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Abstract 

 

Nondimensional parameters and equations governing the buckling behavior of 

rectangular symmetrically laminated plates are presented that can be used to represent the 

buckling resistance, for plates made of all known structural materials, in a very general, 

insightful, and encompassing manner. In addition, these parameters can be used to assess 

the degree of plate orthotropy, to assess the importance of anisotropy that couples 

bending and twisting deformations, and to characterize quasi-isotropic laminates 
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quantitatively. Bounds for these nondimensional parameters are also presented that are 

based on thermodynamics and practical laminate construction considerations. These 

bounds provides insight into potential gains in buckling resistance through laminate 

tailoring and composite-material development. As an illustration of this point, upper 

bounds on the buckling resistance of long rectangular orthotropic plates with simply 

supported or clamped edges and subjected to uniform axial compression, uniform shear, 

or pure inplane bending loads are presented. The results indicate that the maximum gain 

in buckling resistance for tailored orthotropic laminates, with respect to the 

corresponding isotropic plate, is in the range of 26-36% for plates with simply supported 

edges, irrespective of the loading conditions. For the plates with clamped edges, the 

corresponding gains in buckling resistance are in the range of 9-12% for plates subjected 

to compression or pure inplane bending loads and potentially up to 30% for plates 

subjected to shear loads. 

 

Introduction 

 

Laminated composite materials lend themselves to elastic tailoring of anisotropic 

structural components - a feature that allows structural designers to customize the 

stiffness-critical response of structural elements such as flat plates and curved panels. The 

benefits of elastic tailoring are usually manifested as a reduction in structural weight or 

improved performance, which are very important to many widespread applications such 

as aircraft, spacecraft, and sporting goods. Typically, these benefits are obtained by 

simply ensuring that the laminate stiffnesses are different in the principal directions (an 
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example of orthotropy), or by building in elements of anisotropy that couple response 

modes to obtain a desired effect (e.g., coupling of extension, contraction and inplane 

shear deformations). The type of anisotropy that is considered in the present study is the 

anisotropy associated with the coupling of pure-bending and twisting deformations of 

symmetrically laminated flat plates. For convenience, this type of anisotropy is referred 

to herein as flexural anisotropy. 

 

Most aerospace design practices limit the use of polymeric, laminated composites 

to those that are balanced and symmetrically laminated. The balanced-laminate 

requirement eliminates anisotropy associated with coupling between inplane extension or 

contraction and inplane shearing deformations. In contrast, the symmetric-laminate 

requirement eliminates anisotropy associated with coupling between inplane extension, 

contraction, or shear with bending or twisting deformations. These laminate-construction 

design requirements are mostly done to simplify the structural response or to prevent 

residual stresses from altering the structural shape during curing. However, these 

limitations on laminate construction generally do not eliminate flexural anisotropy. This 

point is important because it is has been shown that in some cases flexural anisotropy 

may significantly influence the buckling resistance of laminated-composite plates 

(Chamis, 1969; Nemeth, 1986, Grenestedt, 1991). As such, it is useful to characterize the 

effects of flexural anisotropy on buckling behavior. The nondimensional stiffness 

parameters popularized by Nemeth, and used to conduct extensive parametric studies of 

the buckling behavior of simply supported and clamped laminated-composite plates, 

serve this purpose (Nemeth, 1992a, 1995, and 1997). It has been shown by Nemeth that 
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the buckling behavior of simply supported and clamped rectangular plates that are 

symmetrically laminated can be completely characterized by these nondimensional 

parameters, in a general manner amenable to the development of concise design data. 

Unfortunately, these nondimensional parameters generally vary in a coupled manner with 

changes in laminate construction and their bounding values are only partially known 

(Weaver, 2003 and 2004). Knowing the bounds on these nondimensional parameters is 

important because it limits the size of the design space, which has practical implications 

to designers and design-data developers. 

The objective of the present study is to determine the practical upper and lower 

bounds of basically the nondimensional parameters, presented by Nemeth, in order to 

gain insight into bounds on the buckling resistance of rectangular plates made of existing 

materials and, possibly, to gain insight into the potential benefits of new material 

development. To accomplish this objective, background information on the 

nondimensional parameters and equations governing buckling is presented first. Then, 

lower bounds to the values of the nondimensional parameters are determined from 

thermodynamic considerations and upper bounds are derived from practical laminate 

construction considerations. Finally, upper bounds to the buckling resistance of infinitely 

long, orthotropic flat plates are presented. In particular, rectangular plates that are 

subjected to either uniform axial compression, shear, or pure inplane bending loads loads 

and with either simply supported or clamped unloaded edges are considered. 
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Background  

 

It is well known that useful nondimensional parameters can be obtained by normalising 

the equations that govern the response in a manner that renders the fewest number of 

parameters needed to completely characterize the response. For example, studies that 

have adopted this approach to better understand buckling, vibration, and flutter of plates 

are Huber (1929); Wittrick (1952), Shulesko (1957), Stein (1983); Brunelle ( 1983, 1985 

and 1986); Oyibo and Berman (1985); Yang and Kuo (1986); Nemeth (1986, 1992b, and 

1994); and Geier and Singh (1997). For a rectangular plate of width b, defined by an x-y 

coordinate system (see Fig. 1), the plate buckling behavior is governed by 
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where the subscripted D-terms are the flexural stiffnesses of classical laminated-plate 

theory, w is the transverse displacement and the functions Nx, Ny and Nxy are internal in-

plane stress resultants where compression is positive and positive shear corresponds to 

the boundary tractions shown in Fig. 1. Following Nemeth (1986 and 1994), it is 

convenient to nondimensionalize the form of Eq. (1) by redefining the co-ordinates as 

b

yx
== η

λ
ξ  and  and multiplying throughout by b

2λ2 / D11D22  to obtain 
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where  λ  is a characteristic length and is usually chosen as the buckling half-wavelength. 

The nondimensionalized parameters in Eq. (2) are given by 
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where α∗
  and  β  are flexural-orthotropy parameters, δ  and  γ   are flexural-anisotropy 

parameters, and nx, ny, and nxy are nondimensional stress resultants whose critical values 

are well-known as buckling coefficients. It is worth noting that α∗
 is the reciprocal of the 

corresponding parameter originally defined by Nemeth (1986) and has a physical 

interpretation as a stiffness-weighted buckle aspect ratio for infinitely long plates or a 

stiffness-weighted plate aspect ratio for finite-length plates. Likewise, the ratio of the 

principal bending stiffnesses is defined herein as α = D22 D11
4   for convenience in the 

discussion that follows. The term β was originally introduced by Seydel (1933) (as the 

reciprocal of β) and was also used by Brunelle and Oyibo (1983). 
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As one might expect, there are many ways of nondimensionalizing the plate 

bending stiffness parameters, but done in this way is particularly useful. For example, for 

isotropic materials the flexural-orthotropy parameters  α and  β  take on values of unity 

and the flexural-anisotropy parameters  δ  and  γ   are zero valued. Furthermore, for 

simply supported and clamped plates the number of flexural-orthotropy parameters has 

been reduced from four dimensional stiffnesses to two nondimensional stiffness measures 

- a feature that greatly simplifies laminate design.  

