and out of

Figure 6. FAATC Target Generation Facility
ATC Simulation Pilot Lab.

Figure 5.  En Route Integration into
the NAS.
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the SCA; and conduct further investigations on the impact of mixed equipped aircraft (HVO and non-HVO).10  The

FAAs acceptability of the HVO concept and procedures, along with en route integration into the NAS, plays a

critical role in addressing the limitation of one-in/one-out operations at small, community airports in low visibility.

The ERI objective has also involved the development of models and tools to assess the integration of SATS-

enabled aircraft into en route air traffic flows and controlled airspace.  Current NAS simulation and assessment tools

do not include SATS operations. Within the SATS project, high fidelity computational tools developed by the

‘Transportation Systems Analysis and Assessment’ sub-project have created new systems analysis capability for

NASA and are currently being used by the Joint Planning and Development Office (JPDO) Evaluation and Analysis

Division for prediction of travel demands in the future.  SATS demand projections & tools are being incorporated

by the JPDO planners in the development of the Next Generation Air Transportation System.4

C. Lower Landing Minimums at Minimally Equipped Landing Facilities
For the more than 3400 small SATS capable airports across the United States to be part of a viable transportation

system, these airports need reliable and affordable access in near all weather conditions.  Analysis conducted within

the SATS project has shown that for these small airports (public-use paved runways of 3000 ft. or more) across the

country, only 20% have precision instrument approaches.13 Current airports without navigation aids and/or

instrument approach procedures are limited to VFR minimums for ceiling and visibility, which can be as restrictive

as 1000 ft. and 3 miles, respectively.14  The concept of LLM at Minimally Equipped Landing Facilities is to provide

precision approach and landing guidance to small airports in

low visibility, through the use of key airborne technologies

such as advanced Primary Flight Displays and Multi-

Function Displays with graphical flight path guidance [e.g.,

Highway In The Sky (HITS) and Flight Director (FD)

guidance], artificial or enhanced vision, and also Head-Up

Displays (HUD) (figure 7).

The SATS project has also taken the approach to leverage

emerging technologies, such as GPS/Wide Area

Augmentation System (WAAS), allowing for lower landing

minimums and offsetting additional airport infrastructure

Figure 7. Advanced cockpit concept utilizing
a PFD with HITS flightpath guidance, a
MFD with navigational tools, and HUD for
out-the-window monitoring for improved
flightpath accuracy and situation awareness
in IMC.
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costs.  Enabling this concept of LLM could avoid land acquisition and approach lighting costs, as well as the high

cost for ground-based precision guidance systems such as Instrument Landing Systems (ILS).1

The near term goal of SATS is to demonstrate the ability for conducting landings and takeoffs with minimum

ceiling and visibility requirements of 200 ft. and 1/2 mile, respectively.  Early studies in the SATS project showed

that if an approach to precision minimums of 200 ft. decision altitude and 1/2 mile visibility is made possible, small

airports across the United States would be accessible 95% of the time.15  For IMC operations below 200 ft., a

significant difference in complexity and cost of technologies would be required.

Throughout the project, the SATSLabs have developed and enhanced flight path management displays by

capitalizing on key airborne technologies that allow pilots to fly en route, approach, and departure procedures much

more efficiently and accurately than with conventional instruments, due to the intuitive nature of the displays.

SATS has taken advantage of Synthetic Vision Systems (SVS), which rely on navigation information (GPS or

GPS/WAAS) and terrain databases to generate a synthetic view of terrain on a Primary Flight Display (PFD) or

Multi-Function Display (MFD).16,17  One of the goals of the SVS display development effort is to make IMC

operations resemble those conducted in VMC with similar safety and pilot workload.18  Research has been

conducted by the Virginia SATSLab on guidance displays that incorporate an energy management angle-of-attack

Flight Director to aid the pilot in manually flying a safe, accurate, and energy-efficient approach for optimum

performance when transitioning between en route and the SATS SCA.19,20  North Carolina & Upper Great Plains

(NC&UGP) SATSLab has conducted significant work in the area of advanced cockpit displays using synthetic

vision, where simulation and flight test results have shown that an aircraft PFD with three-dimensional flight path

