
I IIIII 1ll1lll1111 Ill11 11111 11111 US007273095B2 11111 11111 11111 11111 111ll ll1111 Ill1 1111 Ill1 
(12) United States Patent ( IO)  Patent No.: US 7,273,095 B2 

Li et al. (45) Date of Patent: Sep. 25,2007 

(54) NANOENGINEERED THERMAL 
MATERIALS BASED ON CARBON 
NANOTUBE ARRAY COMPOSITES 

(75) Inventors: Jun Li. Sunnyvale, CA (US); Meyya 
Meyyappan, San Jose, CA (US) 

(73) Assignees: United States of America as 
Represented by the Administrator of 
the National Aeronautics and Space 
Administration, Washington, DC (US); 
NanoConduction, Incorporated, Los 
Gatos, CA (US) 

Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 

( * ) Notice: 

(21) Appl. No.: 10/825,795 

(22) Filed: Apr. 13, 2004 

(65) Prior Publication Data 

US 2005/0224220 A1 
US 2007/0163769 A9 

Oct. 13, 2005 
Jul. 19. 2007 

(51) Int. C1. 

(52) U S .  C1. ...................................... 169185; 16Y80.3 

16Y80.3; 361/704 

F28F 13/00 (2006.0 1 ) 

(58) Field of Classification Search ................ 165/185, 

See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,485,429 A * 11/1984 Mittal ........................ 361/718 
5,316,080 A * 5/1994 Banks et al. ................ 165/185 
5,725,707 A * 3/1998 Koon et al. ................. 1561157 
5,818,700 A * 10/1998 Purinton ..................... 361/760 
5,837,081 A * 1111998 Ting et al. ............... 156/89.26 
5,898,570 A .h 4/1999 Koon et al. ................. 165/185 
5,926,370 A 7/1999 Cromwell 
5,965,267 A 10/1999 Nolan et al. 
6,156,256 A 12/2000 Kennel 

6,231,744 B1 5/2001 Ying et al. Source of Acquisition 
6,340,822 B1 1/2002 Brown et al. NASA Washington, D. c. 

(Continued) 

FOREIGN PATENT DOCUMENTS 

EP 1329953 8/2003 

(Continued) 

OTHER PUBLICATIONS 

Banerjee, Kaustav, et al., "3-D Heterogeneous ICs: A Technology 
for the Next Decade and Beyond", 5th IEEE Workshop 011 Signul 
Pi-opugarioii on Infermzriecfs, Venice, Italy, May 13-1 6 ,  2001. 

(Continued) 

Prinzctry Exmziizer-Teresa J. Walberg 
(74) Attorney, Agent, or Firm-John E Schipper; Robert M. 
Padilla 

(57) ABSTRACT 

A method for providing for thermal conduction using an 
array of carbon nanotubes (CNTs). An array of vertically 
oriented CNTs is grown on a substrate having high thermal 
conductivity, and interstitial regions between adjacent CNTs 
in the array are partly or wholly filled with a filler material 
having a high thermal conductivity so that at least one end 
of each CNT is exposed. The exposed end of each CNT is 
pressed against a surface of an object from which heat is to 
be removed. The CNT-filler composite adjacent to the sub- 
strate provides improved mechanical strength to anchor 
CNTs in place and also serves as a heat spreader to improve 
diffusion of heat flux from the smaller volume (CNTs) to a 
larger heat sink. 

30 Claims, 7 Drawing Sheets 

SUBSTRATE 

https://ntrs.nasa.gov/search.jsp?R=20080009747 2019-08-30T03:50:39+00:00Z



US 7,273,095 B2 
Page 2 

U.S. PATENT DOCUMENTS 

6,359,288 B1 
6,383,923 B1 
6,407,922 B1 
6,432,740 B1 
6,452,274 B1 
6,504,292 BI -i 

6,538,367 B1 
6,713,151 B1 ’ 
6300,886 B2 
6,803,260 B2 
6,831,017 BI 
6,855,376 B2 
6,856,016 B2 
6,956,016 B2 
6,864,571 B2 
6,891,724 B2 ’i 
6,921,462 B2 
6,924,335 B2 
6,958,216 B2 
6,962,823 B2 
6,965,513 B2 
6,989,325 B2 

2002/0090501 A1 
2002/0100581 A1 ’I 
2002/0130407 A1 
2002/0145194 A1 
2002/0163079 AI 
2003/0111333 AI 
2003/0117770 AI 
2003/0189202 A1 
2003/0231471 A1 

2004/0013598 A1 
2004/0053053 AI 
2004/0099208 AI 
2004/0101468 AI 
2004/0146560 AI 
2004/0150100 AI 
200410 1 SO3 1 1 A 1 
2004/0152240 A1 * 
2004/0182600 AI 
2004/0184241 A1 
2004/0191158 A1 
2004/0218362 A1 
2004/0250753 A1 
2004/0261978 A1 
2004/0261987 AI 
2004/0265489 A 1 
2004/0266063 AI 
2004/0266065 AI 
2005/0006754 A 1 
2005/0037204 A1 
200S/00460 17 A 1 
2005/0061496 A1 
2005/0067693 A1 
2005/0092464 A1 
2005/0116336 A1 
2005/0136248 A1 
2005/0139642 A1 
2005/0139991 A1 
2005/0150887 A1 
2005/0 167647 A 1 
2005/0224220 AI 
2005/0238810 AI 
2005/0260412 AI 
200Y0269726 AI 

2004/0005736 A1 

3/2002 
moo2 
6/2002 
8/2002 
9/2002 
ID003 
3/2003 
3/2004 

10/2004 
I0/2004 
12/2004 
2/2005 
2/2005 
2/2005 
3/2005 
5/2005 
7/2005 
8/2005 

10/2005 
11/2005 
11 no05 
112006 
7/2002 
8/2002 
9/2002 

10/2002 
1112002 
6/2003 
6/2003 

10/2003 
12/2003 
112004 
1/2004 
3/2004 
5/2004 
5/2004 
7/2004 
812004 
8/2004 
8/2004 
9/2004 
9/2004 
9/2004 

11/2004 
120004 
12/2004 
12/2004 
12/2004 
12/2004 
12/2004 
1/2005 
2/2005 
312005 
3/2005 
3/2005 
5/2005 
6/2005 
60005 
6/2005 
6/2005 
7/2005 
8/2005 