 

The nondimensional parameters presented in Eq. (3a) and the stiffness ratio 

α = D22 D11
4   are also useful in the design of special-purpose laminates when used in 

conjunction with the concept of a quasi-isotropic laminate (Tsai and Pagano, 1968) as a 

baseline or starting configuration that behaves similar to a corresponding homogeneous 

isotropic plate. For this class of laminate constructions, the inplane stiffness and response 

characteristics are identical to those for the corresponding isotropic materials. In slight 

contrast, the bending and twisting stiffness and response characteristics are somewhat 

different than those for the corresponding isotropic materials. These differences are 

conveniently represented with the nondimensional parameters given by Eq. (3a). For 

example, Nemeth (1992a) showed that values for  α  and  β  approach a value of unity, 

and the values for  δ  and γ  approach zero, in a monotonic manner as the number of plies 

in a quasi-isotropic laminate increases. Thus, the nondimensional parameters provide a 

means for quantitatively assessing how different a given quasi-isotropic laminate is from 

a homogeneous isotropic material. In the context of design, stiffness tailoring may be 

viewed as perturbing the values of these nondimensional parameters from the values for 
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an isotropic material to obtain a desired response.  It is important to note that different 

laminate constructions that possess identical values for  α, β, δ,  and  γ   will exhibit 

identical response characteristics when these parameters govern the structural behavior. 

Thus, it is important to know the practical bounds on  α, β, δ,  and  γ  for a wide range of 

lamina material systems in order to determine the potential for performance 

enhancements that are possible by using elastic tailoring.  

 

Thermodynamic Considerations 

 

Positiveness of the strain energy density is a fundamental consideration in 

structural mechanics. In particular, the energy stored by an elastic body during 

deformation is a positive-valued quantity that can be converted into work. It is physically 

impossible for an elastic body to either not store or to dissipate strain energy during 

deformation. This physical consideration places constraints on the values of α, β, δ,  and  

γ. These constraints are derived subsequently. 

 

Mansfield (1989) gives the expression for the total strain energy, Ub, of a flat 

flexurally anisotropic plate undergoing bending and twisting deformations as  

 { } [ ]{ }∫∫=
A

T

b dxdyDU κκ
2

1
   (4a) 

or in expanded form, as 
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and 

 D[ ]=
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where κ{ } is the vector of curvatures and twist, given in terms of transverse 

displacements  w  and the independent plate variables (x, y).  To obtain a convenient 

nondimensional form of the total strain energy, the stiffness matrix  [D]  is 

nondimensionalized following the procedure outlined previously and yields 
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where the additional nondimensional parameter  ν f   is  
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The parameterν f , introduced by Brunelle and Oyibo (1983),  represents the geometric 

mean of the two principal Poisson’s ratio effects, associated with pure bending, that is, a 

mean anticlastic bending effect.   

 

Typically, in defining the conditions on the elastic material parameters, positive 

definiteness of the strain energy density is enforced, which is valid at every material point 

of a structure.  Enforcing this condition on the integrand of Eq. (4) results in the 

requirement that the matrix defined by Eq. (7) be a positive-definite matrix, which yields 

relationships that  α, β, δ, γ  and  ν f   must obey. Applying Sylvester's criteria for positive 

definiteness of a matrix yields the following requirements (Zwillinger, 1996): 
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The second and third of these conditions give the following bounds on νf and β; that is, 

 -1 and 11 ><<− βν f .   (10) 
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Because no apparent upper bound on β is given by Eqs. (9), bounds for γ and δ are also 

not apparent. As a result, in the present study, bounds on the nondimensional parameters 

are sought with respect to the buckling response of simply supported and clamped plates, 

not the material behavior.  For this class of problems, the buckling response is completely 

independent of ν f  and positiveness of the total strain energy is used, instead of positive 

definiteness of the strain energy density, to eliminate ν f  from consideration. Specifically, 

a modified form of the total strain energy is sought that is independent of ν f  and whose 

positiveness can be guaranteed by enforcing positive definiteness of the corresponding 

integrand. Thus, an alternate form of Eq. (4), the total strain energy of a plate, is used that 

produces structural-response bounds on the minimum number of nondimensional 

parameters required to characterize the buckling behavior of simply supported and 

clamped plates as follows. 

 

 The desired form of Eq. (4b) is obtained by noting that it is possible to eliminate  

  ν f  as a variable governing the structural response for several cases of practical interest 

in design; that is, plates for which the transverse buckling displacement  w = 0  on the 

boundary (e.g., see the results presented in Nemeth (1992a)).  This simplification is done 

by integrating Eq. (4b) by parts using Green's Theorem and enforcing w = 0 on the 

boundary of a finite-length plate or the periodic unit of an infinitely long plate to obtain 
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Using this expression, the strain energy components containing β and ν f  may be reduced 

to a single term in β ; that is, 
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which allows the total strain energy to be written as  
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which allows the strain energy to be represented as 
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where D*mod[ ]  is another modified nondimensional stiffness matrix that is given by 
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for which 12 =+ nm   must be satisfied in order for Eqs. (13) and (15b) to remain 

equivalent, where m and n are real-valued numbers. The modified stiffness matrix 
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Combining the latter of these relationships with 12 =+ nm  results in the following cubic 

polynomial in βn  
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For any given values of  δ  and  γ, Eq. (18) gives the minimum, value of  β that 

corresponds to positive strain energy. Its dependency on n is of little consequence 

because the minimum value of  β  is determined directly by ensuring that the solution to 

Eq. (18) has three real-valued roots, which, in turn, is satisfied by ensuring that the 

discriminant of the third-order polynomial in Eq. (18) is zero; that is, 
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which is independent of the parameters  m  and  n. Simplification of Eq. (19) yields a 

fourth-order expression in  β  given by  
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Equation (20) is used herein to obtain the minimum value of  β  for given values of  δ  

and  γ. It is noted that for some values of δ and γ there are multiple solutions for β that 

satisfy Eq. (20).  For these circumstances, the appropriate choice of  the minimal β value 

is the one that also satisfies the thermodynamic conditions given in Eq.(17), and by so 

doing, provides a unique solution for β. Upon finding the minimal value for  β, Eq. (18) 

is used to determine the value of the parameter  n. It is useful to observe that Eq. (20) 

exhibits identical dependence on  δ  and  γ, meaning that  δ  and  γ  have identical effects 

on the minimal value of β because they are interchangeable. The contours of minimal 

β, as given by Eq. (20), are depicted as a function of δ and γ  in Fig. 2. Minimal β values 

are also listed in Tables 1a and 1b, and may prove to be useful in formulating parametric 

studies.  
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Table 1a. Minimum values of  β  for given values of δ and γ . a) –0.99 < γ < 0 and –0.99 