HITS superimposed on a SVS terrain image provides a viable

means for a pilot to confidently and consistently control an

aircraft while flying highly accurate precision approaches to a

200 ft. decision height in limited visibility (figure 8).21,22  The

HITS pathway provides a predictive method, rather than reactive

method associated with conventional needle and dial instruments,

for controlling the aircraft.  For simulation and flight instrument

approaches to Wakefield Airport in Wakefield, Virginia, the

intuitive nature of the SVS/HITS/FD guidance display system

Figure 8.NC&UGP SATSLab advanced
display with SVS/HITS/FD flightpath
guidance.
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provided greater situation awareness, reduced pilot workload, and improved accuracy by 10-fold over conventional

round dial instrumentation (figure 9).  Although the NC&UGP and other SATSLabs have achieved significant

advancements with SVS/HITS, further research, development, and analysis needs to be conducted to prove the level

of safety these advanced displays can achieve over conventional flight instrumentation, since currently the FAA

limits SVS/HITS displays to current Non-Precision Approach minimums without ILS.

In addition to the SVS effort, low-cost enhanced vision sensors, comprised of a low light level Charge-Coupled

Device (CCD) camera and an uncooled Long Wave Infrared (LWIR) imager, have been integrated into a dual-mode

system by the SouthEast SATSLab.23,24  This dual-mode Enhanced Vision System (EVS) can allow pilots to see at

night and enhance visual penetration through low visibility conditions such as rain, haze, and snow, and is

compatible with small aircraft/general aviation platforms.  The dual-mode system allows for single-aperture imaging

and single optical axis with identical field-of-view allowing for easy fusion of both the CCD and LWIR images for

enhanced visual performance (figures 10, 11).  Work has also been conducted on fusing EVS images with a SVS

Figure 9. Flight experiment results of flying conventional instrumentation compared with an advanced
SVS/HITS/FD guidance display on approaches to Wakefield airport by NC&UGP SATSLab.
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database, allowing pilots to detect obstacles that are not in the terrain database.  An added feature of fusing EVS

with SVS is that any database inaccuracies due to either GPS/WAAS or database errors can be detected.25

A significant contribution to the LLM operating

capability objective has been the research and

development conducted on a low-cost Head-Up Display

(HUD) by the Maryland Mid-Atlantic SATSLab.  The low cost HUD has been designed to display critical flight

performance information along with flight guidance cues to the pilot in a “head up” manner, which is particularly

important while on approach to landing during IMC.26,27,28  The HUD allows the pilot to maintain out-the-window

monitoring, to assist in quickly spotting the runway environment as the aircraft breaks out of the clouds, allowing

the pilot safer and more efficient operations over using a Head Down Display (figure 12).  The HUD has been

developed and tailored for general aviation aircraft to project real-time EVS imagery of the external scenery.  A new

FAA ruling (Regulation Identification Number 2120-AH78) has

approved the operational use of an FAA-certified Enhanced

Flight Vision System with a Head-Up Display to allow a pilot to

continue the approach from decision height or minimum descent

altitude to 100 ft. above the touch down zone elevation.29  The

required visual references of the runway environment or approach

light system must be presented on the HUD during the straight in

landing instrument approach.  This criteria is well within the

desired goals of the LLM operating capability of IFR approaches

down to 200 ft. minimum.

In addition to key airborne technologies developed for the LLM operating capability, SATS has also designed

Required Navigational Performance (RNP) based instrument approaches for airports with specific characteristics

Figure 10. Dual-mode EVS sensor package design.

Figure 11. Fusion of Visible and LWIR images
with dual-mode EVS Sensor package.

Figure 12. Maryland Mid-Atlantic
SATSLab HUD with EVS allows for
increased safety and performance on
approach to landing.
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such as mountainous terrain, restricted airspace constraints, noise abatement restrictions, and shortened approach

distances.  To achieve these goals, both straight-in and complex curved approaches were demonstrated and

evaluated for the approach designs.  The complex curved approaches allowed for much more flexible arrival routes

with lower landing minimums to the constrained airports.30  SATS has used FAA GPS/WAAS approach criteria and

modeled approaches to a number of small airports including the GPS-T approach to Danville Regional Airport, in

Danville, Virginia where the SATS 2005 Public Demonstration was held.30,31,32  The simulated SCA defined for the

Danville airport consisted of two initial approach paths merging into a T.  A SATS GPS-T approach was overlaid on

the ILS approach to Runway 02, and also one was overlaid over the certified GPS approach for runway 20 as shown

in figure 13.