10/2005 
10/2005 
11/2005 
12/2005 

Ying et al. 
Brown et al. 
Eckblad et al. 
Chen 
Hasegawa et al. 
Choi et al. .................. 313/310 
Choi et al. 
Dean et al. ................... 428/86 
Awano 
Shin et al. 
Li et al. 
Hwangg et al. 
Searls et al. 
Searls et al. 
Arik et al. 
De Lorenzo et al. ....... 165/185 
Montgomery et al. 
Fan et al. 
Kelley et al. 
Empedocles et al. 
Montgomery et al. 
Uang et al. 
Tobita 
Knowles et al. ............ 165/185 
Dah1 et al. 
O’Conner et al. 
Awano 
Montgomery et al. 
Montgomery et al. 
Li et al. 
De Lorenzo et al. 
Searls et al. 
McElrath et al. 
Jiang et al. 
Kang et al. 
Liu et al. 
Whiteford et al. 
Dubin et al. 
Jin 
Dangelo ..................... 438/122 
Kawabata et al. 
De Lorenzo et al. 
Liu et al. 
Amaro et al. 
Kang et al. 
Zhan et al. 
Zhang et al. 
Dubin 
Montgomery et al. 
Zhang et al. 
Arik et al. 
Oslander et al. 
Dangelo 
Matabayas 
Nihei et al. 
Leu et al. 
Chopra et al. 
Leu et al. 
Koning et al. 
White et al. 
Taya et al. 
Huang et al. 
Li et al. 
Scaringe et al. 
Gardner 
Matabayas, Jr. 

FOREIGN PATENT DOCUMENTS 

EP 1329953 AI 8/2003 
wo 03/054958 AI 7/2003 

wo 2003/054958 7/2003 
wo 03072679 AI 9/2003 
wo 2003/072679 9/2003 
wo 03/107419 A1 12/2003 
wo 2003/107419 12/2003 

OTHER PUBLICATIONS 

Berber, et al., Unusually High Thermal Conductivity of Carbon 
Nanotubes, Physical Review Letters, May 15, 2000, 4613-4616, 
vol. 84, No. 20. 
Cassell. Alan, “Directed Growth of Free-Standing Single-Walled 
Carbon Nanotubes”, J .  Am. Chemic.u/ Sociel): 1999, 121 pp. 7975- 
7976. 
Chiang, Ting-Yen, “A New Analytical Thermal Model for Multi- 
level ULSI Interconnects Incorporating Via Effect”, Center for 
Integrated Systems, Stanford University (no date given). 
Chiang. Ting-Yen, et al., “Effect of Via Separation and Low-k 
Dielectric Materials on the Thermal Characteristics of Cu Intercon- 
nects”, IEDM 2000 (no date). 
Chuang, Helen F., et al., “lnprovement of Thermal Contact Resis- 
tance by Carbon Nanotubes and Nanofibers,” Journal of 
Nanoscience and Nanotechnology (2004), vol. 4, No. 8, pp. 964- 
967, American Scientific Publishers. 
Cui, Yi, et al., “Doping and Electrical Transport in Silicon 
Nanowires”, Journal of’Phjairul Chemistry. vol. 104, No. 22, Jun. 

de Pablo, P.J., “A simple, reliable technique for making electrical 
contact to multiwalled carbon nanotubes”, Applied Physics Letters, 
vol; 74, No. 2, Jan. 11, 1999, pp. 323-375. 
Delzeit, Lance, et al., “Growth of carbon nanotubes by thermal and 
plasma chemical vapour deposition processes and applications in 
microscopy”, Nanotechnology, vol. 13, May 23, 2002, pp. 280-284. 
Delzeit, Lance, et al., “Growth of multiwall carbon nanotubes in an 
inductively coupled plasma reactor”, Journal of Applied Physics, 
vol., 91, No. 9, May 1, 2002, pp. 6027-6033. 
Goodson, K.E., et al., “Improved Heat Sinking for Laser-Diode 
Arrays Using Microchannels in CVD Diamond”, IEE Trarzsactions 
on Components, Puckuging, and Murzujurturing Terhnology, Part 
B, Advanced Packaging, vol. 20, Issue 1, Feb. 1997. pp. 104-109. 
Hone, J., et al., “Thermoelectric Power of Single-Walled Carbon 
Nanotubes”, Physical Review Letters, vol. 80, No. 5, Feb. 2, 1998, 
pp. 1042-1045. 
Huang, Z.P., et al. “Growth of highly oriented carbon nanotubes by 
plasma-enhanced hot filament chemical vapor deposition”, Applied 
Physics Letters, vol. 73, No. 26, Dec. 28, 1998, pp. 3845-3847. 
International Semiconductor Roud Map (ITRS-2001), Section on 
Interconnect, http://public/itrs.net/files/2OO 1ITRSlinterconnect.pdf. 
Kim, Mun Ja, et al., “Growth characteristics of carbon nanotubes via 
aluminum nanopore template on Si substrate using PECVD’, 
Elsevier Thin Solid Films, vol., 425, 2003, pp. 312-317. 
Kong, Jing, et al., “Synthesis of individual single-walled carbon 
nanotubes on patterned silicon wafers”, Nuhire, vol. 395, Oct. 29, 

Kurabayashi, K, et al., “Precision Measurement and Mapping of 
Die-Attach Thermal Resistance”, IEEE Transactions on Compo- 
nents, and Manufacturing Technology, Part A: Advanced Packag- 
ing, vol. 21, Issue 3, Sep. 1998. pp. 506-514. 
Li, Jun, et al., “Electronic properties of multiwalled carbon 
nanotubes in an embedded vertical array”, Applied Physics Letters, 
vol. 81, No. 5, Jul. 29, 2002, pp. 910-912. 
Li, Jun, et al., Bottom Up Approach for Carbon Nanotube Inter- 
connects, Applied Phys. Letters, Apr. 18,2003, 2491-2493, vol. 82, 
No. 15, American Institute of Physics. 
Liu, Jie, et al., “Controlled deposition of individual single-walled 
carbon nanotubes on chemically functionalized templates”, Chemi- 
cal Physics Letters, 303, Apr. 2, 1999, pp. 125-129. 
McEuen, Paul L., et al., “Single-Walled Carbon Nanotube Elec- 
tronics”, IEEE Trurzsuctions on Nanotechnology, vol., 1, No. 1, Mar. 

Meyyappan, M., et al., “Carbon nanotube growth by PECVD: a 
review”, Plasma Sources Scieizce and Technology, vol. 12, Apr. 2, 

8, 2000, pp. 5213-5216. 

1998, pp. 878-881. 

2002, pp. 78-85. 

2003, pp. 205-216. 



