Narasimha S. Prasada, Upendra N. Singha, Floyd Hov

^aNASA Langley Research Center,

5 N. Dryden St., MS 468, Hampton, VA 23681

^bFibertek, Inc.,

510 Herndon Parkway, Herndon, VA 20170

CLEO/Europe-IQEC Conference

June 17-22, 2007
World of Photonics Congress 2007 in the International
Congress Centre Munich, Germany

Paper Session Code: CA5-4-TUE 15:30

ar papers at co

brought to you by

Laser Risk Reduction Program (LRRP)

 NASA began Laser Risk Reduction Program (LRRP) in 2002 to develop reliable, robust, and compact laser technologies for lidar applications from space based platforms

- <u>Program:</u> Joint operation of Langley Research

Center and Goddard Space Flight Center

- *Goal*: 1 micron and 2 micron lasers and

wavelength conversion technology

- Applications: Four Lidar Techniques-altimetry,

Doppler, Differenctial Absorption Lidar

(DIAL), backscatter lidar

- Measurements: 6 priority Earth Science measurements:

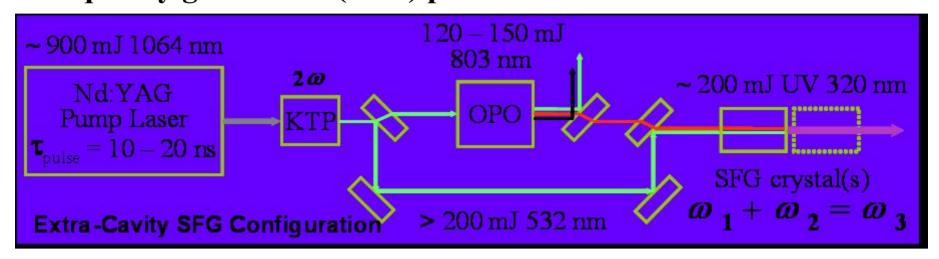
(1) Surface and ice mapping, (b) Horizontal vector wind profiles (3) Carbon-di-oxide (CO₂) profiles (4) Ozone (O₃) profiles(5) Aerosol/clouds and (6) River currents

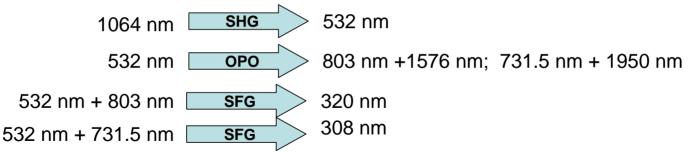
UV Task Objectives

- The objective of the UV Task is to develop an efficient, all-solid-state, diode pumped, conductively cooled, single longitudinal mode and high energy 1-micron to UV wavelength conversion technology
- The emphasis is to generate UV wavelengths of 308 nm and 320 nm for ozone sensing using DIfferential Absorption Lidar (DIAL) technique from space
- Performance Goals:

- Output energy at UV wavelengths: \geq 200 mJ

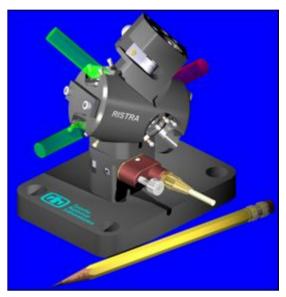
- Pulsewidth: 10 - 25 ns


- PRF: 50 Hz


- High pulse energy allows enhanced performance during strong daylight conditions
- UV Task is a collaborative effort among Sandia National Labs, Fibertek, and NASA LaRC

Technical Approach to UV generation

Pasic Scheme comprises of a Nd:YAG laser pumped nonlinear optics based converter comprising of a second harmonic generation (SHG), optical parametric oscillator, (OPO) and sum frequency generation (SFG) processes


