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Heat-Pipe Operation

¢ Heat pipes transfer heat isothermally by the
evaporation and condensation of a working fluid.
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Leading-Edge Heat-Pipe Operation
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Heat Pipe Cooled Leading Edge History
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Heat-Pipe Modeling

&

¢ Conduction, convection, or radiation coupling to environment
¢ Container - conduction only

¢ Wick/working fluid - conduction and heat of fusion
¢ Vapor

e Phase | - free molecular
e Phase Il - continuum front moves toward

cooler end. Flow may be choked
at end of evaporator

Condenser
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Heat-Pipe-Cooled Leading Edge Finite Element Analysis @
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3-D finite element model
(non linear properties)
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NASA Langley Heat-Pipe Leading-Edge Experience @

- Experience in design, analysis, integration, and testing

7 LOCATION OF THERMOCOUPLES
| ~HASTELLOY X TUBE
N\ \— STAINLESS STEEL SCREEN WICK
/— VAPOR SPACE

. «  Shuttle

- Hastelloy-X

- Na working fluid
- Circular heat pipes

“"NICKEL BRAZE ALLOY
SECTION A-A
HASTELLOY X SKIN

1 Bk

[3|n]\

THERMOCOUPLE }i
LEAD WIRES

—RFcails

12 SODIUM- FILLEI] J

 HEAT PIPES (22 1n)
« NASP ' . _
- Mo-Re embedded in C/C . Advanced STS

- Li working fluid

- D-shaped heat - Hastelloy-X

- Na working fluid
- Rectangular heat pipes
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NASP Carbon/Carbon Heat-Pipe-Cooled @/
Wing Leading Edge '

Refractory composite
_\ structure

Heat pipes passively reduce

leading-edge temperatures Lithium working fluid
to reuse limits of composite

Mo-Re heat pipe
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Description of Heat-Pipe-Cooled Wing Leading Edge @

¢ Heat-pipe container

* 0.010 in. arc cast Mo-41Re
High strength
High use temperature
Lighter than W-Re or pure Re
Ductile at room temperature
Weldable

¢ Heat-pipe working fluid
e Lithium
e 17 psia vapor pressure
at 2500°F (1370°C)
e Compatible with
refractory metals

¢ Refractory composite structure
e C/C or C/SiC (3-D woven fabri
e High use temperature
* Lightweight
* 0.010 in. SiC oxidation protection coating
* CVD coating for minimization of coating temperature
12



Heat-Pipe-Cooled Leading Edge Development

Numerous small specimens to study various issues

Design validation heat pipe

Three straight heat pipes

J-tube heat pipe

36-in-long straight heat pipe
Operated up to 2460°F (1350°C)
Throughput of 3.1 Btu/sec (3.3 kW)
Radial heat flux of 141 Btu/ft?-sec (160 W/cm?)

Developed leak due to difficulties with welded thermocouple

28-in-long

Operated up to 2300°F (1260°C) and
155 Btu/ft*>-sec

Embedded in carbon/carbon

Testing to be performed at NASA LaRC

30-in-long
Nose and wick fabrication issues resolved
Transient performance tests at LANL
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Heat-Pipe Fabrication and Testing @’
Design Validation Heat Pipe '

Artery to reduce liquid pressure drop
- 0.1-in. diameter, 400 x 400
mesh screen
- Located on non-heated surface
- Spring in artery for support
.« Container: 0.01-in. arc cast - One end closed, pool at other end
Mo-41Re, 0.3-in. radius

« Wick: 4 layers of 400 x 400
Mo-5Re screen

Heat pipe with thermocouples
and induction heat coils
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Steady State Heat-Pipe Operation @
Design Validation Heat Pipe -
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Heat-Pipe Start-Up From the Frozen State @
Design Validation Heat Pipe .

Induction heating

/ /A UL B\ Heat pipe
TC #1 _/ TC #ZJ \—TC #3 TC #5 (~ 4-in. spacing)
2000 r
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O . R ] . R [ . . [ R |
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Time, sec. .



Heat-Pipe-Cooled Leading Edge Development

Numerous small specimens to study various issues

Design validation heat pipe

Three straight heat pipes

]

J-tube heat pipe

36-in-long straight heat pipe
Operated up to 2460°F (1350°C)
Throughput of 3.1 Btu/sec (3.3 kW)
Radial heat flux of 141 Btu/ft?-sec (160 W/cm?)

