

Heat-Pipe-Cooled Leading Edges for Hypersonic Vehicles

Workshop on Materials and Structures for Hypersonic Flight University of California Santa Barbara July 12-13, 2006

David E. Glass NASA Falcon Lead NASA Langley Research Center david.e.glass@nasa.gov

Agenda

Heat-Pipe Operation

Heat pipes transfer heat isothermally by the evaporation and condensation of a working fluid.
 Container
 Wick
 Working fluid
 Working fluid
 Vapor flow

Leading-Edge Heat-Pipe Operation

Position, in.

Agenda

Heat-Pipe Modeling

- Conduction, convection, or radiation coupling to environment
- Container conduction only
- Wick/working fluid conduction and heat of fusion
- Vapor
 - Phase I free molecular
 - Phase II continuum front moves toward cooler end. Flow may be choked at end of evaporator

 Phase III - continuum over entire length in vapor region Sonic limit not encountered

Heat-Pipe-Cooled Leading Edge Finite Element Analysis

3-D finite element model (non linear properties)

Agenda

NASA Langley Heat-Pipe Leading-Edge Experience

· Experience in design, analysis, integration, and testing

- Shuttle
 - Hastelloy-X
 - Na working fluid
 - Circular heat pipes

- NASP
 - Mo-Re embedded in C/C
 - Li working fluid
 - D-shaped heat pipes

- Advanced STS
 - Hastelloy-X
 - Na working fluid
 - Rectangular heat pipes

NASP Carbon/Carbon Heat-Pipe-Cooled Wing Leading Edge

Heat pipes passively reduce leading-edge temperatures to reuse limits of composite

Description of Heat-Pipe-Cooled Wing Leading Edge

- Heat-pipe container
 - 0.010 in. arc cast Mo-41Re
 - High strength
 - High use temperature
 - Lighter than W-Re or pure Re
 - Ductile at room temperature
 - Weldable
- Heat-pipe working fluid
 - Lithium
 - 17 psia vapor pressure at 2500°F (1370°C)
 - Compatible with refractory metals
- Refractory composite structure
 - C/C or C/SiC (3-D woven fabric)
 - High use temperature
 - Lightweight
 - 0.010 in. SiC oxidation protection coating
 - CVD coating for minimization of coating temperature

Heat-Pipe-Cooled Leading Edge Development

- Numerous small specimens to study various issues
- Design validation heat pipe
 - 36-in-long straight heat pipe
 - Operated up to 2460°F (1350°C)
 - Throughput of 3.1 Btu/sec (3.3 kW)
 - Radial heat flux of 141 Btu/ft²-sec (160 W/cm²)
 - Developed leak due to difficulties with welded thermocouple
- Three straight heat pipes
 - 28-in-long
 - Operated up to 2300°F (1260°C) and 155 Btu/ft²-sec
 - Embedded in carbon/carbon
 - Testing to be performed at NASA LaRC
- J-tube heat pipe
 - 30-in-long
 - Nose and wick fabrication issues resolved
 - Transient performance tests at LANL

Heat-Pipe Fabrication and Testing

Design Validation Heat Pipe

- Container: 0.01-in. arc cast Mo-41Re, 0.3-in. radius
- Wick: 4 layers of 400 x 400 Mo-5Re screen
- Heat pipe with thermocouples and induction heat coils

- Artery to reduce liquid pressure drop
 - 0.1-in. diameter, 400 x 400 mesh screen
 - Located on non-heated surface
 - Spring in artery for support
 - One end closed, pool at other end

Steady State Heat-Pipe Operation

Design Validation Heat Pipe

Note: Thermocouples ~ 4 in. apart.

Heat-Pipe Start-Up From the Frozen State

Design Validation Heat Pipe

Heat-Pipe-Cooled Leading Edge Development

- Numerous small specimens to study various issues
- Design validation heat pipe
 - 36-in-long straight heat pipe
 - Operated up to 2460°F (1350°C)
 - Throughput of 3.1 Btu/sec (3.3 kW)
 - Radial heat flux of 141 Btu/ft²-sec (160 W/cm²)
 - Developed leak due to difficulties with welded thermocouple
- Three straight heat pipes
 - 28-in-long
 - Operated up to 2300°F (1260°C) and 155 Btu/ft²-sec
 - Embedded in carbon/carbon
 - Testing to be performed at NASA LaRC
- J-tube heat pipe
 - 30-in-long
 - Nose and wick fabrication issues resolved
 - Transient performance tests at LANL

Comparison of the Three Heat Pipes

Three Straight Heat Pipes

- Heat pipe #1
 - 2300°F, 155 Btu/ft²-s over 1.5 in.
 - Nearly fully isothermal
- Heat pipe #2
 - 2420°F
 - @ 2075°F, non-condensible gas over last 6 in. of heat pipe
- Heat pipe #3
 - Never operated properly

28-in long

Heat Pipes Embedded In Carbon/Carbon

Three Heat Pipes in C/C

- Three Mo-Re heat pipes
- 3-D woven preform with T-300 fibers in a carbon matrix
 - increase through-the-thickness thermal conductivity
 - eliminate delaminations with
 2-D C/C due to CTE mismatch

Hot spot

 No oxidation protection coating on C/C, therefore must test in an inert environment