UV Wavelength Conversion -Experimental Results-

- The nonlinear optics based technology to efficiently generate UV wavelengths has been established using a flash lamp pumped Nd:YAG laser
- The scheme utilizes a novel (Rotated Image Singly Resonant Twisted RectAngle) RISTRA OPO to generate 803 and 731.5 nm wavelengths pumped using a 532 nm pump source
- A type-I BBO crystal is used in the RISTRA OPO and a LBO crystal is used for SFG
- Single mode operation is obtained through pulsed seeding technique with temporally matched pump and idler pulse profile
- Pulse idler seeding is obtained by a tunable laser diode and RISTRA OPO in tandem as seed sources
- For 803 nm
 - A small or low energy RISTRA OPO that is locked by Pound-Drever-Hall (PDH) technique and seeded by New Focus tunable diode laser operating at 803 nm
 - The 1.5x scaled big RISTRA OPO that is pulse seeded at 1576 nm from the small OPO and locked by energy stabilization technique

Latest Results on the UV conversion

- State-of-the-art conversion efficiencies have been demonstrated using a flash lamp pumped Nd:YAG laser with a round top-hat profile
- > Greater than 90 % pump depletion obtained
- ➤ At 320 nm, >200 mJ extra cavity SFG with good beam Quality
 - IR to UV efficiency > 21% (27% for 1 mJ seed)
- > At 320 nm, up to 160 mJ intra-cavity SFG
 - IR to UV efficiency up to 24%
- ➤ Fluence >1 J/cm² for most beams

RISTRA OPO Module

Solid-State Nd:YAG Pump laser

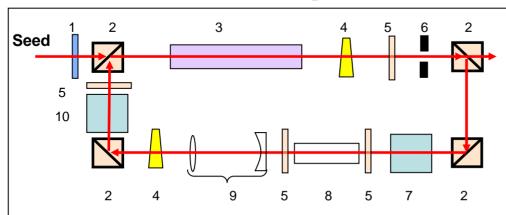
- For future space applications, an all solid-state, diode pumped Nd:YAG pump laser has been developed in collaboration with Fibertek, Inc.
 - The pump laser is an upgrade of ~300 mJ/pulse Nd:YAG laser developed under NASA funded ATIP program
 - Two amplifiers have been added to the NASA
 ATIP laser to achieve up to 1.2 J/pulse

Nd:YAG Pump Laser

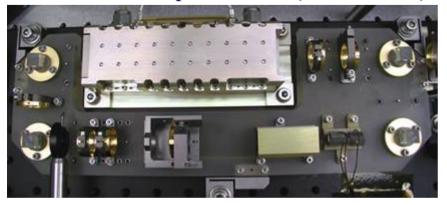
-Summary of Technical Approach-

An all solid-state diode-pumped laser transmitter featuring:

 Injection seeded ring laser 	Improves emission brightness (M ²)
Diode-pumped zigzag slab amplifiers	Robust and efficient design for use in space
Advanced E-O phase modulator material	Allows high frequency cavity modulation for improved stability injection seeding
Alignment insensitive / boresight stable 1.0 μm cavity and optical bench	Stable and reliable operation over environment


• Conduction cooled Eliminates circulating liquids w/in cavity

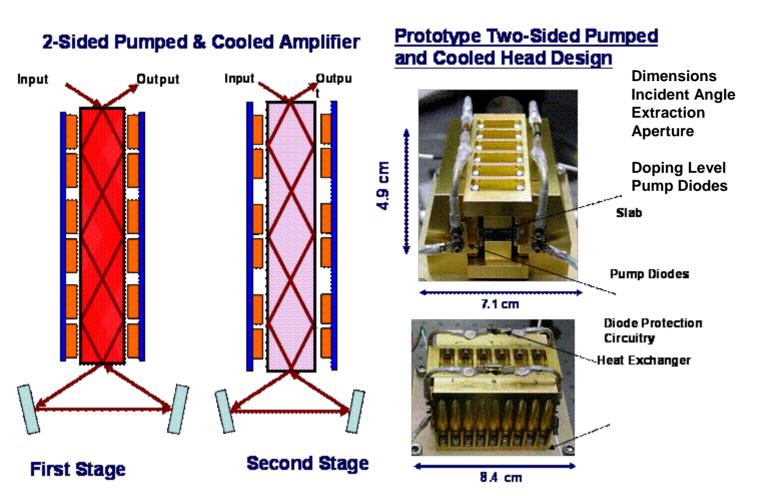
• Space-qualifiable component designs Establishes a path to a space-based mission