Flight simulations and flight-testing have proven the

feasibility of these approaches.  Flight experiments conducted

with SATS designed RNP approaches have confirmed RNP

performance to well within +/- 0.3 nm. lateral and +/- 125 ft.

vertical guidance for non-standard approaches, using advanced

guidance technologies such as SVS, EVS, HITS, and

HUDs.30,21 Reference 28 meets this criteria from Final

Approach Fix to decision altitude.  The RNP 0.3/125 ft. level

supports limited Category I minima.33

Developing technologies that will improve the pilot's ability

to consistently and accurately navigate to a reduced decision

height, without the need for costly ground based instrument

systems, will greatly improve the ability to achieve near all-

weather accessibility to small community airports.  SATS

transportation system studies have shown that the technologies

developed for LLM, along with the RNP approach designs, can make access to airports more feasible in spite of

restrictions caused by weather, noise abatement, terrain, obstacles, and special use airspace.  This will have a

significant impact on reducing the number of delays and cancellations, making SATS a significantly more viable

transportation alternative.

Figure 13. SATS area navigation
approach for Runway 20 at Danville
region airport.
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In fact, system studies have shown that when reliable SATS air-taxi service can be provided at the more than

3400 small airports, there will be a 25% increase in the total demand for affordable air-taxi service.15  In addition,

increasing the reliability of accessing small airports with the use of the LLM technologies reduces the cost of

providing the service.  By reducing cancellations and delays the service providers can reduce the cost of the ticket to

the traveler by as much as 15% for terrain challenged regions.34

D. Increased Single Pilot Performance
The fourth key operating capability of SATS is to increase single pilot safety, precision, and mission completion

through the use of human-centered automation.  Single pilot performance in IMC can be highly demanding, where

visual situation awareness of traffic, terrain, obstructions, and weather can be severely limited.  The thrust behind

the increased SPP operating capability is to decrease pilot workload while enhancing situation awareness of the

environment, resource management, flight planning, and error prevention and tolerance.2  This operating capability

takes advantage of modern computers to monitor systems and conditions both inside and outside the airplane as well

as advanced displays to assist the pilot to make better-informed decisions without overloading him/her with

information.  Some of the enabling technologies to increase single pilot performance are:

• Advanced displays;

• Integrity monitoring and decision-aiding automation;

• Head-up automation.

These enabling technologies have largely been integrated with both the HVO and LLM operating capabilities to

reduce pilot workload, enhance situation awareness, and offer more intuitive navigation control for improved

performance and safety.

SouthEast SATSLab has conducted simulated flight

experiments using advanced display concepts on their SmartDeck

system, which provided the pilot with a visual display of the

primary flight instrumentation along with the HITS flightpath

guidance (figure 14).35  SouthEast SATSLab conducted

experiments to determine the proportion of low-time instrument

rated pilots able to fly at the FAA Airline Transport Pilot (ATP)

Practical Test Standards using the SmartDeck advanced display

Figure 14. SmartDeck advanced display
with SVS/HITS/FD guidance.
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system compared to conventional “round dial” instruments on a simulated Cessna 310 platform.  Results from the

experiment showed that the SmartDeck advanced display with HITS provided enhanced guidance and situation

awareness to the low-time single pilots under simulated instrument conditions.  The ATP practical test standards

were met 78% of the time with the SmartDeck advanced display on simulated approaches to Daytona Beach airport

in Daytona Beach, Florida, as opposed to 55% of the time using baseline conventional instrumentation.  This is a

significant improvement over the pilots’ performance with today’s conventional instruments.   In addition to primary

flight information provided by the SmartDeck system, the SmartDeck MFD can provide the pilot with moving map

displays and automated systems checklists, along with aircraft systems monitoring, such as engine information for

early detection and correction of problems if requested.

In terms of integrity monitoring and decision-aiding automation, advanced display technologies such as the low-

cost Electronic Flight Bag (EFB) and the ‘Cockpit Associate’, have been developed in the project by the Virginia

SATSLab and the Maryland Mid-Atlantic SATSLab, respectively.  The Virginia SATSLab EFB is a portable

electronic device that provides navigation, performance, and safety information, along with flight planning

capabilities, weather monitoring, and HVO functionality to the pilot (figure 15).  Flight planning can be conducted

from home on the EFB, and then easily transferred to the aircraft for flight navigational operations.36,37  The

Maryland Mid-Atlantic SATSLab ‘Cockpit Associate’ is a knowledge-based system designed to simplify the pilot’s

activities, and report audio-visual alerts on traffic, weather conditions, aircraft health, and approach procedures

through the aircraft's audio system and Multi-Function Display (figure 16).38,39,28

Figure 15. Virginia SATSLab Electronic Flight
Bag provides the pilot navigational information and
HVO functionality to allow for increased situation
awareness and performance.