< δ < 0.99 

 γγγγ    

δδδδ     

-0.99 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 

-0.99 2.96 2.82 2.69 2.57 2.46 2.35 2.24 2.14 2.04 1.94 1.84 

-0.9 2.82 2.62 2.43 2.29 2.16 2.05 1.91 1.8 1.69 1.58 1.48 

-0.8 2.69 2.43 2.2 2.02 1.86 1.72 1.59 1.46 1.34 1.22 1.1 

-0.7 2.57 2.29 2.02 1.8 1.61 1.45 1.3 1.15 1.02 0.89 0.77 

-0.6 2.46 2.16 1.86 1.61 1.4 1.21 1.04 0.88 0.73 0.59 0.45 

-0.5 2.35 2.05 1.72 1.45 1.21 1 0.81 0.63 0.47 0.31 0.17 

-0.4 2.24 1.91 1.59 1.3 1.04 0.81 0.6 0.41 0.23 0.06 -0.1 

-0.3 2.14 1.8 1.46 1.15 0.88 0.63 0.41 0.2 0 -0.18 -0.35 

-0.2 2.04 1.69 1.34 1.02 0.73 0.47 0.23 0 -0.2 -0.39 -0.58 

-0.1 1.94 1.58 1.22 0.89 0.59 0.31 0.06 -0.18 -0.39 -0.6 -0.79 

0 1.84 1.48 1.1 0.77 0.45 0.17 -0.1 -0.35 -0.58 -0.79 -1 

0.1 1.74 1.38 1 0.64 0.32 0.02 -0.25 -0.51 -0.75 -0.98 -0.79 

0.2 1.65 1.28 0.89 0.53 0.19 -0.11 -0.4 -0.67 -0.92 -0.75 -0.58 

0.3 1.56 1.18 0.78 0.41 0.07 -0.25 -0.54 -0.82 -0.67 -0.51 -0.35 

0.4 1.47 1.08 0.68 0.3 -0.05 -0.37 -0.68 -0.54 -0.4 -0.25 -0.1 

0.5 1.38 0.99 0.58 0.19 -0.17 -0.5 -0.37 -0.25 -0.11 0.02 0.17 

0.6 1.29 0.89 0.48 0.09 -0.28 -0.17 -0.05 0.07 0.19 0.32 0.45 
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0.7 1.21 0.8 0.38 -0.02 0.09 0.19 0.3 0.41 0.53 0.64 0.77 

0.8 1.12 0.71 0.28 0.38 0.48 0.58 0.68 0.78 0.89 1 1.1 

0.9 1.04 0.62 0.71 0.8 0.89 0.99 1.08 1.18 1.28 1.38 1.48 

0.99 0.96 

 

1.04 1.12 1.21 1.29 1.38 1.47 1.56 1.65 1.75 1.84 

 

 

Table 1b. Minimum values of  β  for given values of δ and γ. b)  0 < γ < 0.99 and < -0.99 

< δ < 0.99 

 

 γγγγ    

δδδδ     

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

-0.99 1.88 1.74 1.65 1.56 1.47 1.38 1.29 1.21 1.12 1.04 0.96 

-0.9 1.48 1.38 1.28 1.18 1.08 0.99 0.89 0.8 0.71 0.62 1.04 

-0.8 1.1 1 0.89 0.78 0.68 0.58 0.48 0.38 0.28 0.71 1.12 

-0.7 0.77 0.64 0.53 0.41 0.3 0.19 0.09 -0.02 0.38 0.8 1.21 

-0.6 0.45 0.32 0.19 0.07 -0.05 -0.17 -0.28 0.09 0.48 0.89 1.29 

-0.5 0.17 0.02 -0.11 -0.3 -0.37 -0.5 -0.17 0.19 0.58 0.99 1.38 

-0.4 -0.1 -0.25 -0.4 -0.5 -0.68 -0.37 -0.05 0.3 0.68 1.08 1.47 

-0.3 -0.35 -0.51 -0.67 -0.8 -0.54 -0.25 0.07 0.41 0.78 1.18 1.56 

-0.2 -0.58 -0.75 -0.92 -0.7 -0.4 -0.11 0.19 0.53 0.89 1.28 1.65 

-0.1 -0.79 -0.98 -0.75 -0.5 -0.25 0.02 0.32 0.64 1 1.38 1.75 
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0 -1 -0.79 -0.58 -0.4 -0.1 0.16 0.45 0.77 1.1 1.48 1.84 

0.1 -0.79 -0.6 -0.39 -0.2 0.06 0.31 0.59 0.89 1.22 1.58 1.94 

0.2 -0.58 -0.39 -0.2 0 0.23 0.47 0.73 1.02 1.34 1.69 2.04 

0.3 -0.35 -0.18 0 0.2 0.41 0.63 0.88 1.15 1.46 1.8 2.14 

0.4 -0.1 0.06 0.23 0.41 0.6 0.81 1.04 1.3 1.59 1.91 2.24 

0.5 0.17 0.31 0.47 0.63 0.81 1 1.21 1.45 1.72 2.05 2.35 

0.6 0.45 0.59 0.73 0.88 1.04 1.21 1.4 1.61 1.86 2.16 2.46 

0.7 0.77 0.89 1.02 1.15 1.3 1.45 1.61 1.8 2.02 2.29 2.57 

0.8 1.1 1.22 1.34 1.46 1.59 1.72 1.86 2.02 2.2 2.43 2.68 

0.9 1.48 1.58 1.69 1.8 1.91 2.05 2.16 2.29 2.43 2.62 2.82 

0.99 1.84 1.94 2.04 2.14 2.24 2.35 2.46 2.57 2.68 2.82 2.96 
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Laminate Construction Considerations 

 

Parametric studies conducted by the authors have shown that the nondimensional 

parameters used in the present study are coupled functions of laminate stacking sequence 

and ply material properties. For example, a parametric plot is presented in Fig. 3, for the 

nine material systems given in Nemeth (2000), that shows the coupled dependence of  γ  

and  δ  on the fiber orientation angle  θ  for [±θ]s  laminates (see Fig. 1). Thus, practical 

restrictions on laminate construction can be used to determine relationships between the 

nondimensional parameters and "practical" bounds on their values. 

 

In this section, upper-bound values for  α, β, γ, and δ   are determined. It was 

found that the bounding values for stiffness properties are obtained for laminates made of 

a single material because multiple materials reduce the overall stiffness properties, 

compared to those of the stiffest individual material. This result may be understood by 

appealing to a simple rule-of-mixtures approach. As such, hybrid materials are not 

considered in the present study and focus is placed solely on laminated composites in 

which each layer is made of the same material. In addition, bounds on the product of the 

anisotropy parameters and a practical envelope of their difference are presented that can 

be used to identify the extent of the design-parameter space. 

 

To determine the desired bounds information, it is helpful to express the bending 

stiffnesses in terms of the material invariants, W1-W5, and the lamination parameters, ξ1-

ξ12, (e.g. Miki, (1982) and Fukunaga and Hirano, (1982)) as follows 
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  (21) 

The lamination parameters are calculated from the following integrals 

 ξ9 ξ10 ξ11 ξ12( )= 3
2

cos2θ cos4θ sin2θ sin4θ( )ui
2
dui−1

1∫    (22) 

where hi is the distance of a particular ply surface from the mid plane,  t is the thickness 

of the laminate, θ is the ply angle (see Fig. 1) and ui = 2hi t . The material invariants are 

linear functions of the ply stiffnesses, Qij (e.g. Jones, (1999)) and are given by 
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The description of flexural stiffnesses in terms of ply stiffnesses and lamination 

parameters using Eqs. (21) and (22) is applicable to all linearly elastic anisotropic 

materials in a state of plane stress .As such, the applicability of the current work is broad 

and extends to plates made from many materials including: laminated continuously 
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reinforced composites; short fiber reinforced composites; functionally graded materials 

and homogeneous isotropic materials.  