US 7,273,095 B2 
Page 3 

Ren, Z.F., et al., “Synthesis of Large Arrays of Well-Aligned Carbon 
Nanotubes on Glass”, Science, vol. 282, Nov. 6, 1998, pp. 1105- 
1107. 
Shi, Li., “A Microdevice for Measuring Thermophysical Properties 
of Nanowires and Nanotubes”, 2001 ASME Ir~tenmtional Mechorri- 
col Eirgbieeririg Corigirss orid Expositioii. Nov. 11-16, 2001, pp. 

Shi, Li., “Scanning thermal microscopy of carbon nanotubes using 
batch-fabricated probes”. Applied Physics Letters vol. 77, No. 26, 
Dec. 25, 2000, pp. 4295-4297. 
Stevens, R., “Improved fabrication approach for carbon nanotube 
probe devices”, App/ied Pliysics Lcttrrs, vol., 77, No. 21, Nov. 20, 

Sun, X, et al., “Theoretical modeling of thermoelectricity in Bi 
nanowires”, Applied Plrysics Letten, vol. 74, No. 26, Jun. 28, 1999, 

Tu et al., Growth ofAligned Carbon Nanotubes with Controlled Site 
Density, Applied Phys. Letters, May 27, 2002. 4018-4020, vol. 80, 
No. 21, American Institute of Physics. 
Viswanath, Ram, et al., “Thermal Performance Challenges from 
Silicon to Systems,” Intel Technology Journal Q3 Microprocessor 
Packaging, vol. 4, Issue 3, Aug. 2000. 
Yakobson, Boris I., “Fullerene Nanotubes: C, .ooo,ooo and Beyond”, 
Anwriccri~ Scieritisr oilline, http://www.americanscientist.org/tem- 
plate/AssetDetail/assetid/287O’?full text=true&print=yes. 
Zhang, Wei De, et al., “Synthesis of vertically aligned carbon 
nanotubes films on silicon wafers by pyrolysis of ethylenediamine”, 
Elsevier: Thin Solid Films, 422, 2002, pp. 120-125. 

359-362. 

2000, pp. 3453-3455. 

pp. 4005-4007. 

Zhang, Yuegang. el al., “Electric-field-directed growth of aligned 
single-walled carbon nanotuhes”, Applied Plr.v.vic:s Letreis. vol. 79, 
No. 19, Nov. 5 ,  2001, pp. 3155-3157. 
Zhou, P., et al., “Thermomechanical Diagnostics of FLIP-CHIP/ 
BGA Structures Using Phase-Shifting Electronic Speckle Pattern 
Interferometry”, EER Advurzces in Elecfr-onic Packaging, vol. 26-2, 

Zhang. Y., et al., “Formation of Metal Nanowires on Suspended 
Single-Walled Carbon Nanotubes”, Appl. Phys. Lett, vol. 77( 19), p. 
3015 (2000). 
L. Delzeit, et al, “Directed Growth of Single-Walled Carbon 
Nanotubes” International Journal of Nanoscience, 2002, vol. 1, Nos. 
3 & 4, 197-204, World Scientific Publishing Co. 
H. Hwang, et al, “Simulations and Experiments of Etching of 
Silicon in HBr Plasmas for High Aspect Ratio Features,” J .  Vac. Sci. 
Technol., 2002, 2199, vol. B 20, Amer Vac Soc. 
B. Wei, R. Vajtai, and P. Ajayan, “Reliability and Current Carrying 
Capacity of Carbon Nanotubes,” Applied Physics Letters, Aug. 20, 
2001, 1172-1174, vol. 79, No. 8, AIP. 
A. Ural, et al, “Electric-Field-Aligned Growth of Single-Walled 
Carbon Nanotubes on Surfaces,” Applied Physics Letters, Oct. 28, 
2002, 3464-3466, vol. 8 1, No. 18, AIP. 

* cited by examiner 

ASME, 1999, pp. 1875-1880. 



U.S. Patent Sep. 25,2007 Sheet 1 of 7 US 7,273,095 B2 

Provide arra of substantiall vertically 
oriented CN r s on a selecte dy surface of 

conductivi 9 y 
a substrate that has ood thermal 

Partly or wholly f i l l  interstitial spaces 
between adjacent CNTs in a first 

portion of the arra with thermal conduct 
iller 

.Remove a second portion of filler material to 
expose one end of each CNT in the array 

, 

Press or apply exposed end of the CNTs 
in the arra against a surface of an ob'ect 

exposed portions of the CNTs will bend 
or buckle 

from whic i heat is to be removed sot 11 at 

L 1 

/11 

/I2 

f l3 

FIG. 1 



U.S. Patent Sep. 25,2007 Sheet 2 of 7 

/ 
W 

h\\\\\\ 

\\\\\\\\\ 

h\\\ \ \ \ .  

US 7,273,095 B2 



U.S. Patent 

34 

32 

Sep. 25,2007 Sheet 3 of 7 

Q u  a a 
US 7,273,095 B2 

/3' 

RCU-BLOCK 

R CNT/Cu(interface) 

FIG. 3B 

FIG. 3A 

v 
42 44 
45-q l l l l l l l l l  1 

FTG. 3C 



7 ee 





U.S. Patent Sep. 25,2007 Sheet 6 of 7 US 7,273,095 B2 

12 

10 

Thermal 8 
Resistance 

6 
(cm* ww) 

4 

control, I :I 
10 20 30 40 50 60 

2 
0 

9 

8 

Thermal 7 
Resist a nce 
(cm2 W) 

6 

5 

POWER (W) 

FIG. 6A 

Two different CNTICu films 

0 i o  20 30 40 50 60 
4 

POWER (W) 

FIG. 6B 





US 7,273,095 B2 
2 1 

NANOENGINEERED THERMAL 
MATERIALS BASED ON CARBON 
NANOTUBE ARRAY COMPOSITES 

ORIGIN OF THE INVENTION 

The invention described herein was made by employees 
of the United States Government and may be manufactured 
and used by or for the Government for governmental pur- 
poses without the payment of any royalties thereon or 
therefor. 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation-in-part of prior filed 
application Ser. No 10/390,254, Pat. No. 7,094,679, filed 
Mar. 11, 2003 and issued Aug. 22, 2006, which is incorpo- 
rated by reference herein. 

TECHNICAL FIELD 

The present invention provides thermal conductors for 
small components and devices, using carbon nanotube 
arrays. 