Developed leak due to difficulties with welded thermocouple

28-in-long

Operated up to 2300°F (1260°C) and
155 Btu/ft*>-sec

Embedded in carbon/carbon

Testing to be performed at NASA LaRC

30-in-long
Nose and wick fabrication issues resolved
Transient performance tests at LANL
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Comparison of the Three Heat Pipes @’
Three Straight Heat Pipes

Lithium, Ib Wet in
Heat pipe #1 0.0099 42 hrs @ 1650-1740°F
Heat pipe #2 0.0088 70 hrs @ 1650°F
Heat pipe #3 0.018 47 hrs @ 1650°F

Heat pipe #1
- 2300°F, 155 Btu/ft2-s over 1.5 in. 28-in long
- Nearly fully isothermal

Heat pipe #2

- 2420°F

- @ 2075°F, non-condensible gas
over last 6 in. of heat pipe

Heat pipe #3
- Never operated properly
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Heat Pipes Embedded In Carbon/Carbon
Three Heat Pipes in C/C

s ey N
G

R et SN

« Three Mo-Re heat pipes

+ 3-D woven preform with T-300
fibers in a carbon matrix

- increase through-the-thickness
thermal conductivity

- eliminate delaminations with
2-D C/C due to CTE mismatch

* No oxidation protection coating on C/C, therefore must test

in an inert environment
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C/C Heat Pipe Transient Testing
Three Heat Pipes in C/C
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Heat-Pipe-Cooled Leading Edge Development

— >

Numerous small specimens to study various issues

Design validation heat pipe

Three straight heat pipes

J-tube heat pipe

36-in-long straight heat pipe
Operated up to 2460°F (1350°C)
Throughput of 3.1 Btu/sec (3.3 kW)
Radial heat flux of 141 Btu/ft?-sec (160 W/cm?)

Developed leak due to difficulties with welded thermocouple

28-in-long

Operated up to 2300°F (1260°C) and
155 Btu/ft*>-sec

Embedded in carbon/carbon

Testing to be performed at NASA LaRC

30-in-long
Nose and wick fabrication issues resolved
Transient performance tests at LANL
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Machine and Weld Nose Region
J-Tube Heat Pipe

4 00-mesh
sCcreen wick

Drawn Mo-Re "D-shaped’ tubes

Lap weld

Machined
pans

Photograph of nose parts
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Curved Wick Fabrication
J-Tube Heat Pipe

Wick formed
on mandrel

Wick being formed
around machined part

Nose portion of wick
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RF-Induction Heating of J-Tube Heat Pipe @/
J-Tube Heat Pipe '

RF-induction coil/concentrator heating of nose region on outer surface
Test specific issue: Hot spot in nose region
- Test
- Curved surface not insulated, thus higher throughtput required
- Flight vehicle
- Curved surface is “insulated”
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J-Tube Heat-Pipe Checkout Tests @

g=0.0

| T2 TC3 Inaulation Location of thermocouples
e
flux TC1 TC4 Tcy TCE TC7 TCS

2000

2000

1500 |

’
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1000 |
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0 0 PSS BT ErE BRI S SrE B T B AT PR E B |
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Time, min. Position, in.
Start up of J-tube heat pipe Maximum temperature distribution

(not steady state)
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Test Induced Failure of Heat Pipe
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Overview: Heat Pipe Cooling for SOV Leading @
Edges AFRL/Lockheed Martin .

¢ Identify Specific Operational Requirements, and SOV Configuration
* Generated Performance Maps (Assuming Typical Requirements, and
Configuration)

¢ Using LM-TSTO Orbiter Requirements, Developed Heat Pipe Cooled
Leading Edge Designs for Moderate to High Heat Flux Cases

® Heat Pipe Design Option
- Modular Mo-Re Alloy Heat Pipe
— Developed Processing approaches for Mo-Re/Li Heat Pipe Design

* Heat Pipe Design Option

— Modular Superalloy/ Li Heat Pipe
- Successfully Designed, Fabricated, and Tested

¢ Developed Heat Pipe Design Solutions for Hypersonic Vehicles

* Sharp Hybrid Leading Edge
Designs

® Cowl Inlet Cooling (Fabricate -

and Test Superalloy/Na Heat Pipe)