Next, it is useful to express α, β, γ, and δ in terms of material invariants and 

lamination parameters as follows 
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 δ =
ξ11
2
W 2 −ξ12W3

W1 +ξ 9W2 +ξ10W3( )W1 −ξ 9W2 + ξ10W3( )34
  (27) 

 

 

(i) Upper Bounds on the Nondimensional Parameters 

 

 Parametric studies indicate that the extreme values of α, β, γ, and δ  are obtained 

for single-layer laminates, with ply angle θ, or for cross-ply laminates (θ  = 0o and 90o). 

To determine the extreme values of the nondimensional parameters it is helpful to 

identify the ply angles that give extreme values of the lamination parameters, ξi. These 
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extreme values are given in Table 2. Clearly, the results in the table indicate that the 

extreme values of the nondimensional parameters are given solely in terms of the material 

invariants or the ply stiffnesses, Qij, by 

 αmax =
W1 +W2 +W 3

W1 −W 2 +W3

4  =
Q11

Q22

4      (28) 

where  ξ9 = −1 and ξ10 =1, which corresponds to θ  = 900 

 αmin =
W1 −W2 +W3

W1 +W2 +W3

4  =
Q22

Q11
4     (29) 

where  ξ9 =1 and ξ10 =1, which corresponds to θ  = 0
0
 

 βmax =
W1 + 3W3

W1 −W3( )
=
3 Q11 +Q22( )−2Q12 − 4Q66

Q11 +Q22 + 2Q12 + 4Q66

   (30) 

where  ξ9 = 0 and ξ10 = −1, which corresponds to θ  = ±450 

 βmin =
W1 − 3W3

W1 +W3( )
=
2 Q12 + 2Q66( )
Q11 +Q22

    (31) 

where ξ9 = 0 and ξ10 =1, which corresponds to (90a,0b)s or (0a,90b)s. The subscripts a and 

b indicate the fractional contribution of the plies to the total laminate thickness. Here, the 

subscript a = 1-0.5
1/3
 ≈ 0.206 and the subscript b = 0.51/3 ≈ 0.794. 

 

Table 2. Lamination Parameters and their extreme values 
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Ply Angle, θθθθ Lamination 

Parameter 0 45 60 90 -45 -60 

ξξξξ9(cos2θθθθ) 1 0 0.5 -1 0 0.5 

ξξξξ10(cos4θθθθ) 1 -1 -0.5 1 -1 -0.5 

ξξξξ11(sin2θθθθ) 0 1 0.866 0 -1 -0.866 

ξξξξ12(sin4θθθθ) 0 0 -0.866 0 0 0.866 

 

 

The expressions given by Eqs. (28) - (31) show that the limiting values of the 

nondimensional parameters are determined by the basic ply stiffnessess, Qij. As such, 

materials with the greatest orthotropy ratios 

 
Q11

Q22

      (32a) 

and 

 
Q11

Q12 + 2Q66

     (32b) 

give the extreme values of the nondimensional parameters. Typically, for current 

materials, these ratios have values that range from  3 for a glass/epoxy material up to 

values near  80 for the graphite/epoxy P-100/AS3502 material (Nemeth, 2000). However, 

the upper-bound values of  α  and  β  are defined if a material with infinite values of these 

ratios is considered. These considerations, and the previously obtained strain-energy 

considerations, yield 
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 0 <α < ∞     (33a) 

and 

 31 <<− β     (33b) 

Equation (31) shows that β has a minimum value that approaches zero for composites 

constructed from conventionally reinforced unidirectional plies; that is, plies with Q12  >  

0. This condition is in addition to the following thermodynamic requirements: Q11, Q22 

and Q66  >  0, as given by Lempriere (1968). However, the second thermodynamic 

condition in Eq. (10) shows that β has a minimum value that approaches –1. It would be 

useful to identify the values of Q11, Q22, Q12 and Q66 that meet this requirement. To 

achieve such an extreme value requires that the (positive) stiffness Q66 vanishes so as to 

minimize the numerator in Eq. (31). The next step is to establish extreme values of Q12. 

Lempriere (1968) gives the following thermodynamic requirement, 

 2211
2

12 QQQ <     (34) 

that gives a minimum value of Q12  >  - 2211QQ . Substituting this condition into Eq. (31) 

yields 

 
2211

2211
min 2

QQ

QQ

+
−>β     (35) 

which is readily shown to give the minimum value, βmin  >  -1, for  Q11  =  Q22. As an 

aside, it is of interest to note that Eq. (35) shows that the minimum value of β is given by 

the negative ratio of geometric to arithmetic means of the principal stiffnesses. In 
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summary, to obtain the minimum value of β, a ply architecture is needed for which Q11 = 

Q22, 1112 QQ −→ and 066 →Q , and for which Q16  = Q26 = 0. No ply architectures are 

currently known that meet these requirements.  

 The bounds on β given by Eq. (33b) are in contrast to those bounds given by 

Brunelle (1985) where bounds of  0 < β < 1 are suggested using a rules of mixture 

approach. Clearly, such bounds are overly limiting and if applied will significantly 

underestimate the potential for elastic tailoring. 

Examination of Eqs. (26) and (27) indicates that the extreme values of the 

anisotropy parameters  δ  and  γ  are given by an odd function of a single ply angle. This 

angle is a function of the material invariants but, because its complicated nature is not 

insightful, its expression is not presented herein. It is noted that the maximum value 

occurs in the vicinity of  θ  = 500 and 400, for  δ  and  γ , respectively. The extreme values 

are found by substituting the maximum value for  β, β = 3, into Eq. (20) to yield 

 1, <γδ       (36) 

This result may also be found from thermodynamic considerations by substituting β  =  3 

and ν f =  1  into the fourth and fifth expressions in Eq. (9).  

 

Although Eq. (36) gives the individual bounds on γ and δ, it does not provide 

information about their relative values. The curves in Fig. 3 suggest that additional 

information such as the bounds on their product and the maximum difference between 

their relatives values would be very useful. 
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(ii)   Bounds on the Product of the Flexural Anisotropy Parameters 

 

Additional insight into the bounds on  δ and  γ is obtained by considering bounds 

on the product, as represented by 

 ( ) 2
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It is significant that the negative coefficient of  ξ122  gives rise to the possibility of 

obtaining negative values of  δγ, and as such, the lower-bound value is sought. To 

accomplish this task it is further noted that the lamination parameters may not be varied 

independently but must obey the following constraints (see Fukunaga and Sekine, 1992), 

 
2

1110
2
9 2112 ξξξ −≤≤−    (38) 

and 

 ( ) [ ]( )10
2
910

2
1212119

2
1110 112412 ξξξξξξξξξ −+−≤+−+  (39) 

with each equality constraint obeying a trigonometric identity. Furthermore, the 

magnitudes of all lamination parameters are less than unity as deduced directly from their 

definition in Eq. (22). 