BACKGROUND OF THE INVENTION 

State-of-the-art integrated circuits (ICs) for microproces- 
sors routinely dissipate power densities on the order of 50 
Watts/cm’. This large power is due to the localized heating 
of ICs operating at high frequencies, and must be managed 
for future high-frequency microelectronic applications. As 
the size of components and devices for ICs and other 
appliances becomes smaller, it becomes more difficult to 
provide heat dissipation and transport for such components 
and devices. A thermal conductor for a macro size thermal 
conductor is generally inadequate for use with a micro size 
component or device, in part due to scaling problems. 

One consequence of increased component density in, and 
compactness of, ICs manifests itself in the form of locally 
high power consumption. An alarming rise in power density 
with respect to each advancing technology generation has 
been observed in mainstream microprocessor technologies. 
The need for addressing this problem is imperative for 
next-generation IC packaging technology. One potential 
solution is to find new packaging materials that exhibit high 
thermal conductivity and that can transfer heat from a local 
hot spot to a larger heat sink. 

The cooling of an object by attaching it to a cold reservoir 
is normally limited by the heat transfer rate across the 
interface. Except for objects with atomically flat surfaces, 
practical objects normally have only a very small portion of 
surface in contact with other solid surfaces. Eutectic bond- 
ing materials or thermal conducting pastes/films are nor- 
mally applied at the interface to increase the contact area. 
However, the thermal conductivities of these eutectic bond- 
ing materials are normally orders of magnitude lower than 
those of solid materials such as Cu and Si. The interface thus 
remains the bottleneck for heat dissipation. Metal film can 
be used to improve the thermal conductivity but is only 
applicable for high pressure loading. 

What is needed is a compliant thermal interface material 
that efficiently and promptly dissipates or conducts heat 
from a micro size component or device, preferably down to 
nanometer scale systems, to a heat sink with a heat transfer 
rate that is comparable to rates for macro size components 

and devices. Preferably. the thermal conductor should be 
reusable and should work with any surface. rough or 
smooth. 

5 SUMMARY OF THE INVENTION 

These needs are met by the invention, which uses an 
embedded carbon nanotube array to provide one or more 
high performance thermal conductors for applications that 

10 require large heat dissipation. This approach also improves 
the mechanical strength of carbon nanotubes (CNTs) so that 
the CNT array can remain stable and can make good contact 
to the surface of objects that generate large amount of heat, 
through use of reversible buckling and bending of exposed 

15 portions of the CNTs. The extremely high thermal conduc- 
tivity along a carbon nanotube axis is employed to transfer 
heat away from hot spots in a component or device. Copper 
and other high thermal conductivity materials are deposited 
to fill interstitial regions or gaps in a first part of a CNT array. 

20 This composite structure provides mechanical strength to 
maintain the CNTs in position and also serves as an efficient 
heat transfer material to improve diffusion of heat flux from 
an individual CNT to a larger surrounding volume. 

The innovation uses vertically oriented CNT arrays to 
25 increase the effective contact area (particularly for a rough 

surface) while providing an extremely large thermal con- 
ductivity along a CNT axis and across the interface. The 
fabrication involves four steps: ( 1 )  substantially vertically 
aligned CNT arrays with a preferred length of from 1 to 50 

30 microns are grown on a solid substrate (serving as a heat 
sink) that has good thermal conductivity, such as Si wafers 
and metal blocks/films; ( 2 )  a first portion of, or all of, 
interstitial spaces between adjacent CNTs are filled with 
highly thermally conductive materials such as Cu, Ag, Au, 

35 Pt or doped Si by chemical vapor deposition (CVD), physi- 
cal vapor deposition (PVD), plasma deposition, ion sputter- 
ing, electrochemical deposition, or casting from liquid 
phase; (3) filler materials are removed from a second portion 
of the interstitial spaces by mechanical polishing (MP), 

40 chemical mechanical polishing (CMP), wet chemical etch- 
ing, electrochemical etching, or dry plasma etching so that 
the top portion of the CNT array is exposed, with the bottom 
part remaining embedded in the filler materials; and (4) the 
embedded CNT array is applied against an object that is to 

45 be cooled. CNTs can reversibly buckle or bend one by one 
under low loading pressure so that a CNT can make maxi- 
mum contact with the object to be cooled, even an object 
with a very rough surface. 

Heat can be effectively transferred from the contacting 
50 spots along the tube axis to the filler materials as well as the 

substrates. The filler materials plays two critical roles: (a) 
improving the mechanical stability, and (b) maximizing the 
thermal conductivity. Choosing highly thermal conductive 
materials as the filler matrix maximizes the heat transfer 

55 from the contact spots to the substrate (Le. the heat sink or 
cooling reservoir). An embedded CNT array can be reused 
without damage or compromise of its heat transport char- 
acteristics, in contrast to an approach that relies upon 
eutectic bonding. 

The invention improves the mechanical stability of a CNT 
array by anchoring the lower portion of the array in a solid 
matrix so that the array retains the integrity when pressed 
against the heated object during mounting processes. The 
reversible buckling and bending properties of a CNT array 

65 ensures a maximum physical contact under a low loading 
pressure with the object surface, whether the surface is 
atomically flat or very rough. 

60 
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For a discrete multiwall carbon nanotube (MWCNT), the electrochemical deposition, or casting from liquid phase. 
thermal, conductivity is expected to surpass 3000 Watts Depending upon the density of CNTs in the array and the 
(meter) K-’ along the tube axis, according to P. Kim et al. filler material, the thermal conductivity of the system is 
Phys. Rev. Lett., vol. 87 (2001) 215502-1. Through the use estimated to be in a range of 100-3000 Watts/(meter)-K, 
of DC-biased, plasma-enhanced chemical vapor deposition 5 which is comparable to the thermal conductivity of oriented 
(PECVD), as demonstrated by B. A. Cruden et al, Jour. Appl. graphite. 
Phys.. vol. 94 (2003) 4070, one can fabricate vertically In step 13, a top portion of the filler material is removed 
aligned MWCNT arrays (sometimes referred to as carbon by mechanical polishing (MP), chemical mechanical pol- 
nanofiber arrays) on silicon wafers of thickness -500 pm ishing (CMP). wet chemical etching, electrochemical etch- 
and demonstrate their possible application as a heat-sink 10 ing, dry plasma etching, or a combination thereof so that the 
device, conducting large amounts of heat away from a top portion of the CNT array is exposed. 
localized area, such as in critical “hot spots” in ICs. In step 14 (optional), the thermal conduction system 

