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Abstract 

In collaboration with U.S. aircraft engine companies, NASA 
Glenn Research Center has contributed to the advancement of 
low emissions combustion systems. For the High Speed 
Research Program (HSR), a 90% reduction in nitrogen oxides 
(NOx) emissions (relative to the then-current state of the art) 
has been demonstrated in sector rig testing at General Electric 
Aircraft Engines (GEAE). For the Advanced Subsonic Tech-
nology Program (AST), a 50% reduction in NOx emissions 
relative to the 1996 International Civil Aviation Organization 
(ICAO) standards has been demonstrated in sector rigs at both 
GEAE and Pratt & Whitney (P&W). During the Ultra Efficient 
Engine Technology Program (UEET), a 70% reduction in NOx 
emissions, relative to the 1996 ICAO standards, was achieved in 
sector rig testing at Glenn in the world class Advanced Subsonic 
Combustion Rig (ASCR) and at contractor facilities. Low NOx 
combustor development continues under the Fundamental 
Aeronautics Program. 

To achieve these reductions, experimental and analytical 
research has been conducted to advance the understanding of 
emissions formation in combustion processes. Lean direct 
injection (LDI) concept development uses advanced laser-based 
non-intrusive diagnostics and analytical work to complement 
the emissions measurements and to provide guidance for 
concept improvement. This paper describes emissions results 
from flametube tests of a 9-injection-point LDI fuel/air mixer 
tested at inlet pressures up to 5500 kPa. Sample results from 
CFD and laser diagnostics are also discussed.  

Nomenclature 
FAR [-] fuel to air ratio 
FNUS [-] fuel injector flow number  
p [kPa] pressure 
T [K] temperature 
Δp/p [%] combustor pressure drop, (p3 – p4)/p3 

ηc [%] fuel combustion efficiency 
φ [-] equivalence ratio 
 
Subscripts 
3  combustor inlet conditions 
4  combustor exit conditions 
ref  reference conditions 

Introduction 
Although most gas turbine engines currently used in 

commercial aircraft meet the ICAO standard for emissions of 
NOx, NOx emissions are still a concern due to their harmful 
effects on the atmosphere. NOx contributes to the production of 
harmful ozone at ground level and in the troposphere, and also 
contribute to ground level smog. At the stratospheric altitudes 
that would be used for supersonic flight, NOx contributes to the 
depletion of the protective ozone layer. To ensure combustion is 
as clean as possible and that aircraft gas turbines meet future 
more stringent regulations, low NOx combustion concepts are 
being developed at NASA.  

In addition to meeting more stringent emissions requirements, 
next-generation engine cycles will be required to simultaneously 
increase fuel efficiency. In order to achieve both efficiency and 
emissions goals NASA decided to support the development of 
high pressure cycle engines. Over the past two decades, NASA 
has sponsored both in-house research and collaborations with 
U.S. engine companies to develop advanced engines with higher 
efficiency that produce emissions. During the High Speed 
Research (HSR) program, the goal was to reduce NOx emissions 
90% relative to the then-current engine technology. Then, the 
AST project was initiated in the mid-1990’s to increase fuel 
efficiency by 15% and reduce landing and takeoff cycle NOx 
emissions to 50% of the 1996 ICAO standard while maintaining 
the present levels of carbon monoxide (CO) and hydrocarbon 
emissions. Following the AST Project, in the beginning of this 
century NASA introduced UEET Project to continue subsonic 
aircraft technology development with goals of 15% fuel 
efficiency improvement relative to current engines and 70% 
NOx reduction.  

NASA has investigated several combustion concepts to 
reduce NOx emissions while maintaining high combustion 
efficiency: lean premixed prevaporized (LPP) combustion;1,2 rich 
burn-quick quench (RQL) combustion;1,3,4 catalytic combus-
tion;5,6 LDI combustion; and rich front end combustion.1 LPP 
combustion met the HSR goal; the LPP, LDI, and RQL concepts 
all met the AST and UEET goals. This paper focuses on the LDI 
concept.  

On the lean side of stoichiometric combustion, NOx produc-
tion is an exponential function of equilibrium flame temperature. 
Lean-burn low NOx combustor concepts minimize the flame 
temperature by burning as lean as possible and avoiding local 
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stoichiometric zones by mixing the fuel and air as well as 
possible. All of the combustor air, except for the liner cooling air, 
enters through the combustor dome. In LPP combustion, the fuel 
is mixed and vaporized upstream of the flame zone to ensure 
maximum mixing. However, due to the high pressures and 
temperatures and the wide-ranging duty cycles of aircraft gas 
turbine engines, autoignition and flashback into the premixing 
zone are a concern for LPP combustors. LDI combustion reduces 
the potential for these problems by injecting the fuel directly into 
the flame zone. To ensure uniform mixing in LDI combustion, 
the fuel injector/swirler must be designed to produce small 
droplet sizes and quick mixing. Therefore, multi-injector LDI 
concepts—where many small fuel/air mixers replace one 
conventional fuel injector—have been studied. Under these 
conditions, NOx emissions can approach those of LPP combus-
tors.1 This paper focuses on very high pressure (up to 5500 kPa) 
tests of an in-house multipoint LDI fuel/air mixer concept 
developed under the AST program. The results are also compared 
to those from second-generation LDI sector and flametube tests. 