Single Frequency Laser Ring Laser Design

Optical Schematic

- 1. Reverse wave suppressor
- 2. Cube polarizer
- 3. Odd bounce slab
- 4. Steering wedge
- 5. λ/2 waveplate
- 6. Mode limiting aperture
- 7. RTP phase modulator
- 8. 45° Dove prism
- 9. Non-imaging telescope
- 10. RTP q-switch

Final Zerodur Optical Bench (12cm x 32cm)


Design Features

- Near stable operation allows trading beam quality against output energy by appropriate choice of mode limiting aperture
 - -30 mJ TEM_{00} , M² =1.2 at 50 Hz
 - -30 mJ TEM_{00} , M² =1.3 at 100 Hz
 - -50 mJ square supergaussian, $M^2 = 1.4$ at 50 Hz
- Injection seeding using an RTP phase modulator provides reduced sensitivity to high frequency vibration
- PZT stabilization of cavity length reduces sensitivities to thermal fluctuations
- Zerodur optical bench results in high alignment and boresight stability

Amplifier Design Configuration

- 3 Bounces-Rectangular Shape-2 sided pumping in the TIR axis,
- 2 sided conduction cooling, Pump faces uncoated (~10%loss)

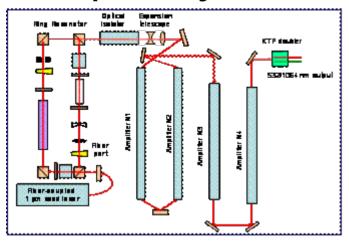
6.8 x 13.0 x 75.3 mm3

Near Brewster (57°)

100% at full aperture

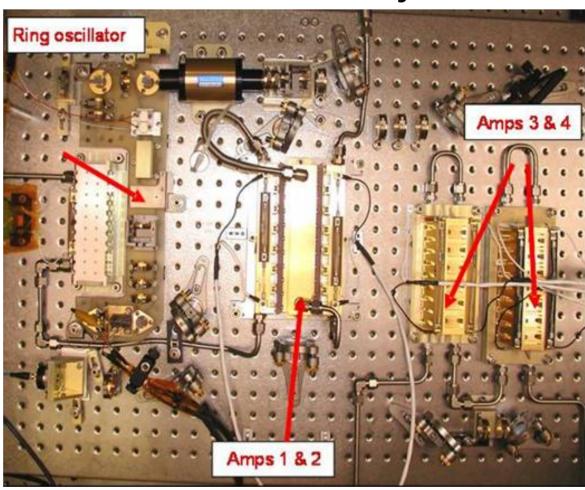
11.5 x 6.8 mm2 (internal)

7.1 x 6.8 mm2 (external)


0.5 ± 0.1 % Nd3+

192 ea. 50 watt QCW bars
(12 ea. 16 bar arrays)

Final System Configuration


Optical layout

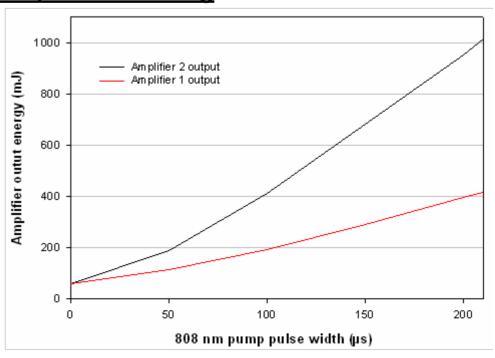
Diode Bars and slabs are conductively coupled to the heat sink.