This innovation is an outgrowth of an earlier NASA provided by the steps 11. 12 and 13 is pressed or otherwise 
patent application (NASA Ref. No. ARC-15042-1) which applied to a surface (atomically smooth, rough or some- 
use5 a CNT array as an electrical interconnect material IS where in between) of an objcct from which heat is to be 
embedded in an SiO, matrix. Here. a highly thermal con- removed so that the exposed portions of the CNTs will bend 
ductive material, such as Cu. Ag, and/or Si. replaces SO,, or buckle. 
used to control electrical conduction in the earlier innova- FIG. 2 schematically illustrates use of the system pro- 
tion. duced by the procedure of FIG. 1 to remove heat from an 

is grown or otherwise provided on a selected surface of a 
substrate 21 having an optional catalyst layer 22. A layer of 

FIG. 1 illustrates a CNT array thermal conduction system filler material 24, having a depth that allows exposure of an 
upper portion of each CNT 23-i, is provided, for mechanical 

FIG. 2 schematically illustrates use of the invention. 25 strengthening of the CNTs and for improved diffusion of 
FIGS. 3A and 3C illustrates apparatus used for thermal heat that initially travels only along the CNTs (from the 

resistance measurements. object 25). The CNTs 234 are pressed against a surface of 
FIG. 3B illustrates a packaging archotecture used in the an object 25, from which heat is to be removed, so that many 

prior art. or all of the CNTs make contact with the (rough) object 
FIGS. 4A and 4B are scanning electron microscope 30 surface and either bend (23-1. 23-3 and 23-7) or buckle 

(SEM) cross sectional and top-down microphotographs, (23-4, 23-6 and 24-8) in order to improve heat transport 
respectively, of an. as-grown multiwall carbon nanotube from the object. 
array. A measurement apparatus, illustrated in FIG. 3A, includ- 

FIGS. 5A and 5B are SEM cross sectional and top-down ing two copper blocks, 31 and 32, four resistive cartridge 
photomicrographs, respectively, of a CNT-Cu composite 35 heaters (not shown) embedded in the upper block, and a 
film. cooling bath 33. is used to measure the thermal resistance of 

FIGS. 6A and 6B are graphical views of thermal resis- a given material. The upper copper block 31 is preferably 
tance versus electrical power measurements for a first con- surrounded by insulation (not shown) to minimize heat loss 
trol sample and Microfaze (FIG. 6A) and for a CNT-only to the ambient, with the exception of the one square inch 
film and for two different CNT-Cu films (FIG. 6B). 40 section designed to contact the material 34  to be measured. 

FIGS. 7A and 7B are SEM photomicrographs of a CNT- The clamping pressure on the sample is controlled by 
Cu film, taken before and after compressive thermal resis- pneumatically manipulating the upper block. Heat is deliv- 
tance measurements, respectively. ered to the system by applying a constant power to the 

cartridge heaters. The steady state temperature difference 
45 (AT=T,-T,) between the two blocks, 31 and 32, with the 

intervening sample 34, was measured. From these data, the 
thermal resistance R of the sample is calculated, as in Eq. 

FIG. 1 illustrates a procedure for practicing an embodi- (I) ,  where Q is the total power (in Watts), A is the sample 
ment of the invention. In step 11, an array of substantially cross-sectional area, C, is the constant heat transfer coeffi- 
vertically oriented CNTs is grown on a selected surface of a 50 cient and TB, T,, and Tarno represent the temperature of the 
substrate that has good thermal conductivity. The substrate upper block 31, the chilled lower block 32 (TC=2O0 C.), and 
may be a metal-doped silicide, a diamond film, or a metallic the ambient environment, respectively. The heat transfer 
substance having a maximum electrical or thermal conduc- coefficient C, is used to estimate the heat loss to the ambient 
tivity. Whether the array is patterned or not, it is preferable environment in this measurement configuration and is deter- 
to provide a thin CNT catalyst layer (e.& Ni, Fe, Co, Pd or 55 mined by placing a thick insulator between the two blocks 
A1 or a combination thereof) having a layer thickness of and measuring the steady state AT at a variety of applied 
2-50 nanometers (nm), or more if desired. When the CNT powers. This analysis yields a constant heat transfer coef- 
is grown in an electrical field oriented substantially perpen- ficient of C,=0.0939 Watts/K, which is factored into the final 
dicular to the selected substrate surface, the CNTs can be determination of the measured thermal resistance R. This 
grown in greater lengths (1-50 pm or more) in a direction 60 coefficient C, represents the heat power lost (in Watts) per 
substantially parallel to the electrical field direction. degree Kelvin to the ambient environment. 

In step 12, interstitial spaces between adjacent CNTs are 
partly or fully filled with a selected filler material that is 

20 object 25. An array of CNTs 23-i (i=, 
BRIEF DESCRIPTION OF THE DRAWINGS 

constructed according to the invention. 

DESCRIPTION OF BEST MODES OF THE 
INVENTION 

preferably a good thermal conductor (e.g.. Cu, Ag, Au or R =  A V B - T C )  (1) 
metal-doped silicon), in order to augment the transport of 65 Q - cL(TB - Tnnib) 

heat, using chemical vapor deposition (CVD), physical 
vapor deposition (PVD), plasma deposition, ion sputtering, 
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The dominant thermal resistance mechanism in this mea- 
surement configuration is that of the contact interfaces TABLE I - 

Electrochemical hath composition for copper deposition 
between the sample 34 and the copper blocks, 31 and 32. To 
minimize this contact resistance, two steps were taken: ( I )  
polishing both copper blocks, 31 and 32. to reduce the effect ' 
of surface roughness and (2) making use of a high thermally 
conductive, conformal material. Microfaze A6 (available CuS0,.5H20 (moVL) 0.6 
from AOS Thermal Compounds, LLC, New Jersey) to 
reduce contact resistance on the backside of a silicon wafer, 
the substrate on which the investigated films were fabri- 
cated. 

