

INTEGRATED THERMAL PROTECTION SYSTEMS

AND HEAT RESISTANT STRUCTURES

Contract N° : NND04AA85C

30th Annual Conference on Composites, Materials, and Structures Cocoa Beach, FL 23-26 January 2006

Thierry Pichon and Marc Lacoste, Snecma Propulsion Solide - SAFRAN Group David E. Glass, NASA Langley Research Center

Page : 0 Ref. : FPC 05 41 280 A Date : 13 September 2005

- Overview
- Trajectory and Loads
- CAS
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

3 DIFFERENT DESIGNS DERIVED FROM THE SAME TECHNOLOGY, ADAPTED TO 3 MISSIONS SCENARIOS

	I-TPS			
	CAS	Sepcore ®	Decelerator	
Heat flux $\leq 1 \text{ MW/m}^2$	+	-	+	
Heat flux \geq 1 MW/m ²	-	+	-	
Reusability	+	Partial / multi phase	NA	
Aero -braking	+	+	+	
Aero -capture	+	+	NA	
Aero -assist	+	+	NA	
Lifting bo dy	TPS	TPS	Hot Structure	
Winged vehicle	TPS	TPS	Hot Structure	

MT AEROSPACE

W Overview - Concept Description – CAS

Page : 3 Ref. : FPC 05 41 280 A Date : 13 September 2005

Snecma Propulsion Solide

Overview - Concept Description – Sepcore

SEPCORE = CAS + ABLATOR

CAPSULE CONCEPT		ABLATOR	SEPCORE
Aerodynamic structure	(kg)	22	40
External heat shield	(kg)	168	70
Internal insulation	(kg)	0	10
Total mass	(kg)	190	120
Mass ablato	r - Ma	ass Sepcore®	20.0/
Mas	s ab	lator	≈ 30 %

- Adapted to high heat fluxes (over 1 MW/m²)
- Significant mass savings compared to ablator only
- High mechanical strength at room temperature,
- Mechanical strength maintained at high temperature
- Increased robustness
- Partial reusability

W Overview - Concept Description – Decelerator

DECELERATOR = CAS + DEPLOYMENT

Single DHSD Petal

- Increase of aerodynamic surface to increase deceleration,
- Compact (when stowed),
- · Robustness of thermal protection function,
- Minimum mass increase
- MMOD resistance,
- Reduced costs.

Agenda

- Overview
- Trajectory and Loads
- **CAS**
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Loads Development Process

Page : 7 Ref. : FPC 05 41 280 A Date : 13 September 2005

MT AEROSPACE

Baseline Vehicle Geometry and Characteristics

Ref. : FPC 05 41 280 A Date : 13 September 2005 **Snecma Propulsion Solide** SAFRAN Group

Direct Earth Entry from Luna: Trade Matrix

English			Metric				
case #	initial velocity	initial flight path angle	ballistic coefficient (~M30)	case #	initial velocity	initial flight path angle	ballistic coefficient (~M30)
	(ft/s)	(deg)	(psf)		(m/s)	(deg)	(kg/m^2)
0	36334	-5.80	73	0	11075	-5.80	356
1	32038	-3.99	25	1	9765	-3.99	122
2	32038	-5.21	100	2	9765	-5.21	488
3	32038	-6.65	25	3	9765	-6.65	122
4	32038	-7.11	100	4	9765	-7.11	488
5	40031	-5.09	25	5	12201	-5.09	122
6	40031	-5.61	100	6	12201	-5.61	488
7	40030	-6.63	25	7	12201	-6.63	122
8	40031	-7.40	100	8	12201	-7.40	488
9	36334	-4.63	25	9	11075	-4.63	122
10	36334	-6.73	25	10	11074	-6.73	122
11	36334	-5.13	100	11	11075	-5.13	488
12	36334	-7.29	100	12	11075	-7.29	488

IIIII Direct Earth Entry from Luna: Trajectory Data

Page : 11 Ref. : FPC 05 41 280 A Date : 13 September 2005

Reference Trajectory for CAS

Reference Trajectory for Sepcore

Phase I Environments Summary

Mars Aerocapture Mars Aerocapture - Stagnation Area Heating 10000 Radiation Eq. Temperature MAC Case 1 $\varepsilon = 0.8$ MAC Case 2 MAC Case 3 MAC Case 4 £ 8000 MAC Case 5 MAC Case 6 Eq. Temperature Ballistic Coeff (n/m^2) MAC Case 7 122 - Green MAC Case 8 356 - Blue (Apollo) 488 - Red 6000 MAC Case 9 MAC Case 10 MAC Case 11 MAC Case 12 MAC Case 13 4000 Radiation MAC Case 14 MAC Case 15 MAC Case 16 2000 K MAC Case 17 2000 MAC Case 18 0 500 1000 1500 Time (sec) from entry interface at 121920 m