Figure 16. Maryland Mid-Atlantic
SATSLab ‘Cockpit Associate’ aids the pilot in
flying safely and proficiently by conducting
situation assessments, and providing
recommendations and advisories.
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Both the EFB and the ‘Cockpit Associate’ can continuously aid the pilot by conducting situation assessment,

conflict detection and alerting, and reporting important notifications, recommendations, and advisories.  These

decision-aiding devices can lead to improved operational efficiency.

The cockpits of the future may become quite simplified with only a few advanced systems and displays such as

these, along with ADS-B and a datalink radio, to meet the flight objectives of the pilots from takeoff to landing.  In

addition, system studies have determined that single pilot operations can reduce the cost of SATS operations by 16%

compared to dual-pilot operations today.40  This cost reduction could be realized when utilizing SATS capability

through an air-taxi service.  The savings are realized by reducing the costs associated with paying for certified

professional pilots.  This cost reduction can make the SATS vision more feasible and marketable.

 III. Demonstration of the Four Enabling Operating Capabilities
The SATS project has been a Research & Technology activity that has focused its efforts on the four operating

capabilities (described above) to strive for an affordable, robust, on-demand, point-to-point air transportation

system.  The project developed and demonstrated the feasibility of the technologies, procedures, and concepts that

support these four operating capabilities through analysis, Human-In-The-Loop simulations, and single and multi-

aircraft integrated flight evaluations and validations that would ultimately culminate in the 2005 Public

Demonstration at Danville, Virginia.  In preparation for the public demonstration, integrated multi-aircraft flight

evaluations and validations were conducted on the four enabling operating capabilities at the Danville Regional

Airport, which is a non-towered/non-radar SATS-type airport.  Six SATS aircraft participated in the multi-aircraft

flight operations at Danville, which included the FAA Technical

Center Convair, the NASA Cirrus SR22, the Virginia SATSLab

King Air C90, the Maryland Mid-Atlantic SATSLab Cessna 402,

the North Carolina & Upper Great Plains SATSLab Piper Aztec,

and the SouthEast SATSLab Cessna 310 (figure 17).

In order to conduct the HVO flight scenario, each SATS

aircraft was equipped with:

• GPS receiver;

• GDL-90 Universal Access Transceiver, 978 MHz radio

[for Air-to-Air and Air-to-Ground communications];

Figure 17. SATS aircraft that
participated in the 2005 Public
Demonstration.
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• Either a Very High Frequency (VHF) Datalink radio or a VHF Long Range Access Point radio [for Air-

to-Ground communications];

• CDTI;

• Software to conduct HVO procedures;

• Voice communication radios.

In addition to the equipage for the HVO functionality, each aircraft was also equipped with their specifically

developed technologies for the cockpit system architecture to support the LLM and SPP capabilities.  This could

consist of an advanced cockpit display such as a PFD and MFD with synthetic/enhanced vision system and HITS

flightpath guidance, a decision-aiding device, and/or a Head-Up Display.

The simulated SCA, designed for the Danville Region airport, was used for the multi-aircraft flight evaluations

and validations.  The NASA Digital Applications and Research Test System (DARTS) trailer located at the airport,

housed the AMM, which received requests and provided the sequencing information to the aircraft via the datalink

during the HVO operations.41,42  A Ground Based Transceiver received the ADS-B transmissions of aircraft to

aircraft “squitter”.  The Ground Based Transceiver was used to receive aircraft position only.  The aircraft position

was sent via Local Area Network to the Ground Based Server computer located in the DARTS trailer in order to

conduct the AMM assignment operations.

A series of inter-operability flight checkouts were performed at Danville, which entailed conducting datalink

communications checkouts between the six SATS HVO equipped aircraft and the ground station.  The datalink

radios along with the AMM functionality are key in the communications architecture for performing the

demonstration of HVO within a SCA around the airport.  Evaluations showed that the aircraft could communicate

via datalink to the ground station and other SATS participating aircraft necessary to conduct the HVO demonstration

at the Danville SCA.  The AMM software, which provides the pilot sequencing information into the SCA around the

airport, was validated with the ground station and all of the aircraft.  Displays located at the ground station and

onboard the aircraft showed the SATS traffic and AMM status messaging.

The SATS project culminated with the 2005 SATS Public Demonstration in Danville, Virginia on June 5th-7th,

by showcasing the accomplishments achieved throughout the project and proving that a small aircraft transportation

system could be feasible.  The main tent pavilion was constructed at the south ramp area that housed the technical

exhibits and hosted live presentations to the audience (figure 18).  The Public Demonstration also included projected
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benefits and impact exhibits, service provider displays, “Day-in-the-Life” demonstrations, and education and

outreach activities.