Sample Preparation 

Bath Chemical/Additive 
(concentration unit) Concentration 

HzSO, (mol/L) 1.85 
NaCl (ppm) 100 
PEG, molar mass: So00 (ppm) 400 
JGB (ppml 10 
SPS (ppm) 10 

Results and Discussion Carbon nanotubes were synthesized using the procedure 15 
To summarize the structure used, FIG. 3B illustrates the 

The resulting as-grown tubes are shown in cross section and posite The resistance of the CNT-Cu composite can 
top views in FIGS. 4A and 4B, respectively. Using scanning be obtained by &-embedding the thermal resistance contri- 
electron ~ C r o s c o P e  (SEMI data, we estimate the length of 2o bution of the copper block (RCu.hlocX). silicon wafer (Rsi), 
the MWCNTs to be about 7.5 vm, with a possible range of and the Microfaze material (R,Lf-a'a-p). The thermal resistance 
1-50 pm. of the copper block, RCu-Dlork, must be taken into account 

one inch from the copper block surface). From bulk calcu- ity metal-like substance (e.g., Cu, Ag, Au, Pt or Pd) between 
25 lations, RCu.b,ock for this configuration can be estimated as individual MWCNTs (also referred to as nanotube trenches) o.9s cm21(n?lalt, To summarize, one can determine the 

was deposited through electrodeposition, using a three- resistance of the CNT/Cu composite film by Eq. (2). 
electrode setup with a one cm' MWCNT array as the 

the reference electrode, and a one square inch platinum foil 3o 
as the counter electrode (CE), set in parallel with the 
MWCNT sample. Both the CU substrate and the MWCNTs 
serve as electrodes during the electrodeposition. 

and reactor conditions by B. A' 'Iuden et '* OP equivalent thermal resistance model for the CNT-Cu corn- 

Following nanotube synthesis, a high thermal conductiv- due to the placement of the thermocouple 

working electrode, a Saturated Calomel Electrode (SCE) as R,Nr/C,,=Rlar"l-RCll~lrlocl-RSI-R,~"~~ (2) 

RpFaZe is determined using two control measurements. 
The first measurement involves measuring the thermal resis- 
tance of a piece of silicon with Microfaze on the backside Of 

the wafer, resulting in R c o n t r o i = R C u - D l o c l ~ l ~ c ~ . s i + R , ~ ~ ~ , ,  
where R,,, is the interface resistance between the copper Various additives are added to the to 35 block and silicon wafer. The second resistance measurement 
involves a piece of double-sided polislied silicon, resulting achieve Optimum gap into the high-aspect-ratio, for- 

est-like MWCNT arrays. The recipe of the electrolyte soh-  in Rco,lrrol,2=2Rbloc.lt-Si+Rs~ Assuming that both Si-Cu 
tion used in this study is based on the methodology reported 
for deep-trench filling of Cu interconnects for damascene 
processes, as reported by K. Kondo et al, Jour. Electroana- 4o in Eq. (3). 

R@7ze=Rc",,,,, ,-(R,,,,r,2-RSi)/2-R,,-blocL. (3) lytical Chem., vol. S59(2003) 137. We begin with a stock 
solution comprised of copper sulfate (CuSO,.SH,O), sulfu- 
ric acid (H2S0,), and sodium chloride (NaCl). Polyethylene The intrinsic silicon contribution (Rsi) to the thermal resis- 
glycol (PEG) is added to inhibit copper deposition at the tips tance in Eqs. (2) and (3) can be neglected. For the SO0 pm 
of the nanotubes when in the presence of C1- ions. Ja11us 45 thick silicon wafer used in this study, the intrinsic silicon 
Green B (JGB) is also added for its deposition inhibiting thermal resistance Call be calculated as 0.034 Cm2K/Watt, 
properties. Bis(3-sulfopropy1)disulfide (SPS) is included to which is Orders Of magnitude less than the final mea- 

One caveat to this analysis is in regards to the thermal 

applied to the upper block. The thermal resistance of the first 
control sample decreases approximately exponentially with 
increasing power, corresponding to different temperature 
gradients, but can be corrected for in the final analysis as will 

55 be demonstrated. The double-sided, polished silicon sample 

constant resistance of R=11.10 c m ' w a t t ,  resulting in 5.55 
cm'K/Watt per silicon interface. Subtracting the silicon 

interfaces in the second control measurement are similar, 
one can divide this value in half and use the simple relation 

increase local current density at the bottom of the nanotube 
trenches, thus enhancing the superfilling Of high-aspect 

sured Of the CNT-Cu and is thus 

50 resistance of Microfaze with respect to the amount of power 
trenches. The final solution, including concentrations used in 
the bath, is shown in Table 1. TYPicab'~ the CU was deposited 
at -0.20 to -0.30 v (VS. SCE) at a deposition rate of about 
430 nm/min. The resulting CNT-Cu composite material is 
shown in FIGS. SA and 5B. 

discussed by R. Viswanath et al, Intel Tech. Jour Q3 (2000), 
FIG, 3C illustrates typical packaging architecture, as shows no power dependence and exhibits a substantially 

a heat sink (fins and heat spreader) 41 are 'On- resistance, is constant with respect to applied power, 
grease, etc.) 60 one can also determine R,,,, at different powers. The tiguous to a thin interface (phase change 

42, which is contiguous to a thin silicon layer 43. A heat 

through a conductive gel Or  epoxy 44. This system requires 
use of greases, phase change films, thermally conductive 
gels and/or special epoxies and is quite complex. 

power dependence of the Microfaze is illustrated in FIG. 6A. 

is quantified, one proceeds with the analysis of the CNT/ 
Si/Microfaze and CNT-Cu/Si/Microfaze stacks. From the 

65 previous discussion, one expects these samples to exhibit the 

delivery array 45 contacts the silicon m a y  back surface 43 Now that the power dependence of the Microfaze material 
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same power dependence, which indeed is the case and is 
clearly seen in FIG. 6B. Combining the power dependence 
with the measurements in FIG. 6B we summarize the values 
of measured thermal resistance in Table 11. All measure- 
ments were performed at similar clamp pressures, 6.8 psi. s reusability. 
Errors contributing to the standard deviation in the mea- 
surements can be attributed primarily to two factors: ( I )  
variations in contact area due to varying CNT length distri- 
bution (see FIG. 4A): and (2) variations in measurement of 
total power, AT, and ambient temperature loss. However, io 
even at the upper bounds of the measured thermal resistance 
values for the CNT-Cu composite films, this worst-case 
scenario represents values that are on the order of the 
thermal budgets for a variety of commercial microprocessor 
systems. 15 

heat conductors. Our analysis confirms that these novel 
thermal conductivity layers can accomplish effective heat 
conduction by increasing contact area. In addition, the CNTs 
provide the added benefits of high mechanical stability and 

What is claimed is: 
1. A method for providing for transport of thermal energy 

providing an array Of carbon nanotubes Or carbon nanofi- 
hers, referred to herein as “CNTs,” embedded in or 
connected to a selected surface of a selected substrate 
having high thermal conductivity, where at least first 
and second CNTs in the array are adjacent to and 
oriented substantially perpendicular to the selected 
surface; 

from an object. the method comprising: 