Lunar Direct Return

Radiation Equilibrium

Temperature, **K**

Lunar Aerocapture Lunar Aerocapture - Stagnation Area Heating 10000 LAC Case Radiation Eq. Temperature LAC Case 2 $\varepsilon = 0.8$ LAC Case 3 LAC Case 4 8000 LAC Case 5 Temperature LAC Case 6 Ballistic Coeff (n/m^2) LAC Case 7 122 - Green 356 - Blue (Apollo) LAC Case 8 6000 I AC Case 9 488 - Red LAC Case 10 LAC Case 11 LAC Case 12 Radiation Eq. LAC Case 13 4000 LAC Case 14 --- I AC Case 15 LAC Case 16 2000 K -- LAC Case 17 2000 LAC Case 18 1500 Time (sec) from entry interface at 121920 m

LEO Return

Page : 14 Ref. : FPC 05 41 280 A Date : 13 September 2005

Lunar Direct Entry - Phase I Sepcore Evaluation

Case 12

"Hot" Corner vs Stagnation Pt Radiation Eq. Temperature Comparison Case 12

Relative Heating Rate Component Contribution Case 12

Agenda

- Overview
- Trajectory and Loads
- CAS
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Overall CAS Geometry

- The CAS represents the blunt aft body of an Apollo-shaped re-entry vehicle
- It is mainly composed of :

SAFRAN Group

Ref. : FPC 05 41 280 A

Date : 13 September 2005

- an annular array of equipped leading-edge elements •
- a circular array of equipped panels •
- the underlying cold structure of the blunt aft body •
- Preliminary panel distribution derived from past experience

& D

MT AEROSPACE

CMC Panels

Concept trade-off performed on previous designs :

X-38 chin panel

-Technical performance

FESTIP

Page : 18 Ref. : FPC 05 41 280 A Date : 13 September 2005

Snecma Propulsion Solide

CMC Panels Design

CMC Panels Analysis

Thermo-mechanical analysis to verify :

- Geometrical definition
- Maximum displacements
- Allowable strains
- Mass optimization

nc: 12 ine: 3.400e+002	MSC
	A
	A .
	H
	1
	tt l
	II.
┍ ┙┼┼╎╢╎ ┼┼╴╋╢┥╧╡╧┶┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	HH.
┝╪╫╫╫╫┼┼╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	
╘╋╫╣╋╢╪╧╫╢╴ <mark>┶╸┼╎╴╴┼╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴</mark>	HH.
╡ ╎╢╫ ╫╪╪╪╖╴ <u>┥</u> ╧╶╧┥┥┥╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	
	Ш
	#H-1
╞ ╪╢╤╋╓╶┊┽╓╢╴┊┽╧┼╧╶╌┊╌┽┼╶┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	4 4 -)
┟┱╫╫╫┼╤╫╓╧╪╪╤┼┽╤┾╤╪╤╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧╧	
╞╬╫╫╫╪╪╔╢╌╤╤┼╤╧┟╼╼╤╧╧┥┥ <mark>╸╤╤╤</mark> ╧┾┼┼┼┼┼┼┼┼┼╢╢╢	H
┝╫╫╫╫╌┼┼╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	ť
╒ ╡╎╡╇<mark>╞</mark>┇┇┇┇┇┇┇╞╞ ╤╤┽┟ <u>┥</u> ╤╤╧ <mark>╛╛╛</mark> ╧╞ <u></u> ┇╪ <u>┇</u> ┇╞┝┥┝┝┝┼╎╖╝┼┼╢╢╢	H
	ti
	R
	4
	7
	1
	7 ≫ Ÿ
rentrée atmosphérique - calcul th-méca -	plg=1.0mn

SAFRAN Group

Snecma Propulsion Solide

Total heatshield mass budget (w/o leading edges)

Elements	Mass (kg)
Central CMC panel	0.5
Inner row CMC panels	10.1
Intermediate row CMC panels	26.5
Outer row CMC panels	20.5
Attachments	22.9
Seals and internal insulation	88.3
TOTAL	168.8