Experimental Setup and Procedure 
Fuel Injector/Mixer Configuration 

The LDI module described here is a first-generation multipoint 
fuel-injection concept with 9 fuel/air mixers occupying a 76.2- by 
76.2-mm2 area, as shown in figure 1. The 9 fuel/air mixers 
replace a single conventional fuel injector. Each fuel/air mixer is 
composed of a converging-diverging venturi section with an 
upstream swirler; a fuel injector is inserted at the center of each 
swirler (see figs. 1 and 2). The center-to-center distance between 
the fuel/air mixers is 25.4 mm. All of the air enters through the 
fuel/air mixers to provide an overall lean burning zone. Each 
fuel/air mixer provides rapid mixing of fuel and air and results in 
a small recirculation zone to stabilize the combustion process; the 
uniform mixing and short recirculation zone result in ultra low 
NOx emissions.  

Swirlers with helical, axial blades are used for mixing and 
generating a recirculation zone. All swirlers are co-rotating with a 
blade angle of 60°, as shown in figure 2. The blades have an 
inside diameter of 9.4 mm and an outside diameter of 22 mm. 
The calculated swirl number, as defined by Beer and Chigier,7 is 
1.02. The measured effective area of the air swirler array is  
940 mm2.  

Each fuel injector is of the simplex type. A similar fuel injector 
design was used in both the ASCR and CE-5 tests. For the ASCR 
tests, the flow number FNUS (as defined by Lefebvre8) of the each 
fuel injector is 9, and the fuel orifice diameter is 1.97 mm. For the 
CE-5 tests, FNUS is 2.9. 

Experimental Installation 
Testing was done in two facilities at NASA Glenn Research 

Center: CE-5 and the ASCR.  
CE-5 is a high pressure/high temperature combustion facility 

capable of supplying air at up to 2100 kPa, 4.5 kg/s, and 870 K. 
For the tests described in this paper, CE-5 was configured with a 

76.2- by 76.2-mm2 flametube. As shown in figure 3, the  
combustion section can be configured with 4 quartz windows, 
spaced 90° apart, for non-intrusive laser diagnostics; each 
window is 38.1- by 50.8-mm. If laser diagnostics are not 
desired, blanks can replace the quartz windows. The hot 
 

 
Figure 1.—Nine-element fuel injector module. 

 

 
Figure 2.—Fuel/air mixer element. 

 

 
 

Figure 3.—CE-5 test section showing quartz windows and a 
detail of the fuel injector module. 
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Figure 4.—Advanced Subsonic Combustion Rig (ASCR). 

 
combustion products are quenched with water and then vented 
to the altitude exhaust system, which was run at atmospheric 
pressure. 

ASCR is a very high pressure/high temperature combustion 
facility capable of supplying air at up to 5500 kPa, 17 kg/s, 
and 975 K (see fig. 4). Before being exhausted to the atmos-

phere, the hot combustion products are quenched with water. 
See Bianco9 for further details. 

Results and Discussion 
This section is divided into three parts. First, NOx emis-

sions measurements taken in the high pressure/high tempera-
ture ASCR facility are presented. Then, a correlation for NOx 
emissions as a function of combustor conditions is given and 
compared to both medium pressure/high temperature data 
taken in CE-5 and the high pressure/high temperature ASCR 
data. Finally, insights from CFD calculations and optical 
diagnostic measurements are used to explain why second 
generation LDI designs have lower emissions than the first 
generation LDI design described in this report. 

Emissions Data 

Figures 5 to 8 plot the NOx emissions as a function of 
combustor conditions. NOx values are given as emissions 
index, defined as grams of NOx per kilogram of fuel.  

In figure 5, the log of the NOx emissions index is plotted as 
a function of adiabatic flame temperature T4 for inlet tempera-
tures T3 of 755 K (circles), 810 K (squares), and 865 K  

 

 
 

Figure 5.—NOx, EI as a function of adiabatic flame temperature at a pressure drop, Δp/p3, of 7%, and an inlet 
pressure of (a) 5500 kPa, (b) 5200 kPa, (c) 3800 kPa, and (d) 4500 kPa. 
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(triangles) and inlet pressures p3 of 5500, 5200, 3800, and 
4500 kPa. Note that the log of NOx appears to vary linearly 
with adiabatic flame temperature, which indicates that, as 
expected, NOx emissions are an exponential function of 
adiabatic flame temperature. 