TABLE I1 after provision of the at least first and second CNTs in the 
array. filling at least a portion of an interstitial space 
between the at least first and second CNTs in the array 
with a selected filler material that has high thermal 
conductivity so that the filler material makes contact 
with the selected substrate surface at a first end of each 
of the at least first and second CNTs and a second end 
of each of the at least first and second CNTs is exposed 
and is not fully covered by the filler material; and 

causing the exposed second ends of the at least first and 

Thermal Resistance Measurement Summary 

20 Thermal Resistmce 
Material (cm’WW) f STDEV 

CNT film 
CNT-Cu composite film (#1) 
CNT-Cu composite film (#2) 
Bare double-sided silicon 11.1OfO65 25 

2 30 f 0.33 
0 84 f 0.22 
092 f 0.13 

second CNTs to make contact with a surface of an 
The Cu deposited in the MWCNT array used in this study object for which transport of the thermal energy is to be 

was not a solid film. Instead, the Cu forms a porous film with provided so that at least one of the exposed second ends 
-70% Cu and CNTs and -30% voids. This configuration 3o of the CNTs bends or buckles, whereby thermal energy 
increases the mechanical strength so that the sample can be is removed from the object through the at least first and 
repeatedly and reproducibly measured under different second CNTs and a portion of the removed thermal 
clamping pressures. In addition, this configuration provides energy is distributed within the filler material. 
spaces so that the composite film can be deformed to make 2. The method of claim 1, further comprising selecting 
maximal contact with the hot surface. However, studies 35 said filler material to include at least one of Cu, Ag, Au, Pt, 
conducted on the buckling force of discrete MWCNTs, by H Pd and a metal-doped silicide. 
Dai et al, Nature, ~01 .384  (1996) 147, by H. Dai et al,Appl. 3. The method of claim 1, further comprising providing a 
PhYs. Lett. vel. 73 (1998) 1508, and by J. Li et (Surf. And layer of a selected catalyst, including at least one of Ni, Fe, 
Interf. Analysis, vol. 28 (1999) 8, demonstrate the t r a m -  CO. Pt and AI, for growth of said array of said CNTs, on said 
dous amount of force per unit cross sectional area that these 4o selected surface of said catalyst. 
structures Can withstand. Based on this analysis, we specu- 4. The method of claim 1, further comprising filling said 
late that most nanotubes do not buckle under the force portion of said interstitid space with said filler material by 
applied in this Preliminary study, which is roughly two a process comprising at least one of chemical vapor depo- 
orders of magnitude less than the calculated CNT buckling sition, physical vapor deposition, plasma deposition, ion 
force. SEM characterization before and after the thermal 45 sputtering, electrochemical deposition and casting from a 
resistance measurement (FIGS. 7A and 7B, respectively) liquid phase. 
shows no effect on the CNT-Cu composite after compressive 5. me method of claim 1, further comprising providing 
stress. This approach assumes that most CNTs are bent or said exposed second ends of said at least first and second 
buckled to give maximum contact under low pressure (no C N T ~  by a process comprising at least one of mechanical 
more than 20 Psi in IC Packaging), which Pressure can be 50 polishing, chemical-mechanical polishing, wet chemical 
achieved by suitable choice of length and diameter of etching, electrochemical etching and dry plasma etching. 
exposed portions of the CNTs 6. The method of claim 1, further comprising providing 

The thermal resistance at the interface can be further said exposed ends of said first and second CNTs in said array 
reduced by optimizing the invented interface materials and with an exposed first length and an exposed second length, 
packaging technology. More particularly, the contact area at 55 respectively, that are not covered by said filler material, 
low loading Pressure (less than 20 psi) can be increased by where the exposed first length and the exposed second 
optimizing the length of the exposed CNTs (which results in length are substantially equal. 
lower buckling and bending force). The thermal conductiv- 7. The method of claim 1, further comprising providing 
ity of c u  filled in interstitial space can be also increased by said exposed ends of said first and second CNTs in said array 
improving the integrity of the CU material. with such 60 with an exposed first length and an exposed second length, 
optimization implemented, the thermal resistance is respectively, that are not covered by said filler material, 
expected to be ~ e d ~ c e d  below 0.1 cm2K/Watt which is even where the exposed first length is greater than the exposed 
better than eutectic binding used today, and can be efficiently second length. 
used for heat dissipation Over 100 WattS/Cm* for future IC 
chips. 65 for said transport of said thermal energy from said object 

These preliminary results demonstrate the fundamental with an associated thermal resistance of no more than about 
usefulness of CNTs and CNT-Cu composite films as efficient 0.1 cm2-K/Watt. 

8. The method of claim 1, further comprising providing 
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9. The method of claim 1, further comprising providing 
for said transport of said thermal energy from said object 
with an associated thermal resistance of no more than about 
0.1 cm’-Watt .  

10. The method of claim 1. further comprising removing 
said thermal energy from said object initially through said 
exposed second ends of said at least first and second CNTs 
in contact with said object, and subsequently through said 
filler material that makes contact with said at least first and 
second CNTs. 

11. The method of claim 1, further comprising removing 
said thermal energy from said object contemporaneously 
through said exposed second ends of said at least first and 
second CNTs in contact with said object and through said 
filler material that makes contact with said at least first and 
second CNTs. 

12. The method of claim 1, further comprising providing 
said object with a surface for said contact that is rough on an 
atomic scale and is not substantially planar. 

13. Apparatus for providing for transport of thermal 
energy from an object, the apparatus comprising: 

an array of carbon nanotubes or carbon nanofibers, 
referred to herein as “CNTs,” embedded in or con- 
nected to a selected surface of a selected substrate 
having high thermal conductivity, where at least first 
and second CNTs in the array are adjacent to and are 
oriented substantially perpendicular to the selected 
surface: 

a high thermal conductivity material that fills at least a 
portion of an interstitial space between at least the at 
least first and second CNTs in the array so that the filler 
material makes contact with the selected substrate 
surface at a first end of each of the at least first and 
second CNTs and a second end of each of the at least 
first and second CNTs is exposed and is not fully 
covered by the filler material; and 

wherein the exposed second ends of the at least first and 
second CNTs make contact with a surface of an object 
for which transport of thermal energy is to be provided 
so that at least one of the exposed second ends of the 
CNTs bends or buckles, whereby thermal energy is 
removed from the object through the at least first and 
second CNTs and a portion of the removed thermal 
energy is distributed within the filler material. 