 

An exhaustive trial-and-error search for combinations of  ξ9 − ξ12  that minimise  

δγ  revealed that  ξ9 = ξ11 = 0 and that  ξ12 has a value close to unity. Furthermore, the 
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constraint on lamination parameters in Eq. (39) is satisfied by equating both sides of the 

inequality and reduces to 

 
2

10

2

12 1 ξξ −=     (40) 

As such, the expression for δγ reduces to 
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Differentiating Eq. (41) with respect to  ξ10, setting the resulting expression to zero, and 

rearranging, gives the optimal value of  ξ10 as 

 
1

3opt
10

W

W
−=ξ     (42) 

Substituting Eq. (42) into Eq. (39) gives the minimal value for  δγ  as 

 ( )
2
3

2
1

2
3

min
WW

W

−
−=δγ    (43) 

If a material under consideration has orthotropy ratios given by the expressions in Eq. 

(32) that approach infinity, a lower-bound value of  δγ  is obtained from  Eq. (43) which 

is  –0.125. Furthermore, Eqs. (42) and (40) give 33.010 −=ξ  and 94.012 =ξ , 

respectively. Finally,  09 =ξ  and 011 =ξ . A lay-up that closely matches these 

requirements is the 20-layer laminate represented by 

 [[(θ, θ + 90)s]2, θ + 90, θ + 90]s 
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where θ is close to 22.5o. An upper-bound value for  δγ  is obtained directly from  Eq. 

(41) and shows that a value of unity may never be exceeded. Thus,  δγ have limiting 

values given by 

 1125.0 <≤− δγ     (44) 

 

(iii)   Envelope of  the Flexural Anisotropy Parameters 

 

Because of the coupled dependence of the flexural anisotropy parameters on the 

laminate construction characteristics, it is useful to know the maximum difference that 

can occur between the two parameters (see Fig. 3). This information is found by 

considering the maximum value of γδ −  as a function of  δ  (or  γ). Such calculations 

provide an envelope for the feasible region of  δ  and  γ . This task is achieved by 

maximizing γδ −  for given values of  δ  (or  γ). 

 

To establish the location of the envelope of the feasible region requires a multi-

step optimisation process. In the present study, a three-step optimisation process was 

used. The first step identifies values of the lamination parameters. The second step 

identifies the ply angles and the cubic volume fraction of each ply angle for the 

lamination parameters found in the first step.Finally, stacking sequences are found that 

provide the cubic volume fractions found in the second step. 

 



 

29 

First, it is noted that the parameters  δ  and  γ are functions of four variables; these 

are the lamination parameters, ξ9-ξ12. Gradient-based optimisation methods were used to 

identify the values of ξ9-ξ12 that provide the maximum difference in the anisotropy 

parameters, 
max

γδ − . Extensive numerical studies show that 
max

γδ −  is not given by a 

unique combination of the values of lamination-parameter values. One of the parameters 

can be chosen arbitrarily. In the present study, the value of ξ9 was set to zero for 

convenience. Furthermore, the numerical studies show that the condition given by Eq. 

(39) approaches an equality for 
max

γδ − . As a result, the optimisation process simplifies 

to one containing two variables; that is, any two from ξ9-ξ12. Once the combination of 

lamination parameters is found that gives δ  and  γ values on the envelope of the feasible 

region, the corresponding stacking sequences must be identified. This task is done in the 

second step of the optimisation process. 

 Matching the stacking sequences to the optimal set of lamination parameters 

identified in step one is problematic because the lamination parameters are continuous 

functions and the lay-ups are composed of discrete plies. The implication is that it may 

not be possible to match exactly the optimal set of lamination parameters with that of a 

real lay-up. Trial and error shows that a match can be made sufficiently close such that 

the values of  δ  and  γ  are within 1% of those calculated by using the optimal set of 

lamination parameters. To proceed, it is noted that the flexural lamination parameters, 

given in Eq. (22), are found as the summation of products of the cubic volume fraction, 

Vi, and an appropriate trigonometric term. It is the cubic volume fraction that has discrete 

values in a real lay-up. For example, if one unique ply angle is present, then the cubic 

volume fraction is unity and the summation contains only one term. If two ply angles are 
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present, then the summation contains two terms and the cubic volume fraction of both ply 

angles depends on the stacking sequence. Utilizing Eq. (22), the cubic volume fraction 

for a given ply angle is given by 

 ∫−=
1

1

2

2

3
iii duuV     (45) 

To establish lay-ups on the envelope of the feasible region, the number of unique 

ply angles is progressively increased until viable lay-ups are found. Starting with a single 

ply angle, it is observed from the expressions for  δ  and  γ  , Eqs. (26) and (27), that it is 

impossible to obtain oppositely signed values of  δ  and  γ. :: As a consequence, the feasible 

region of  δ  and  γ  containing a single ply angle is significantly reduced from that 

available. Using two unique ply angles allows the lamination parameters to be written as 
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   (46a) 

where 

 121 =+VV .    (46b) 

When two unique ply angles are present, each lamination parameter becomes a function 

of three variables; that is ξi = ξi(θ1, θ2, V1). Essentially, the task is to find values of θ1, θ2, 

and V1 that provide calculated lamination parameters that match the optimal set of 

lamination parameters found in the first step of the optimisation process. This task is done 

by using a gradient-based optimisation method.  Importantly, it was found that two 
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unique ply angles were sufficient to match the optimal lamination parameters identified 

in the first step. The final step is to identify a stacking sequence that matches the optimal 

value of the cubic volume fraction, V1. This step was done using the method outlined in 

Appendix 1. Interestingly, it was found that the minimum number of layers required in a 

symmetric laminate to obtain γδ −  values that lie within 1% of 
max

γδ −  is twenty.  

This finding appears to be a new result; that is, any symmetric laminate composed of two 

unique ply angles must have a minimum of 20 layers to ensure stacking sequences 

provide material properties that lie within 1% of the theoretical optimum (as provided by 

lamination parameters).  

 

Results that show the feasible region of the flexural anisotropy parameters for a 

material with an infinitely large orthotropy ratio Q11/Q22 are presented in Fig. 4. The 

lower-bound curve in Fig. 4 was obtained by setting values of  δ   from –1 to 1, in 0.1 

increments, and conducting the first step of the optimisation process to maximize γδ − . 

In contrast, the upper-bound curve is found by setting values of  γ   from –1 to 1, in 0.1 

increments, and maximizing δγ − . Interestingly, the largest difference in the anisotropy 

parameters, 
max

γδ − , over the entire range of δ  and  γ  values is given by the same 

values that provide  (δ, γ)min, given by Eq. (43). For this case,  

δ  =  −γ  =  0.35 and 
max

γδ − =0.7. Current composite materials have finite Q11/Q22 ratios 

but nonetheless occupy a similar region to that shown in Fig. 4.   
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Further details of the results from each step of the optimisation process are shown 

in Table 3, where data is shown that was used to obtain the lower-bound curve in Fig. 4. 