Figure 6 plots the log of NOx emissions index as a function 
of the log of equivalence ratio at an inlet temperature of 865 K 
and inlet pressures of 3800 kPa (squares), 4500 kPa (open 
circles), and 5500 kPa (closed circles). At a pressure of  
5500 kPa, NOx emissions seem to be a much weaker function 
of equivalence ratio than they are at lower pressures. 

The log of the NOx emissions index is plotted against the 
log of the inlet pressure in figures 7 and 8. In part (a) of  
figure 7, the equivalence ratio is 0.50 and the inlet tempera-
tures are 755 K (triangles), 810 K (squares), and 865 K 
(circles); in part (b), the same three inlet temperature curves 
are plotted but the equivalence ratio is 0.35. In figure 8, the 
inlet temperature is kept constant at 755 K, but equivalence 
ratios of 0.35 (circles) and 0.50 (squares) are plotted together. 
The log of the NOx emissions index seems to be a linear 
function of the log of the inlet pressure, indicating that NOx 
emissions are a power function of inlet pressure.  

NOx Correlation for Data Comparison 
The NOx data are compared to two correlations that give 

the NOx emissions index as a function of inlet temperature, 
inlet pressure, pressure drop, and fuel-to-air ratio. The first 
correlation was developed for this LDI configuration using the 
high temperature, high pressure data taken in ASCR, and is 
given by: 
 

EINOx = 0.104 exp(T3/185) FAR1.32 p3,
0.68 (Δp/p3)-0.36

   (1) 
 

The second correlation, 
 

EINOx = 1.359 exp(T3/194) FAR1.69 p3
0.595 (Δp/p3)-0.565  (2) 

 

 
 

Figure 6.—NOx emissions as a function of equivalence 
ratio and inlet pressure. 

(a)  

(b)  
Figure 7.—NOx emissions as a function of inlet pressure 

and inlet temperature at equivalence ratios of (a) 0.5 and 
(b) 0.35. 

 

 
 

Figure 8.—NOx emissions as a function of inlet pressure at 
an inlet temperature of 755 K and a pressure drop of 7%. 
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Figure 9.—Comparison of measured and calculated NOx 

emissions index.   
 

is almost identical to the NOx severity parameter developed 
by Wey10 using several multipoint LDI configurations: the 
only difference is the coefficient, 1.359, which was found 
using the high pressure, high temperature ASCR data. All of 
the other constants in equation (2) were found using several 
different data sets taken during the AST. 

Figure 9 plots the measured NOx emissions index against 
the NOx emissions index calculated from equations (1) (filled 
red symbols) and (2) (open blue symbols). The high pressure, 
high temperature ASCR data is plotted using squares, and the 
medium pressure, high temperature CE-5 data is plotted using 
circles. Both correlations fit the high pressure, high tempera-
ture ASCR data quite well (R2=0.95 for eq. (1) and 0.92 for 
eq. (2)). However, equation (2) fits the medium pressure, high 
temperature data taken in CE-5 (R2=0.90) much better than 
equation (1) (R2=0.78). Since equation (1) fits only the high 
pressure data well, but equation (2) fits both the high pressure 
and the medium pressure data well, the correlation equation 
(2) is a more general equation. 

Finally the four points on the 5500 kPa curve in figure 6 are 
plotted a second time in figure 9 using yellow stars for the 
correlation in equation (1) and cyan stars for the correlation in 
equation (2). Although figure 6 seems to indicate that NOx 
emissions are a weaker function of equivalence ratio at high 
pressure and temperature, figure 9 shows that NOx correlation 
equations (1) and (2) still predict NOx emissions fairly well.  

Analysis and Comparison with Second Generation 
LDI 

The data presented here were the first measurements taken 
in the high pressure/high temperature ASCR facility and 
showed that this facility operated well under these high 
pressure conditions. In addition, these were also the first 
emissions measurements on the LDI concept at very high 

pressure conditions and showed that LDI combustion pro-
duced low NOx emissions varied smoothly with inlet pressure, 
even at pressures up to 5500 kPa. The measurements also 
showed that the operability and durability of LDI was good 
even at high pressure/high temperature conditions. 

Based on the success of this first generation LDI injector, 
second generation LDI geometries have been designed and 
tested.14,15 Included in the second generation are designs that 
incorporate more injection points in the same cross section 
area to minimize the recirculation zone and the residence time 
effect. The smaller recirculation zone and decrease in 
residence time results in a decrease in NOx emissions.  