During the demonstration, the audience had an

opportunity to gain an understanding of the SATS

technologies through static displays, simulators,

presentations, and a live proof-of-concept technology flight

demonstration.  Static displays describing the concepts,

technologies, and procedures were organized by operating

capability and functionality.  Flight simulators were also

available to the public to show the intuitiveness and ease of

use of the advanced displays, as well as the HVO concept and procedures developed through the project.  NASA

Langley and the FAA had a live demonstration of their linked HVO simulation experiment also.

A live proof-of-concept technology flight demonstration of the four operating capabilities was conducted on

June 6th and 7th to show their technical and operational feasibility.  The flight demonstration focused on how the

airspace and the many small and underutilized airports in the United States could be utilized if SATS was

implemented.  The flight demonstration consisted of the six SATS aircraft flying simultaneous sequenced

approaches and landings at the Danville Regional Airport by utilizing a SATS Self-Controlled Area, a ground

Airport Management Module for aircraft sequencing, and minimal required onboard equipage to maintain self-

spacing between participating aircraft.  During the flight demonstration, key aspects of the four operating

capabilities were showcased.  Visitors were able to view a

digital depiction of a bird’s eye view of the airport and

surrounding airspace, tracking all SATS participating aircraft

along with any pertinent AMM information (figure 19); cockpit

displays; out-the-window or in-cockpit view; and real-time

demonstration of flight guidance displays from the participating

aircraft.  Narrators explained what the aircraft were about to do

and directed the audience members to specific features on the

screens during the flight demonstration (figure 20).

Figure 19. Bird’s-eye view of the six-
aircraft flight scenario the demonstrated the
four enabling operating capabilities.

Figure 18. Aerial view of the south ramp
area of the Danville Regional Airport where
the SATS 2005 Public Demonstration was held.
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For the SATS flight demonstration, the SATS GPS-T

approach for runway 20 was used (figure 13).  During the

live demonstration, although it was VMC, it was portrayed to

the audience that the scenario being flown was developed for

IMC in low visibility, and that the aircraft were handed off

from the air traffic controller into the SCA.  The six aircraft

were stationed outside the SCA near predefined transition

fixes prior to the demonstration (REDNE, WODMO, ZUMUR, and JUBOD) (see figure 21).  Each aircraft, one by

one, sent an entry request to the ground station via datalink.  A notification message was received indicating either

that entry was granted or that standby was necessary (e.g., if SCA was full).  The Danville SCA was designed to

have up to four aircraft in the SCA at one time.  As each aircraft was granted entry into the SCA, the AMM would

notify the pilot which aircraft to follow, and their assigned

IAF and MAHF.  The FAA Convair was the first aircraft to

request and be granted entry into the SCA, followed by the

NASA Cirrus, North Carolina and Upper Great Plains

SATSLab Piper Aztec, SouthEast SATSLab Cessna 310,

Virginia SATSLab King Air, and Maryland Mid-Atlantic

SATSLab Cessna 402, respectively.  During the multi-

aircraft flight scenario, both video and data were telemetered

from the aircraft to the ground station and transferred to the tent pavilion for the live presentation.  The telemetered

video and data showcased the labs’ and NASA’s various technical contributions to the project and the significance

to the operating capabilities.

The multi-aircraft flight scenario flown during the live demonstration confirmed to the audience the viability of

the HVO concept, by significantly increasing the operational rate at the non-towered/non-radar airport using self-

separation and sequencing.  The datalink communication between the aircraft and AMM ground station was

successfully demonstrated by all six aircraft, and HVO functionality was displayed on all aircraft CDTIs.  The total

time from the first aircraft AMM entry request, from outside the SCA, until all six aircraft had landed was ~31

minutes in the demonstration.  As the SATS aircraft conducted their approach procedures within the SCA, a number

Figure 21. Fix Locations for the Danville
SCA with approach to Runway 20.