Areal mass : 16.45 kg/m²

Page : 20 Ref. : FPC 05 41 280 A Date : 13 September 2005

Keraman® CMC Material

- Reference: X38-V201 NASA-CRV Prototype Vehicle
- Material: Keraman® C/SiC, 2D-Carbon fiber fabric with SiC matrix
- Process: Gradient-CVI infiltration process
- Qualification: Body Flap, Leading Edges & Chin Panel

Material TRL: 8 (acc. to X-38 specification up to 12x life-cycles)

Page : 21 Ref. : FPC 05 41 280 A Date : 13 September 2005

CMC panels directly attached to CMC stand-offs (i.e. X-38 Leading Edge)

- Only with CMC fasteners directly bonded to hot surface \rightarrow no risk of thermal mismatch
- C/SiC omega-shaped standoffs
- CMC **Direct access from outside (** --- > accessibility & maintainability in space) CMC panel **Attachments** Simple panel design × V High TRL for applications up to 1600°C **Ceramic fasteners TRL = 8** lation Attachment concept TRL = 5Cold Structure

- Several concepts investigated
- Pros and cons assessed in terms of:
 - TRL level
 - Maintainability
 - Simplicity
 - Manufacturability

Cold

Structure

CMC panels with metallic stand-offs (similar to X-38 Nose Assembly)

- Ceramic and metallic standoffs
- Metallic fasteners and ceramic plugs
- Fixation at <u>"medium"</u> temperatures
- Attachment concept TRL = 8

Page : 24 Ref. : FPC 05 41 280 A Date : 13 September 2005 Snecma Propulsion Solide

Cold

Structure

Cold Structure Design

- Main characteristics :
 - Made from aluminum alloys
 - Shape of cold structure underneath
 - panel array identical to OML
 - (reduced by panel height)
 - Cold structure shape adapted to Leading Edge thermal & mechanical design needs
 - Design will match with internal insulation lay-out and attachment concept
 - Mechanical attachment to the vehicle pressurized compartment realized by means of hinge rods

Courtesy MT Aerospace

Agenda

- Overview
- Trajectory and Loads

CAS Design

- Design
- Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Thermal Insulation

- The temperature range of thermal conductivity apparatus was extended to 1250°C (replaced ceramic radiant heater with quartz lamp array heater):
 - Cold side temperature:
 - Hot side temperature:
 - Pressure:
 - Specimen size:
 - Measure:
 - Calculate:

20°C (water cooled) 100 – 1250°C 0.0001 – 760 torr 30 x 30 x 2.5 cm (12 x 12 x 1 in.)

T_{hot}, T_{cold}, q" (thin film heat flux gage), L apparent thermal conductivity, k_a

Page : 28 Ref. : FPC 05 41 280 A Date : 13 September 2005

Thermal Insulation

- Performed steady-state thermal tests on selected fibrous insulation samples $350K \le T \le 1350K$, $0.0001 \le P \le 760$ torr
- Used thermal modeling in conjunction with measurements to determine pertinent parameters for gas/solid conduction and radiation heat transfer

Insulation	Density (kg/m³)		Temperature limit (°C)		
Zirconia felt	240	(15 pcf)	2310	(4200°F)	
Alumina blanket	96	(6 pcf)	1650	(3000°F)	
Cerachem	96	(6 pcf)	1430	(2600°F)	
Q-fiber felt	48, 96	(3, 6 pcf)	1000	(1800°F)	

Setup in 5 x 5 ft vacuum chamber at LaRC

Page : 29 Ref. : FPC 05 41 280 A Date : 13 September 2005

SAFRAN Group

Agenda

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Principle Of Sepcore[®]

• Objective is to minimize thickness of ablator required on a TPS element by :

- Attaching it to a hot CMC structure instead of a cold metallic structure
- Sizing the layer of ablator so that the temperature at the CMC/ablator interface remains within CMC allowable
- Introducing lightweight insulation at the rear side of the CMC structure

Sepcore® Architectures

- Concept A :
 - Ablative tiles are attached to CMC panels, fixed on a cold structure
 - Minor modifications of CAS panels to attach an ablative layer

Sepcore® Architectures

Concept B :

- Ablative tiles are attached to hot structure made of CMC
- Same type of CMC material than for CAS panels, but very different architecture (skin attached by screws or rivets to a web of stiffeners)
- Full potential of Sepcore[®] can be used, leading to lower mass

MT AEROSPACE

Sepcore[®] Preliminary Sizing

Cold structure sizing (concept A)