For space applications, one can use heat pipes or radiators

Breadboard layout

Amplifier Upgrade 2-Sided Pumped & Cooled Amplifier

Dual Stage Amplifier Modeling

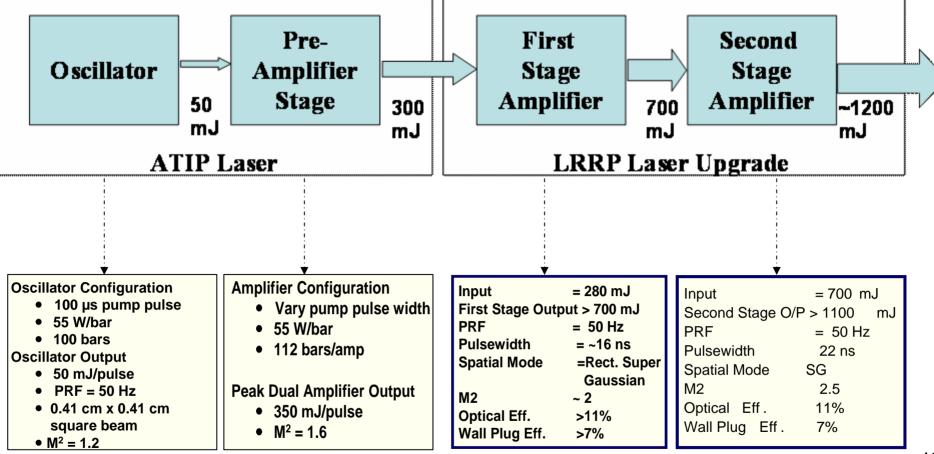

Model is based on Franz-Nodvic result for a amplifying a square (in time) pulse

Model includes all key parameters explicitly

- Number of pump diodes (192)
- Peak diode power (75 W)
- Diode pulse width
- Input oscillator pulse energy (60 mJ)
- Input beam diameter
- Gain path length in amp
- Slab volume

Accounts for reduced gain for second pass

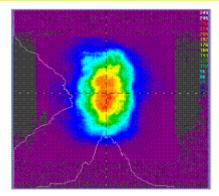
1 J per pulse output is predicted for 210 μs diode pump pulses


Modeled output of dual 2-sided pumped and cooled amplifiers for 60 mJ input to first stage

Dual 2-sided pumped amplifiers meet the requirements of most space-based direct detection wind lidars designs

Pump Laser Performance

- The laser is now operational at 50 Hz PRF with maximum pulsewidths around 22 ns
- The output beam profile is rectangular super gaussian