Laminates, with stacking sequences comprising 20 layers, are listed that are located on 

the envelope of the feasible region. To obtain stacking sequences for the upper-bound 

curve in Fig. 4, it is necessary to add 90
o
 to each ply angle in laminates listed in Table 3. 

It is then noted that the values of  δ  and  γ  in Table 3 interchange. 

 

 

 

 

Table 3. Laminate lay-ups on Lower Boundary of Feasible Region for γ  and  δ,  as 

shown in Fig. 4. Note that ξ9 = 0. 

 

ξξξξ10 ξξξξ11 ξξξξ12 γγγγ δδδδ    γ δγ δγ δγ δ  γ− δγ− δγ− δγ− δ  θθθθ1 

) 

θθθθ2 

) 

V1 Lay-up 

-0.46 0.39 0.79 0.62 0.00 0.00 0.62 34.3 -68.5 0.67 [34.33,-68.55,34.32]s 

-0.41 0.30 0.85 0.56 -0.10 -0.06 0.66 32.5 -67.2 0.62 [32.52,-67.22,32.5,-

-0.36 0.19 0.91 0.49 -0.20 -0.10 0.69 30.6 -65.6 0.58 [30.62,-65.62,30.6,-

-0.34 0.07 0.94 0.40 -0.30 -0.12 0.70 28.5 -63.8 0.53 [28.52,-63.84,28.5,-

-0.34 -0.06 0.94 0.30 -0.40 -0.12 0.70 26.3 -61.6 0.47 [26.3,-61.62,26.3,-

61.6,26.3,-61.6,26.3,-

-0.37 -0.21 0.90 0.18 -0.50 -0.09 0.68 24.1 -59.1 0.41 [24.1,-59.14,24.1,-

-0.44 -0.36 0.81 0.03 -0.60 -0.02 0.63 21.9 -56.3 0.35 [21.9,-56.3_4,21.9,-

-0.55 -0.52 0.67 -0.15 -0.70 0.11 0.55 19.9 -53.4 0.27 [19.9,-53.48,19.9]s 

-0.69 -0.68 0.49 -0.38 -0.80 0.30 0.42 18.0 -50.5 0.19 [-50.54,18.03,-
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-0.84 -0.84 0.26 -0.66 -0.90 0.59 0.24 16.4 -47.7 0.10 [-47.75,16.42,-

-1 -1 0 -1 -1 1 0  -45 0 [-4510]s 

-0.52 0.48 0.71 0.67 0.10 0.07 0.57 35.8 -69.7 0.71 [35.83,-69.63,35.8,-

-0.58 0.56 0.63 0.72 0.20 0.14 0.52 37.3 -70.6 0.74 [37.33,-70.62,37.3,-

-0.64 0.63 0.55 0.77 0.30 0.23 0.47 38.5 -71.6 0.78 [38.53,-71.62,38.54,-

-0.70 0.69 0.47 0.81 0.40 0.32 0.41 39.7 -72.1 0.82 [39.74,-72.13,39.73]s 

-0.76 0.75 0.39 0.85 0.50 0.42 0.35 40.8 -72.8 0.85 [40.84,-72.82,40.84]s 

-0.81 0.81 0.31 0.88 0.60 0.53 0.28 41.8 -73.3 0.88 [41.84,-73.3,41.82,-73.33] 

-0.86 0.86 0.23 0.91 0.70 0.64 0.21 42.7 -73.7 0.91 [42.75,-73.7,42.7,-73.73]s 

-0.91 0.91 0.15 0.94 0.80 0.75 0.14 43.5 -74.2 0.94 [43.56,-74.22,43.5,-72.3]s 

-0.96 0.96 0.07 0.97 0.90 0.88 0.07 44.3 -74.6 0.97 [44.37,-74.63] 

-1 1 0 1 1 1 0 45  1 [4510]s 
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Bounds on Buckling Resistance 

 

By enforcing thermodynamic requirements and considering practical laminate 

construction issues, bounds on the nondimensional flexural orthotropy and flexural  

anisotropy parameters have been found. For convenience, these bounds are listed as 

follows 

 

0 <α < ∞  

 

31 <<− β  

 

−1< ν f <1  

 

−1< δ,γ <1 

 

1125.0 ≤≤− δγ  

 

max
γδ − = 0.7 

 

By using these bounding values for the nondimensional parameters, upper bounds on the 

buckling resistance of plates can be found. To illustrate how these bounds are found, the 

buckling resistance of long, orthotropic plates with either simply supported edges or 
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clamped edges and subjected to compression, shear or pure bending is considered 

subsequently. The geometry and loading conditions for these cases are shown in Fig. 1. 

 

(i) Compression-Loaded Orthotropic Plate with Simply Supported Edges 

 

For this class of plates, the buckling resistance is expressed in terms of the 

nondimensional parameters and a nondimensional buckling coefficient  K x  by 

 
( ) ( )β

π
+== 12

2211
2

2

DD

Nb
K

cr
x

x    (47) 

where Nx( )cr  is the buckling load per unit width and  b is the plate width. This solution is 

exact and was first obtained by Huber (1929) in its dimensional form. Substituting 

31 <<− β  into Eq. (47) indicates that 

 K x < 8     (48) 

This result is valid for all potential materials, including those not yet discovered or 

developed, and clearly demonstrates the utility of knowing the bounds on the 

nondimensional parameters. In design, a more useful measure of buckling resistance is 

often needed because  Kx is not an absolute buckling-resistance measure because of its 

dependence on the plate bending stiffnessess  D11 and  D22. A more useful measure is 

given by the ratio of the buckling load for an arbitrary symmetrically laminated plate to 

that for the corresponding isotropic plate; that is, 
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N x( )cr

N x( )cr iso
=

D11D22( )
1
2

Diso

Kx

Kx (iso)

   (49a) 

or 

 
N x( )cr

N x( )cr iso
=ε

1+ β( )
2       (49b) 

where 

 ε =
D11D22( )

1
2

Diso

    (50) 

and  Diso is the well-known bending stiffness of the corresponding isotropic plate. In Eqs. 

(49), the buckling load has been normalized with respect to the corresponding isotropic-

plate value, which is indicated by the use of  "iso"  as a subscript. It is noted that every 

oriented material available in lamina form may be laminated into a material where the 

overall inplane elastic properties are effectively isotropic in nature. Such a normalization 

has the advantage of a direct comparison with the performance of the commonly used 

isotropic material. Furthermore, it is noted that β = 1  for an isotropic material and Eq. 