- Sizing criterion : max. displacement of structure = 3 mm
- Boundary conditions :
 - Structure clamped at R=1,3 m
 - Pressure on front face = 88 000 Pa (difference between wall pressure and atmospheric pressure
- 2D axi-symmetric model of sandwich structure (aluminum honeycomb and C / epoxy skins)
- Approximate weight 280 kg

	Honeycomb thickness	Skins thickness	Honeycomb density	Displac ement	Mass of structure
#1	120 mm	0.5 mm	50 kg/m3	10.0 mm	148 kg
#2	120 mm	0.5 mm	130 kg/m3	6.2 mm	332 kg
#3	120 mm	1.5 mm	50 kg/m3	4.5 mm	213 kg
#4	120 mm	1.5 mm	130 kg/m3	2.7 mm	397 kg
#5	120 mm	2.0 mm	50 kg/m3	3.5 mm	246 kg
#6	120 mm	2.0 mm	130 kg/m3	2.0 mm	430 kg
#7	80 mm	2.0 mm	50 kg/m3	4.5 mm	207 kg
#8	80 mm	2.0 mm	130 kg/m3	2.9 mm	330 kg

Sepcore[®] Preliminary Sizing

Hot structure sizing (concept B)

4 configurations analyzed :

- I. 16 radial stiffeners + 3circum. stiffeners
- II. 32 radial stiffeners + 6 circum. stiffeners
- III. id + inner skin
- IV. 64 radial stiffeners + 6 circum stiffeners + inner skin
- CMC Thickness = 3 mm
- Stiffener height 60 mm for I, II, III, 80 mm for IV
- Estimated mass : 250 x 1.3 = 325 kg

13.7 mm

9.2 mm

5.6 mm

3.9 mm

Т

Ш

Ш

IV

123 kg

137 kg

203 kg

221 kg

Apollo size heatshield, 10 MW/m²

MASS (kg)	Reference : Ablator on cold structure	Sepcore	concept A	Sepcore concept B	
	C / phenol*	PICA	C / phenol	PICA	C / phenol
Ablator	1,360	66	390	66	390
CMC parts	-	115	115	325	325
Insulation	-	150	150	150	150
Cold structure	280	280	280	-	-
TOTAL	1,640	611	935	541	865

* sizing made by SPS on material similar with NASA but not identical : comparison with ablator sizing of Sepcore with C/phenolic ablator

Page : 36 Ref. : FPC 05 41 280 A Date : 13 September 2005 Shecma Propulsion Solide

Agenda

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Aerothermal Environments Used for Ablator Sizing

Lunar Direct Entry, case No.12

SAFRAN Group

Aerothermal environments are based on those predicted by LaRC's engineering Þ code, not LAURA CFD

MT AEROSPACE

TPS Stack-up for Ablation and Thermal Response Simulation

• As specified in SEPCORE Preliminary Specification developed by Snecma:

MR

& D

Ablative TPS Materials

- Generic fully dense carbon phenolic composite
- PICA (Phenolic Impregnated Carbon Ablator)
 - Developed by NASA ARC
 - Used on Stardust Sample Return Capsule, will re-enter the Earth atmosphere in 2006
 - Manufactured by Fiber Materials, Inc.

100 µm

Scanning electron Micrograph of PICA material

PICA samples

Stardust spacecraft

Page : 40 Ref. : FPC 05 41 280 A Date : 13 September 2005

Agenda

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Health Monitoring System Development

- Established notional approach for a health monitoring system to support large-scale heat-shield testing
- Identified potential high-temperature acoustic emission (AE) sensors and potential heat shield locations
- Continued development of AE sensor multiplexing technology
- Miniaturized and increased channel count and data rate of existing Fiber-Bragg Grating (FBG) system for strain and temperature monitoring
- Initiated sensor attachment technique development on customer supplied C/SiC specimen

Agenda

- Overview
- Trajectory and Loads
- CAS Design
 - Design
 - Thermal Insulation
- Sepcore
 - Design
 - Ablators
- Structural Health Monitoring
- Concluding Remarks

Concluding Remarks

- The Snecma-led TPS task for NASA's Exploration Initiative began the development of three complementary TPS approaches
 - CAS
 - Sepcore
 - Deployable Decelerator

Snecma Propulsion Solide

SAFRAN Group

- Significant work was performed on the trajectory and loads definition, and on the CAS design
- The task was cancelled by NASA as part of a major restructuring of the Exploration Initiative