Figure 10 compares first and second generation LDI emis-
sions; the data shown are corrected to a constant inlet 
temperature of 810 K, inlet pressure of 2750 kPa, and Δp/p3 of 
4%. The first generation 9-point LDI (hollow blue squares) 
has higher NOx emissions than any of the three second 
generation LDI concepts shown, which are: the 25-point LDI 
(hollow red triangles), the 49-point LDI (solid purple circles), 
and 36 points LDI (solid green triangles). In addition, all of 
the second generation multi-injection LDI concepts have a 
better operability range (i.e., wider FAR range) than the first 
generation LDI concepts. The 36-point has the best NOx 
emissions reduction potential. The 49-point LDI had disap-
pointing NOx emission results; after testing we examined the 
injector with the designer and found that there were a few 
blockages inside the fuel passage which caused non-uniform 
fuel/air mixing. In addition, all of the second generation multi-
injection LDI designs have better operability range than the 
first generation (i.e., a wider FAR range).  

Table 1 shows a hypothetical engine cycle for the NASA 
Ultra Efficient Engine, the ICAO landing-take off (LTO) 
characteristic for that engine is calculated for both first and 
second generation LDI concepts. Assuming 15% cooling air 
for the engine, the LTO NOx is 63% below the 1996 ICAO 
standard for the first generation LDI, and 71% below 1996 
ICAO standard for the second generation LDI.  

 

 
 

Figure 10.—Comparison of first generation 9-point and 
second generation LDI flametube NOx emissions. 
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TABLE 1.—UEET LARGE ENGINE LTO CYCLE 
 Power,  

% 
Time,  
min 

Total 
pressure at 
station 3,  

kPa 

Δp/p3, 
% 

SLTO 100.0 0.7 969.8 4 
Climb 85.0 2.2 933.7 4 
Approach 30.0 4 740.4 4 
Idle 7.0 26 615.4 4 

 

 
 

Figure 11.—Velocity field compiled from 200 PIV images. 
 
 

 
 

Figure 12.—Nine-point, LDI results that show zero axial 
velocity iso-surfaces. 

We applied advanced laser diagnostics techniques6 and the 
in-house National Combustion Code7 to better understand fuel 
injector design.  

Particle imaging velocimetry (PIV) was used to measure the 
velocity field downstream of the injector. This allowed the 
size and location of the recirculation zones to be identified. 
Figure 11 shows side view contours of axial velocity at 
locations ranging from 3 to 35 mm downstream of the injector 
exit plane; this image was taken in unfueled cold flow at an 
inlet temperature of 617 K, inlet pressure of 1030 kPa, and 
pressure drop of 4%. From these images we observe that the 
heart of the flow recirculation zone occurs between 5 to 7 mm 
from the injector exit and provides confirmation of the 
presence of recirculation zone immediately downstream of 
each injection point. Note the three strong recirculation zones 
(indicated by the arrows to the left and by light blue and blue 
colors) approximately 7 mm from the injector exit. More 
details are given in Hicks et al.11  

This strong recirculation zone was also calculated using the 
National Combustion Code. The recirculation zones associated 
with the injection points are illustrated by the iso-surfaces of 
zero axial velocity in figure 12 computed by Davoudzahed  
et al.12  

Summary 
This paper presents results from the first combustion test 

done in the high pressure/high temperature ASCR facility at 
NASA Glenn Research Center. This test was also the first high 
pressure/high pressure test of the LDI concept and showed that 
LDI had good operability and durability even at pressures up 
to 5500 kPa. NOx emissions varied smoothly with inlet 
pressure, flame temperature, and equivalence. The limited 
number of data points at very high pressure and temperature 
conditions indicated that, at very high pressures, NOx 
emissions are a weaker function of equivalence ratio than they 
are at lower pressures. A correlation for NOx emissions as a 
function of inlet temperature, inlet pressure, pressure drop, and 
fuel/air ratio was developed and showed high correlation with 
the measured NOx emissions at high pressure and tempera-
ture. However, another correlation that was based on the 
Advanced Subsonic Technology Program (AST) NOx severity 
parameter had almost as high a correlation with the high 
pressure/high temperature data and a much higher correlation 
with the medium pressure/high temperature data. 

This paper also summarizes LDI concept development 
through design, analysis, and testing. In the LDI concept, fuel 
is injected directly into the primary zone; this minimizes auto-
ignition potential. However, in order to achieve low NOx, it is 
important to have fine atomization from fuel and uniform 
mixing from fuel and air. In addition, a small recirculation 
zone and a short flame zone are also critical for NOx reduc-
tion. Based on NOx reduction achieved by the first generation 
of LDI concepts, a second generation of LDI concepts was 
developed to further reduce NOx emissions.  
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Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To 
achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct 
injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide 
guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 
kPa. Sample results from CFD and laser diagnostics are also discussed. 
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