(47) gives  Kx(iso) = 4 . Noting that  

 12

3

1iso

t
WD =      (51) 

gives 

 
( )[ ]

1

2
1

2

2

2

9

2

3101

W

WWW ξξ
ε

−+
=    (52) 
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Moreover, 

 
( )

1

2211

1

31
max

2W

QQ

W

WW +
=

+
=ε    (53) 

where ξ9 = 0 and ξ10 =1, which corresponds to  (901-1/2
1/3
,01/2

1/3
)s or (01-1/2

1/3
,901/2

1/3
)s lay-

ups. Similarly, 

  
( )[ ] ( )

1

2
1

2211

1

2
1

2

2

2

31

min
W

QQ

W

WWW
=

−+
=ε    (54) 

which corresponds to (0
o
) or (90

o
) unidirectional lay-ups. However, the value of  ε  for  a 

unidirectional lay-up with θ = 45o maximizes β, and as a result, maximizes the buckling 

loads. Specifically, the buckling loads for a unidirectional lay-up with θ = 45o are given 

by 

 
( )

( ) ( )







−

+
+

−
=

31

31

1

31

i

3
1

2 WW

WW

W

WW

N

N

so
cr

x

cr
x

   (55) 

which is obtained by computing the material invariants and lamination parameters for  θ 

= 45
o
 , substituting  the results into Eq. (52) for  ε  and Eq. (25) for  β, and then 

evaluating Eq. (50b) for the buckling-load ratio. For materials with infinite values of 
Q11

Q22

 

and 
Q11

Q12 + 2Q66

, which represents the bounds of feasibility, substituting Eqs. (32) into Eq. 

(49) yields 
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N x( )cr

N x( )criso

 

 
 

 

 
 
max

=
4

3     (56) 

which clearly shows that buckling resistance of an elastically tailored plate can never 

exceed 133% of that for the corresponding isotropic plate. However, it is important to 

note that the buckling resistance per unit mass is likely to be much larger for certain 

classes of materials.  

 

(ii) Compression-Loaded Orthotropic Plate with Clamped Edges 

 

There appears to be no closed form solution for this case. However, a least- 

squares-fit regression analysis made across the practical range of  0 < β < 3  with the 

analytical model described by Nemeth (2000) gives  

 K x = 4.59 + 2.36β     (57) 

as an expression for the buckling coefficient. This expression provides accuracy to within  

1.3% of Nemeth’s results. Fig. 5 shows the linear variation of Kx with β obtained by 

Nemeth (solid black line) and the close fit obtained by the regression formula (circular 

symbols), Eq. (57). Using similar analysis to that previously considered for simply 

supported edges gives 

 K x <11.67    (58) 

as the bound on the possible buckling coefficients and 
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WW
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  (59) 

for the nondimensionalised buckling load, noting that buckling loads are maximised (as 

they were for simply supported edges) for  θ = 45o. For materials with infinite values of  

Q11

Q22

 and 
Q11

Q12 + 2Q66

, substituting  Eqs. (32) into  Eq. (57) yields 

 
( )

( )
12.1

max
i

=










so
cr

x

cr
x

N

N
    (60) 

which clearly shows that buckling resistance of an elastically tailored plate can never 

exceed 112% of that for the corresponding isotropic plate for clamped edges. In 

comparison with case of simply supported edges, there is significantly reduced ability for 

elastically tailoring. However, it is noted that is extremely difficult to obtain fully 

clamped edge restraint in practice. 

 

(iii) Shear-Loaded Orthotropic Plate with Simply Supported Edges 

 

An approximate closed-form solution for this loading case may be obtained by 

making a quadratic least-square regression analysis, using the practical range of  0 < β < 

3 in the analytical model presented by Nemeth (1997). This process gives 

 

( )
( )

2

4
1

3
2211

2

2

16.016.232.3 ββ
π

−+==
DD

bN
K

cr
xy

xy   (61) 
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as an expression for the shear buckling coefficient. This formula gives results that are 

within 1% of Nemeth’s results and a comparison is shown in Fig. 6. In this figure, the 

solid gray curve is the one obtained by Nemeth and the square symbols correspond to Eq. 

(61). The quadratic dependency of Kxy on  β  is also evident from Fig. 6. Using analysis 

similar to that used for the prior cases for compression loading gives 

 K xy < 8.36    (62) 

for the upped bound on the possible range of buckling coefficients.  Like for the 

compression-loaded plates, Kxy , is not an absolute buckling-resistance measure because 

of its dependence on  D11 and  D22. A more useful measure is found by comparing the 

buckling load for an arbitrary symmetrically laminated plate with that for the 

corresponding isotropic plate; that is, 

 

( )
( )

( )
(iso)

3
2211

iso

4
1

xy

xy

iso
cr

xy

cr
xy

K

K

D

DD

N

N
=    (63) 

or 
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( )
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16.016.232.3 2

i

ββ
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−+
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so
cr

xy

cr
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N

N

  (64a) 

where 

 
( )

isoD

DD
4
1

3
2211=φ     (64b) 
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Furthermore, 32.5(iso) =xyK  for the isotropic case which compares with the value of 5.33 

first obtained by Skan and Southwell (1924). Noting that, 
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corresponding to [901-1/4
1/3
,01/4

1/3
]s and 

( ) ( )[ ] ( )
1 and 1with 109

1

4
1

3
2211

1

4
1
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W

QQ

W

WWWWWW
  

      (66b) 

corresponding to a single layer of 0
o
. 

 

The expression for buckling load,  Eq. (63), is readily simplified to one in two 

variables,  ξ9 and  ξ10, by directly substituting for  β from  Eq. (25). Furthermore, the 

maximum buckling-load ratio is given on the bounds of feasible design space between  ξ9 

and  ξ10 , which is given by the equality condition given by the constraint in Eq. (38). It is 

readily shown that for materials with infinitely large values of the orthotropy ratios,  
Q11

Q22
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and 
Q11

Q12 + 2Q66

, yields a single ply orientation,  θ =60o , with  ξ9 = ξ10 = –0.5,  as the 

optimal lay-up. Furthermore, this lay-up lies within 1% of the optimal for all common 

material systems for which  
Q11

Q22

 and 
Q11

Q12 + 2Q66

 > 3.5. As such, the maximum buckling 

load is found by substituting this fiber orientation into Eq. (63) to obtain 

( )
( )

( ) ( )( )[ ]

( )[ ]
( )

( )[ ]














−−

+
−

−−

+
+×

−−−+
=

2
2

2
31

2

31

2
1

2
2

2
31

31

1

4
1

2
2

2
31

2
1

321

i

25.05.0

2
3

16.0

25.05.0

2
3

16.232.3

32.5

25.05.05.05.0

WWW

WW

WWW

WW

W

WWWWWW

N

N

so
cr

xy

cr
xy

 (67) 

For materials with infinitely large orthotropy ratios,  
Q11

Q22

 and 
Q11

Q12 + 2Q66

, then 
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which clearly shows that buckling resistance of an elastically tailored plate with simply 

supported edges under shear loading can never exceed 136% of that for the corresponding 

isotropic plate. This finding is similar  to that for the compression- loaded plates with 

simply supported edges. 