Nose Cones - g - Payload Carrier (PLC)

Propulsion Flow
Path Components

- TPS Aeroshell/Support Structure

* First Superalloy/Li Heat Pipe
28



Performance Map for Heat Pipe Leading Edge @/
Cooling |

- Generated Relationship Between the Cooling System Temperature and
and Aerothermal Environment for Different Leading Edge Radii
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Technical Assessment of Key
HPCLE Design Options

¢ Key Design Options Very High Temp. Modular Mo-RelLi
* Modular Mo Alloy/Li Heat Pipe Heat Pipe
® Modular (or D) Mo-Re/Li Heat Pipes Embedded in C-C or C/SiC

®* Modular (or D) Mo-Re/Li Heat Pipe Design
¢ Key Design Options High Temp

. . Embedded C-C (Mo-Re D
(]
Superalloy/ Li Heat Pipe shaped)/Li Heat Pipe

¢ Trade Study Criteria
Materials Cost

* Machining ¢ Other System Level Concerns

: igglngi o Durabilit ® Impact From Atmospheric Debris

. ThermaFI) Pe rformanyce * Oxidation Resistance

e Structural Performance ®* Thermal Contact Resistance

* System Weight ® Robustness in Flight of Ground

* Life Cycle Cost * Toxicity of Li, in Case of Leak

* Manufacturing Yield ® Manufacturing and Ease of Integration
* Start-up Risk ® Comparison with Passive and Actively
® Atmospheric Protection Risk Cooled Designs

[

Repair/Rework
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Air Force Program Summary @/

¢ Developed Performance Maps Providing HPCLE Design Solutions

¢ Based on Analysis for TSTO-Based SOV Configuration
®* # 1 Modular Mo-47%/Li Heat Pipe
® # 2 Modular Superalloy/Li Heat Pipe

¢ Performed Superalloy/Li Heat pipe Life Compatibility Tests
® Successfully Demonstrated ~401 Hours Life

¢ Design, Fabrication and Testing of Prototype Articles
®* 47 x 36” Superalloy/Li Heat Pipes
®* Passed Functional Tests, Operational Performance Test (in Progress)

¢ HPCLE Design Development for Hypersonic Cruise Vehicles (Ongoing)
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Additional Air Force-Funded Activities

¢ Refrac Systems - Norm Hubele (480) 940-0068
Wick/artery fabrication utilizing Mo-5Re alloy
Wick/artery insertion technique

Heat pipe container welding technique

Diffusion bonding methods

Modular heat pipe fabrication

Novel lithium fill method development

Alternate screen material evaluation

¢ MR&D - Brian Sullivan (610) 964-6131

e Design and analysis of heat pipe cooled refractory composite leading
edges

¢ Ultramet — Art Fortini (810) 899-0236 x118
* Low cost CVD heat pipe fabrication

¢ Lockheed — Suraj Rawal (303) 971-9378

* Small radius heat pipe cooled leading edge designs for hypersonic
cruise vehicles

32
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Path Forward @

¢ For heat pipes to be utilized on the leading edges of flight

vehicles
® Designers must be willing to insert the technology
® The payoff must be significant and the technical evolution not

¢ High temperature heat pipe options
® Superalloy or refractory metal
®* Embedded or not embedded

¢ Superalloy heat pipes offer increased heat flux capability to the
designer using “conventional” materials

¢ Refractory metal heat pipes embedded in a refractory
composite offer a significant increase in heat flux capability
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Different Materials At Elevated Temperatures Are
Problematic

&

Material compatibility, f(t,T)

- Problem: Brittle carbides,
Carbon in heat pipe

- Solution: Coating on Mo-Re Heat pipe

Coefficient of thermal expansion mismatch

(loose for stress, tight for thermal) Coating

- Problem: Buckling of flat surface,
Increased contact resistance

- Solution: Convex surface,
Compliant or removable layer

Compliant or
rernavable laver

Conver surface
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Concluding Remarks

¢ Heat pipes can be used to effectively cool wing leading
edges of hypersonic vehicles

¢ Heat-pipe leading edge development
» Design validation heat pipe testing confirmed design
e Three heat pipes embedded and tested in C/C
* Single J-tube heat pipe fabricated and testing initiated

¢ HPCLE work is currently underway at several locations
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