Figure 20. Technical flight demonstration
presentation showcasing the four operating
capabilities.
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of the aircraft showcased their LLM technologies to the audience by demonstrating how the pilot could consistently

and accurately fly using advanced cockpit displays (such as PFD, MFD, and HUD) with SVS and/or EVS along

with HITS guidance, that were programmed for the Danville airport runway.  These advanced cockpit display

technologies, provided the pilot with a clear view of his current position on the approach to landing, as well as

intuitive flightpath guidance for his desired path, allowing for increased accuracy and situation awareness compared

to conventional instrumentation in poor weather conditions, without adding additional airport infrastructure.  It was

also demonstrated that increased single pilot performance could be realized through use of onboard decision-aiding

automation tools to assist the pilot throughout all phases of the flight, such as with the EFB and ‘Cockpit Associate’

to increase situation awareness without additional workload.  During the flight scenario, the EFB displayed a

moving map showing all aircraft within the SCA including terrain, and weather, along with HVO procedure and

safety information.  The Cockpit Associate demonstrated the use of an advanced knowledge based processor to infer

the needs of the pilot based on the flight plan, traffic conditions, airspace, boundaries, airport status, and weather.

The system reminded the pilot of relevant checklists, and kept track of which items had been completed.  These

tools were demonstrated to show how they could make flying as a single pilot considerably easier.

The outcome of the 2005 demonstration was intended to inspire public understanding, and confidence, in the

ability of new aviation technologies to enable the use of smaller aircraft and smaller airports for public

transportation.5  The technologies, procedures, and concepts were successfully demonstrated to show that they were

safe, effective, and affordable for small aircraft use in near all weather conditions.  This outreach event attracted the

public, NASA and FAA leaders, investors, business executives, congressional leaders, and state and local economic

development officials.  More than forty-two hundred people attended the event, and many more were reached

through the national media coverage that followed.

Transportation engineers at Virginia Tech have predicted up to 15 million SATS passenger-trips/year if an air-

taxi service could be provided at a cost of $1.75 per passenger-mile in 2010.  When SATS technology matures, costs

of $1.25 per passenger mile might be possible increasing the market share to 29 million passenger-trips/year.

Today, business passengers traveling in commercial airlines pay $0.90 per passenger-mile in a typical 350-mile trip.

However, SATS travelers would save an average of 3 hours per trip based on a nationwide analysis.43
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 IV. Summary and Conclusions
The SATS vision has been to enable people and goods to have the convenience of on-demand point-to-point

travel, anywhere, anytime for both personal and business travel, through a network of under-utilized community

airports across the nation.  The five-year SATS project has been a research and technology development activity,

including analysis and assessments, to provide the technical and economic basis for further national investment and

policy decisions to support a small aircraft transportation system.  The project was conducted through a public-

private cost-sharing agreement that leveraged the expertise and capabilities of NASA, FAA, and the National

Consortium for Aviation Mobility.  SATS was chartered to demonstrate that new capabilities could be developed

which overcome four obstacles to affordable, safe, and reliable on-demand air transportation.  These four key

operating capabilities were: Higher Volume Operations at non-towered/non-radar airports; En Route Procedures and

Systems for Integrated Fleet Operations; Lower Landing Minimums at Minimally Equipped Landing Facilities; and

Increased Single Pilot Performance.

The SATS project culminated in June with the 2005 SATS Public Demonstration at the Danville Regional

Airport in Danville, Virginia.  The technologies, concepts, and procedures researched and developed throughout the

project for the four operating capabilities were demonstrated in the exhibits, presentations, and also the multi-aircraft

flight scenario in an integrated manner.  Using minimum HVO equipage onboard the aircraft, along with the AMM

located at the airport, pilots were able to self-separate to safely perform simultaneous operations in a non-radar

environment and sequence themselves into a small airport, significantly increasing the number of operations over

today’s procedural separation.  These HVO procedures were evaluated by the FAA Technical Center for integration

of SATS traffic into the NAS.  For the LLM operating capability, aircraft-based precision approach and landing

guidance displays were demonstrated with advanced cockpit displays and flightpath guidance sufficient for

operations with 200-ft ceiling and 1/2-mile visibility without expensive ground infrastructure.  For the SPP

operating capability, human-centered automation and flight-path guidance were demonstrated to significantly

increase flight-path accuracy, situation awareness, and judgment, without increase in workload.

These operating capabilities open the door to a future of personalized air transportation using small aircraft and

small airports (many without towers or radar) for improved air mobility and complimenting the existing hub-and-

spoke system.  These capabilities can expand economic development to small communities, improve the

productivity throughout the nation, and improve the overall quality of life.  SATS has provided a step toward the
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Next Generation Air Transportation System and has demonstrated that there is an exciting future in air

transportation.

Further research and analysis will still need to be conducted on the concepts, procedures, and technologies with

intentions on proceeding further towards implementation into the NAS and commercialization of products for the

aviation community.  This research and development is currently being continued within the private sector.
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