 

(iv) Shear-Loaded Orthotropic Plate of Infinite Length with Clamped Edges 
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An approximate-closed form solution for this loading case was also obtained by 

making a quadratic least-squares fit for the practical range of  0 < β < 3, to the results 

presented by Nemeth (1997). This fit gives 
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as an expression for the shear buckling coefficient. This formula gives results that are 

within 0.5% of Nemeth’s results and a comparison is shown in Fig. 6. In this figure, the 

solid black curve is the one obtained by Nemeth and the circular symbols correspond to 

Eq. (69). The quadratic dependency of Kxy on  β  is also evident from Fig. 6. Again, using 

analysis similar to that used for the prior cases gives 

 K xy <13.48    (70) 

for the upper bound on the possible range of buckling coefficients. Similar arguments to 

that presented for the plates with simply supported edges, reveals that θ  = 60o is, once 

again, the corresponding optimal lay-up. As such, 
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For materials with infinitely large values for the orthotropy ratios  
Q11

Q22

 and 
Q11

Q12 + 2Q66

,  
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Thus, the buckling resistance of an elastically tailored plate with clamped edges under 

shear loading can never exceed 130% of that for the corresponding isotropic plate.  

 

(v) Pure Inplane Bending of an Orthotropic Plate with Simply Supported Edges 

 

An approximate closed-form solution for this loading case was also obtained by 

making a quadratic least-square fit, for  0 < β < 3, to the results presented by Nemeth 

(1997). This fit gives 
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π
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DD

Nb
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as an expression for the buckling coefficient, where (Nb)
cr
 is the critical magnitude of the 

applied stress resultant at the edge. This simple formula provides accuracy to within 0.3% 

of Nemeth’s results, which are given by the solid gray line in Fig. 7. The linear variation 

of Kb with β and the close fit obtained by the regression formula (square symbols) is also 

shown in Fig. 7. 

 

Using analysis similar to that used for the previous cases gives 

 Kb < 45.97    (74) 

for the upper bound on the range of possible buckling coefficients and 
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for the nondimensionalized buckling load, noting that buckling loads are maximized (as 

they were for uniaxial compression) for  θ = 45o. For materials with infinite values of  

Q11

Q22

 and 
Q11

Q12 + 2Q66

, substituting  Eqs. (32) into  Eq. (76) yields 
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Similar to the other case, this result clearly shows that buckling resistance of an 

elastically tailored plate with simply supported edges under  pure inplane bending can 

never exceed 126% of that for the corresponding isotropic plate.  

 

(vi) Pure Inplane Bending of an Orthotropic Plate with Clamped Edges 

 

A quadratic least-squares fit, for 0 < β < 3, to the results presented by Nemeth 

(1997)  gives 

 β61.1285.26 +=bK     (77) 

for the buckling coefficient and provides accuracy to within 1.7%. The linear variation of 

Kb with β and the close fit obtained by the regression formula for this case is also shown 

in Fig. 7. In particular, the solid black curve is Nemeth's results and the circular symbols 

correspond to Eq. (77).  Likewise, it was found that 
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 Kb < 64.68    (78) 

is the upper bound on buckling coefficients and 
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for the normalized buckling load, again noting that buckling loads are maximized (as they 

were for uniaxial compression) for  θ = 45o. Once again, for materials with infinite values 

of  
Q11

Q22

 and 
Q11

Q12 + 2Q66

, substituting  Eqs. (32) into Eq. (79) yields 
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Thus, the buckling resistance of an elastically tailored plate with clamped edges and 

subjected to pure inplane bending can never exceed 109% of that for the corresponding 

isotropic plate.  

 

Concluding Remarks 

 

Nondimensional parameters and equations governing the buckling behavior of 

rectangular symmetrically laminated plates have been presented. These nondimensional 

parameters can be used to represent the buckling resistance of rectangular plates, made of 

all known linearly elastic structural materials, in a very general, insightful, and 

encompassing manner. In addition, these parameters can be used to assess the degree of 
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plate orthotropy, to assess the importance of anisotropy that couples bending and twisting 

deformations, and to characterize quasi-isotropic laminates quantitatively. Bounds for 

these nondimensional parameters have also been presented that are based on 

thermodynamics and practical laminate construction considerations. Additionally, the 

envelope of the practical design-parameter space for bending-twisting anisotropy has 

been presented. Knowing these bounds provides insight into potential gains in buckling 

resistance through laminate tailoring and composite-material development. As an 

illustration of this point, some of the bounds presented herein have been used to 

determine upper bounds on the buckling resistance of long rectangular orthotropic plates 

with simply supported or clamped edges and subjected to uniform axial compression, 

uniform shear, or pure inplane bending loads. The results indicate that the maximum gain 

in buckling resistance for orthotropic plates, with respect to the corresponding isotropic 

plate, through laminate tailoring is in the range of 26-36% for plates with simply 

supported edges, irrespective of the loading conditions considered. For plates with 

clamped edges, the corresponding gains in buckling resistance are in the range of 9-12%  

elastic tailoring for plates subjected to compression or pure inplane bending loads. For 

clamped plates subjected to shear loads, there is potentially a 30% increase in buckling 

resistance to be gained through laminate tailoring.  
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Appendix 1. Method for Determining Stacking Sequences 

 

The cubic volume fractions of each ply within a 20-ply symmetric laminate are shown in 

Fig. A1, noting that only the top half of the laminate is shown because of symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Cubic Volume fractions of each ply within a 20-layer symmetric laminate 
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To illustrate the method for obtaining lay-ups the stacking sequence for the laminate in 

the first row of Table 2 is sought. It is observed from the table that the cubic volume 

fraction of one of the unique ply angles is given by V1 = 0.67. The strategy is to find 

those plies whose cubic volume fractions sum to 0.67 (or as close to this value as we can 

obtain). This sumamtion is achieved by sequentially searching all permutations of ply 

positions. Trial and error shows it is most advantageous to start the process by including 

those plies with the largest cubic volume fractions. In this way, the outer 3 layers of the 

laminate (layers 8-10) have total cubic volume fraction of 0.271 + 0.217 + 0.169 = 0.657. 

Subtracting this subtotal from our target value of 0.67 leaves a remaining cubic volume 

fraction of 0.013. By closely scrutinising the cubic volume fractions in Fig. A1, it is 

evident that the remaining cubic volume fraction of 0.13 cannot be matched exactly. In 

fact, the closest value that may be obtained is by including layers 1 and 2 with subtotal of 

0.008. By adding both subtotals gives a total cubic volume fraction of 0.665. Although, 

this total does not match the required value, it is sufficiently accurate for our purposes 

because the difference in  δ  and  γ   values (that depend on the cubic volume fraction), is 

less than 1 per cent. As such, the stacking sequence obtained is sufficiently accurate and 

is listed in the final column of the first row of Table 2. The remaining stacking sequences 

in Table 2 are calculated from cubic volume fractions in a similar way. 
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List of Figures 

 

 

Figure 1. Load cases and geometry of rectangular plates 
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Figure 2. Contours of minimal values of β as a function of δ and γ. 
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Figure 3. The coupled dependence of γ  and  δ  on the fiber orientation angle  θ  for [+-θ]s  

laminates, for different laminated composite materials 
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Figure 4. Feasible region of δ and γ.  
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Figure 5. Variation of buckling coefficient, Kx with flexural-orthotropy parameter, β.  
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Figure 6. Variation of buckling coefficient, Kxy with flexural-orthotropy parameter, β.  
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Figure 7. Variation of buckling coefficient, Kb with flexural-orthotropy parameter, β.  

 