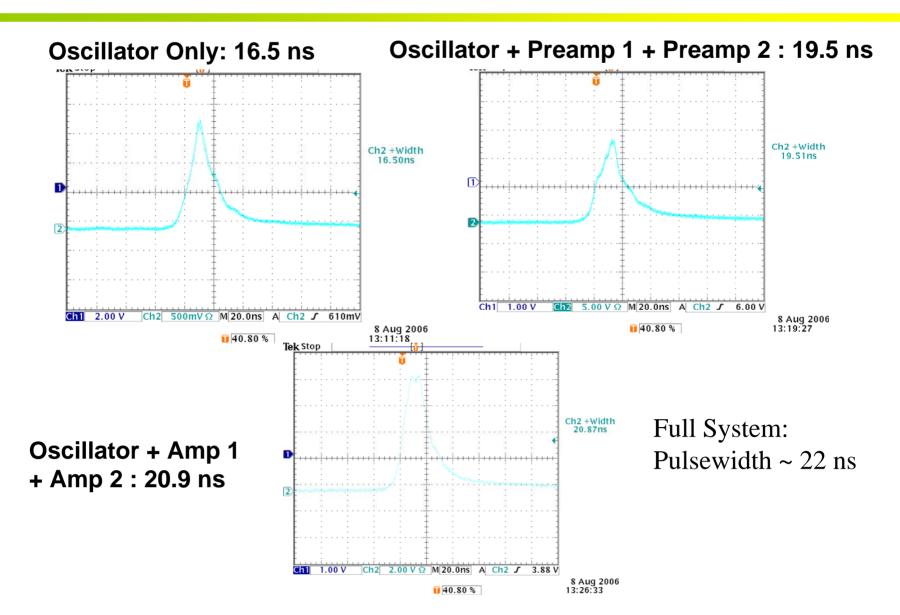


Nd:YAG Pump Laser

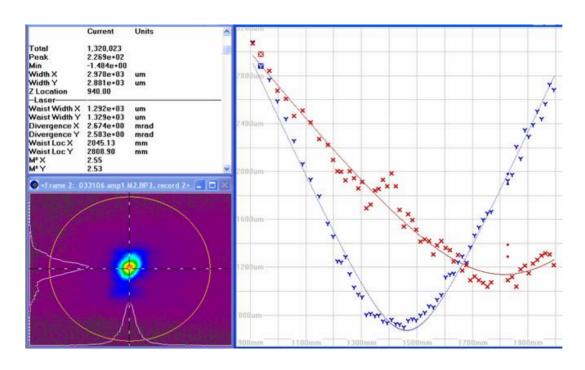
- Typical Output Characteristics -

Parameter	Specification	Goal	Design/Performance
Pulse Energy (mJ)	900	1200	1040
M^2	NA	2	2.5
Laser head package	Single breadboard	NA	Single breadboard in custom enclosure
Cooling	Conductive to diodes and slabs	NA	Conductive to diodes and slabs
Seeding	Ramp & fire	NA	Ramp & fire
Electronics	Separate custom module	NA	Separate custom module

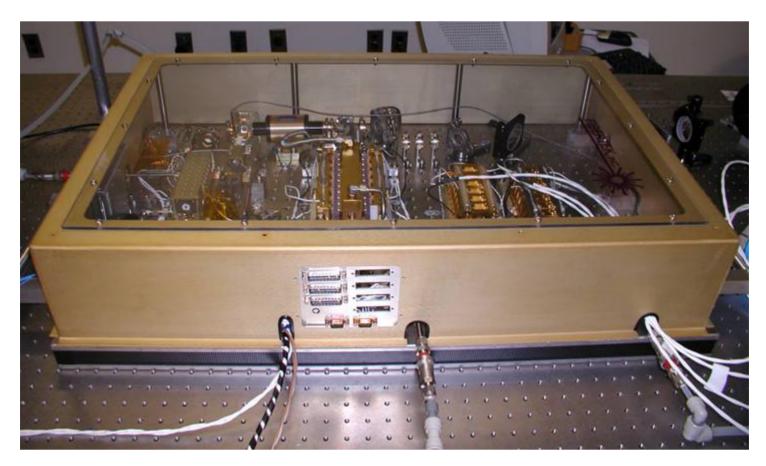
Typical pulsewidth = 22 ns. Max. Pulse Energy achieved = 1.2 J. Electrical to optical efficiency >7% was achieved with only 58 W peak power per diode bar pumping the amplifiers.


Near field beam profile of final amplifier output

Average power at 50 Hz of 51.0 W (1020 mJ/pulse)


Temporal Characteristics

Full System Results Beam Quality


50 Hz, Full Power Beam Quality Measurements $M_x^2 = 2.5$, $M_y^2 = 2.5$,

M² data

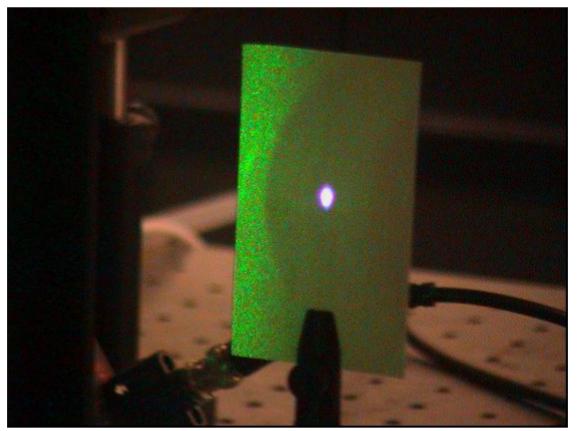
Full Nd:YAG Laser Unit

- The dimensions of this laser unit, including a SHG module, is 34" x 22" x 8"
- With latest diode bars and modified opto-mechanical components, the above package can be reduced to less than a quarter of its size