C/C Heat Pipe Transient Testing

NASA

Three Heat Pipes in C/C

Heat-Pipe-Cooled Leading Edge Development

- Numerous small specimens to study various issues
- Design validation heat pipe
 - 36-in-long straight heat pipe
 - Operated up to 2460°F (1350°C)
 - Throughput of 3.1 Btu/sec (3.3 kW)
 - Radial heat flux of 141 Btu/ft²-sec (160 W/cm²)
 - Developed leak due to difficulties with welded thermocouple
- Three straight heat pipes
 - 28-in-long
 - Operated up to 2300°F (1260°C) and 155 Btu/ft²-sec
 - Embedded in carbon/carbon
 - Testing to be performed at NASA LaRC
- J-tube heat pipe
 - 30-in-long
 - Nose and wick fabrication issues resolved
 - Transient performance tests at LANL

Machine and Weld Nose Region J-Tube Heat Pipe

Curved Wick Fabrication

J-Tube Heat Pipe

NASA

Wick formed on mandrel

Nose portion of wick

RF-Induction Heating of J-Tube Heat Pipe

J-Tube Heat Pipe

- RF-induction coil/concentrator heating of nose region on outer surface
- Test specific issue: Hot spot in nose region
 - Test
 - Curved surface not insulated, thus higher throughtput required
 - Flight vehicle
 - Curved surface is "insulated"

Agenda

Overview: Heat Pipe Cooling for SOV Leading Edges AFRL/Lockheed Martin

- Identify Specific Operational Requirements, and SOV Configuration
 - Generated Performance Maps (Assuming Typical Requirements, and Configuration)
- Using LM-TSTO Orbiter Requirements, Developed Heat Pipe Cooled Leading Edge Designs for Moderate to High Heat Flux Cases
 - Heat Pipe Design Option
 - Modular Mo-Re Alloy Heat Pipe
 - Developed Processing approaches for Mo-Re/Li Heat Pipe Design
 - Heat Pipe Design Option
 - Modular Superalloy/ Li Heat Pipe
 - Successfully Designed, Fabricated, and Tested

Developed Heat Pipe Design Solutions for Hypersonic Vehicles

- Sharp Hybrid Leading Edge Designs
- Cowl Inlet Cooling (Fabricate and Test Superalloy/Na Heat Pipe)

* First Superalloy/Li Heat Pipe

Performance Map for Heat Pipe Leading Edge Cooling

Generated Relationship Between the Cooling System Temperature and Radiation
 Length and Aerothermal Environment for Different Leading Edge Radii

Technical Assessment of Key HPCLE Design Options

Key Design Options Very High Temp.

- Modular Mo Alloy/Li Heat Pipe
- Modular (or D) Mo-Re/Li Heat Pipes Embedded in C-C or C/SiC
- Modular (or D) Mo-Re/Li Heat Pipe Design

Key Design Options High Temp

Superalloy/ Li Heat Pipe

Trade Study Criteria

- Materials Cost
- Machining
- Joining
- Heat Pipe Durability
- Thermal Performance
- Structural Performance
- System Weight
- Life Cycle Cost
- Manufacturing Yield
- Start-up Risk
- Atmospheric Protection Risk
- Repair/Rework

Other System Level Concerns

- Impact From Atmospheric Debris
- Oxidation Resistance
- Thermal Contact Resistance
- Robustness in Flight of Ground
- Toxicity of Li, in Case of Leak
- Manufacturing and Ease of Integration
- Comparison with Passive and Actively **Cooled Designs**

Modular Mo-Re/Li Heat Pipe

Embedded C-C (Mo-Re D shaped)/Li Heat Pipe

Air Force Program Summary

Developed Performance Maps Providing HPCLE Design Solutions

Based on Analysis for TSTO-Based SOV Configuration

- # 1 Modular Mo-47%/Li Heat Pipe
- # 2 Modular Superalloy/Li Heat Pipe

Performed Superalloy/Li Heat pipe Life Compatibility Tests

Successfully Demonstrated ~401 Hours Life

Design, Fabrication and Testing of Prototype Articles

- 4" x 36" Superalloy/Li Heat Pipes
- Passed Functional Tests, Operational Performance Test (in Progress)

HPCLE Design Development for Hypersonic Cruise Vehicles (Ongoing)

Refrac Systems - Norm Hubele (480) 940-0068

- Wick/artery fabrication utilizing Mo-5Re alloy
- Wick/artery insertion technique
- Heat pipe container welding technique
- Diffusion bonding methods
- Modular heat pipe fabrication
- Novel lithium fill method development
- Alternate screen material evaluation

MR&D – Brian Sullivan (610) 964-6131

Design and analysis of heat pipe cooled refractory composite leading edges

Ultramet – Art Fortini (810) 899-0236 x118

Low cost CVD heat pipe fabrication

Lockheed – Suraj Rawal (303) 971-9378

 Small radius heat pipe cooled leading edge designs for hypersonic cruise vehicles

Agenda

For heat pipes to be utilized on the leading edges of flight vehicles

- Designers must be willing to insert the technology
- The payoff must be significant and the technical evolution not

High temperature heat pipe options

- Superalloy or refractory metal
- Embedded or not embedded

Superalloy heat pipes offer increased heat flux capability to the designer using "conventional" materials

 Refractory metal heat pipes embedded in a refractory composite offer a significant increase in heat flux capability

Different Materials At Elevated Temperatures Are Problematic

- Material compatibility, f(t,T)
 - Problem: Brittle carbides, Carbon in heat pipe
 - Solution: Coating on Mo-Re
- Coefficient of thermal expansion mismatch (loose for stress, tight for thermal)
 - Problem: Buckling of flat surface, Increased contact resistance
 - Solution: Convex surface, Compliant or removable layer

Agenda

 Heat pipes can be used to effectively cool wing leading edges of hypersonic vehicles

- Heat-pipe leading edge development
 - Design validation heat pipe testing confirmed design
 - Three heat pipes embedded and tested in C/C
 - Single J-tube heat pipe fabricated and testing initiated
- HPCLE work is currently underway at several locations