14. The apparatus of claim 13, wherein said filler material 
includes at least one of Cu, Ag, Au, Pt, Pd and a metal-doped 
silicide. 

15. The apparatus of claim 13, further comprising a layer 
of a selected catalyst, including at least one of Ni, Fe, Co, Pt 
and AI, deposited on said selected substrate surface for 
growth of said array of said CNTs, on said selected substrate. 

16. The apparatus of claim 13, wherein said portion of 
said interstitial space is filled with said filler material by a 
process comprising at least one of chemical vapor deposi- 
tion, physical vapor deposition, plasma deposition, ion sput- 
tering, electrochemical deposition and casting from a liquid 
phase. 

17. The apparatus of claim 13, wherein said exposed 
second ends of said at least first and second CNTs are 
provided by a process comprising at least one of mechanical 
polishing, chemical-mechanical polishing, wet chemical 
etching, electrochemical etching and dry plasma etching. 

18. The apparatus of claim 13, wherein said exposed ends 
of said first and second CNTs in said array have an exposed 
first length and an exposed second length, respectively, that 

10 
are not covered by said filler material, where the exposed 
first length and the exposed second length are substantially 
equal. 

19. The apparatus of claim 13, wherein said exposed ends 
5 of said first and second CNTs in said array have an exposed 

first length and an exposed second length, respectively, that 
are not covered by said filler material, where the exposed 
first length is greater than the exposed second length. 

20. The apparatus of claim 3, wherein said transport of 
10 said thermal energy from said object occurs with an asso- 

ciated thermal resistance of no more than about 8 cm’-W 
Watt. 

21. The apparatus of claim 13. wherein said transport of 
said thermal energy from said object occurs with an asso- 

15 ciated thermal resistance of no more than about 0.1 cm’-W 
Watt. 

22. The apparatus of claim 13, wherein said thermal 
energy is removed from said object initially through said 
exposed second ends of said at least first and second CNTs 

20 in contact with said object, and subsequently through said 
filler material that makes contact with said at least first and 
second CNTs. 

23. The apparatus of claim 13, wherein said thermal 
energy is removed from said object contemporaneously 

25 through said exposed second ends of said at least first and 
second CNTs in contact with said object and through said 
filler material that makes contact with said at least first and 
second CNTs. 

24. The apparatus of claim 13, wherein said object has a 
3o surface for said contact that is rough on an atomic scale and 

25. An apparatus for providing for transport of thermal 

an array of carbon nanotubes or carbon nanofibers, 
referred to herein as “CNTs,” on a surface of a sub- 
strate, wherein at least first and second CNTs in the 
array are oriented substantially perpendicular to the 
surface of the substrate; and 

a filler material that fills at least a portion of an interstitial 
space between the at least first and second CNTs in the 
array; 

wherein: 
the filler material makes contact with the surface of the 

substrate at a first end of each of the at least first and 
second CNTs: 

a second end of each of the at least first and second 
CNTs is exposed and is not fully covered by the filler 
material; 

the exposed second ends of the at least first and second 
CNTs are configured to make contact with a surface 
of an object for which transport of thermal energy is 
to be provided so that at least one of the exposed 
second ends of the CNTs bends or buckles; and 

the thermal resistance of the apparatus is no more than 
about 0.9 cm2WW. 

26. An apparatus for providing for transport of thermal 

an array of carbon nanotubes or carbon nanofibers, 
referred to herein as “CNTs,” on a surface of a sub- 
strate, wherein at least first and second CNTs in the 
array are oriented substantially perpendicular to the 
surface of the substrate: and 

a filler material that fills at least a portion of an interstitial 
space between the at least first and second CNTs in the 
array: 

wherein: 

is not substantially planar. 

energy from an object, the apparatus comprising: 

35 

40 

45 

5o 

55 

energy from an object, the apparatus comprising: 

60 

65 
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the filler material makes contact with the surface of the 
substrate at a first end of each of the at least first and 
second CNTs; 

the at least first and second CNTs each have a respec- 
tive second end that is different from each respective s 
first end; les: and 

the respective second ends of the at least first and 
second CNTs are configured to make contact with a 
surface of an object for which transport of thermal 
energy is to be provided so that at least one of the 10 
respective second ends of the CNTs bends or buck- 
les; and 

the thermal resistance of the apparatus is no more than 
about 0.9 c m ’ W .  

27. The apparatus of claim 26. wherein the apparatus is 15 
configured to make contact with the surface of the object 
with a contact pressure of no more than 20 psi. 

28. The apparatus of claim 26. wherein the thermal 
resistance of the apparatus is no more than about 0.1 

29. A method for making an apparatus for transporting 

providing an array of carbon nanotubes or carbon nanofi- 
hers, referred to herein as “CNTs,” on a surface of a 
substrate, wherein at least first and second CNTs in the 25 
array are oriented substantially perpendicular to the 
surface of the substrate: and 

after providing the array of CNTs, filling at least a portion 
of an interstitial space between the at least first and 

the respective second ends of the at least first and 
second CNTs are configured to make contact with a 
surface of an object for which transport of thermal 
energy is to be provided so that at least one of the 
respective second ends of the CNTs bends or buck- 

the thermal resistance of the apparatus is no more than 

30. A method for transporting thema1 energy from an 

contacting an object with an apparatus comprising an 
array of carbon nanotubes or carbon nanofibers, 
referred to herein as “CNTs,” and a filler material that 
fills at least a portion of an interstitial space between at 
least first and second CNTs in the array. wherein: 
the filler material makes contact with a surface of a 

substrate at a first end of each of the at least first and 
second CNTs: 

the at least first and second CNTs in the array are 
oriented substantially perpendicular to the surface of 
the substrate: 

the at least first and second CNTs each have a respec- 
tive second end that is different from each respective 
first end: 

the respective second ends of the at least first and 
second CNTs make contact with a surface of the 
object so that at least one of the respective second 
ends of the CNTs bends or buckles: and 

the thermal resistance of the apparatus is no more than 
about 0.9 c m 2 W :  and 

transporting thermal energy from the object with the 
array of CNTs and the filler material. 

about 0.9 c m ’ W .  

object, the method comprising: 

cm2WW. 20 

thermal energy from an object, the method comprising: 

second CNTs in the array with a filler material; 30 
wherein: 

the filler material makes contact with the surface of the 
substrate at a first end of each of the at least first and 
second CNTs: 

the at least first and second CNTs each have a respec- 35 
tive second end that is different from each respective 
first end: * * * * *  