Final System Control and Power Electronics

Custom power supplies and control electronics for the upgrade have been built

- Control electronics consists of two 19"rack mountable boxes
- All power supplies are contained in two 19" rack mountable power supply modules
- Each amplifier can be individual set between high power and low power operation to allow the user to achieve a wide range of output powers at 50 Hz


Single Power Supply Module

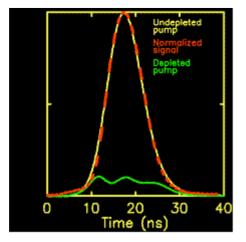
Control electronics

320 nm UV generation

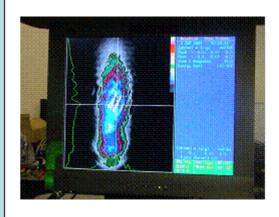
- Currently, we are generating a few mJ with limited pump energy of 280 mJ/pulse
 - The elliptical beam allows reduced overlap inside the nonlinear crystal of RISTRA module hence reduces the conversion efficiency

Spatial fluence profile & RISTRA

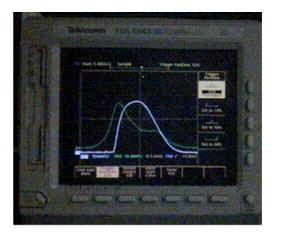
- RISTRA OPO requires round, top-hat spatial pump profile -


Flat pump profiles have facilitated high pump depletion &hence high OPO conversion efficiency

Results Using refined Flash Lamp pump laser

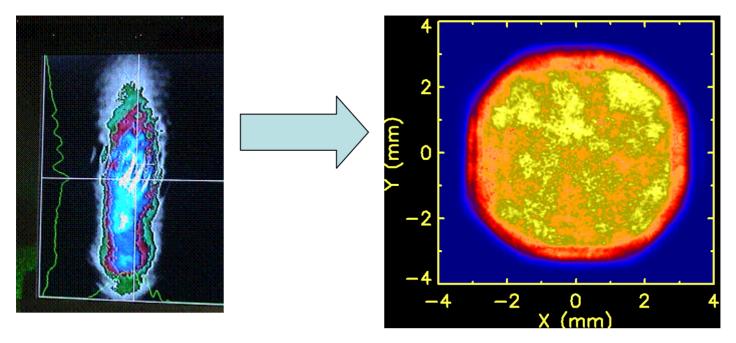

OPO signal near-field spatial fluence profile, Fresnel Number > 450

(Eu) 0 -2 -4 -2 0 2 4 (mm)


Self-seeded oscillation in two-crystal RISTRA ~85% pump depletion

Results Using Diode pumped Nd:YAG laser

Pump Beam at the Big OPO



Reduced Pump Depletion

On-Going Work

- Improve the Beam Quality of the Diode Pumped Nd:YAG Laser
 - The goal is to achieve a Round, Top Hat spatial fluence profile with wavefront aberration less than 0.5

 Refinements to the ring oscillator cavity, pre amplifiers and amplifiers of the diode-pumped Nd:YAG laser to improve beam quality and reduce pulsewidth is nearing completion

Summary and Conclusions

- A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed
- Greater than 1 J/pulse at 50 HZ PRF and pulsewidths around 22 ns have been demonstrated
- Higher energy, greater efficiency may be possible
 - Refinements are known and practical to implement
- Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved
 - Greater than 90% pump depletion is observed
 - 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed)
 - 160 mJ intra-cavity SFG; IR to UV efficiency up to 24%
 - Fluence ≤ 1 J/cm 2 for most beams
- The pump beam quality of the Nd:YAG pump laser is being refined to match or exceed the above UV converter results
- Currently the Nd:YAG pump laser development is a technology demonstration
 - System can be engineered for compact packaging