

February 2008

NASA/TM-2008-215108

A Primer on Architectural Level Fault
Tolerance

Ricky W. Butler
Langley Research Center, Hampton, Virginia

https://ntrs.nasa.gov/search.jsp?R=20080009026 2019-08-30T03:46:51+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10541936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 2008

NASA/TM-2008-215108

A Primer on Architectural Level Fault
Tolerance

Ricky W. Butler
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

 1

Table of Contents

1 Introduction..3
2 Basics ..3
3 Faults and Failures ..3

3.1 Faults..3
3.2 Errors..4
3.3 Fault Tolerance Mechanisms..5
3.4 Fault Containment Regions ..6
3.5 Design for Minimum Risk..6

4 Watch-dog Timers ...6
5 Voting ..7
6 Interactive Consistency..8
7 Clock Synchronization ...10

7.1 Impact of Asymmetric Failures ...11
7.2 Fault-tolerant Clock Synchronization Algorithms12
7.3 Application-Level Reference Time..13

8 Diagnosing Failed Components...13
8.1 Detection Using Exact-Match Voters ..13
8.2 Detection Using Thresholds..14
8.3 Detection Using Built-in-Test (BIT) ...14

9 Real time Operating Systems and Fault Tolerance15
10 Reconfiguration ..15
11 Transient Faults ...17

11.1 Distinguishing Transient Faults from Permanent Faults17
11.2 Transient Fault Recovery..17

12 Self-Checking Pairs..18
13 Bus Guardian Units ..20
14 Integrated Modular Avionics (IMA) ...21

14.1 ARINC 653 ...21
15 Protecting a System from Common Cause Faults22

15.1 Types of Common Cause Faults ..22
15.2 Software Common Cause...23
15.3 Design Errors in Hardware ...24
15.4 Radiation Induced Common Cause Failure ..24
15.5 Other Common Cause Faults ...25
15.6 Functional-level Dissimilar Backup System ..26
15.7 Common Cause Failure and Integrated Modular Avionics....................27

16 Re-Usable Fault Tolerance and System Layering....................................27
16.1 Asynchronous Flight Control Systems..28
16.2 Synchronous Fault-Tolerant Systems...30
16.3 Maintaining Independence between the applications and the fault-
tolerant mechanisms ...31
16.4 Technology Obsolescence and Refresh...32

17 Reliability Analysis ...32
17.1 Markov Models ...33

 2

17.2 Solution of a Markov Model ..34
17.3 The Impact of Long Mission Times...35
17.4 Beware of the Ambiguous Term “coverage” ...36

18 The Synergism Between Formal Verification and Reliability Analysis......39
19 Function Migration..39
20 Vehicle Health Management ..40

20.1 Basic Concepts...40
20.2 Failure Modes and Effects Analysis (FMEA) ..41
20.3 Sensor Fault Tolerance ..42

21 Concluding Remarks..43
22 Glossary ...43
23 References...47

 3

1 Introduction

 Fault Tolerance is a deep subject with hundreds of sub-topics. It is often
difficult to know where to begin the study of this vast subject. The purpose of this
paper is to illustrate the key issues in architectural-level fault tolerance by way of
example. The main objective is to explain the rationale and identify the trade-offs
between the variety of techniques that are used to achieve fault tolerance. The
primer focuses on high-level fault tolerance concepts (i.e. architectural) rather
than low-level mechanisms such as Hamming codes or protocols used for
communication. For information about the latter the reader is referred to
[Pradhan86].

2 Basics

 Fault Tolerance is founded on redundancy. If we have two or more
identical components we can ignore the faulty component or switch to a spare if
the primary fails. Of course this assumes that we know when the failure occurs.
Some failures are easy to detect, e.g. the device just stops working. Other
failures are not, e.g., the device continues to work but produces incorrect results.
So immediately we are confronted with one of the reasons that the fault tolerance
field is broad—systems are designed to handle different kinds of failures. Some
systems are designed to handle fail-stop faults. Others are designed to handle
any kind of fault. Still others are designed to handle faults that can be detected
via a diagnostic program. Sometimes the faults are always assumed to be the
manifestation of a physical disruption, while other system designs seek to survive
logical errors as well. There are many possibilities. Many designs seek to
survive the class of faults that are assumed to be common and provide little or no
capability against what are assumed to be less common failures. Ideally, the set
of faults handled by a system is delineated in a well-specified fault model.

3 Faults and Failures

3.1 Faults

 A fault is a defect in the hardware or software that can lead to an incorrect
state. Faults can arrive randomly from the physical failure of hardware (e.g.
stuck-at-one bit) or a bit-flip in memory due to electromagnetic upset or they can
arrive in a non-random manner if they are due to manufacturing defects or logical
mistakes in a design. System failure occurs when the delivered service deviates
from the correct service.

 When developing a fault-tolerant system, the designer makes
assumptions about the types of faults that must be handled. This is often
referred to as the system fault model. The fault model elaborates all of the

 4

assumptions about how components of the system can fail. The following types
of faults are often considered:

• Fail stop (or fail silent) -- the component stops producing outputs when it
fails

• Fail benign – the component’s failure is recognized by all non-faulty
components

• Fail symmetric – the fault results in the same erroneous value being sent
to all other replicates

• Fail asymmetric (Byzantine) – the fault results in different erroneous
values being sent to some of the other replicates

See [Thambidurai88] for more details about this classification.

Also the duration of the fault may be considered:

• Permanent faults – once they occur they do not disappear
• Transient faults – appear for a short time and then disappear (e.g., upset

from electromagnetic interference).
• Intermittent faults -- they appear, disappear and then reappear

However, it should be noted that although a fault is transient, it can still produce
permanent error in the system state if the system is not designed to handle
transients.

Some defects or events can trigger multiple simultaneous errors. This class of
fault is referred to as common cause faults (CCF) and if not mitigated they may
overcome all of the available redundancy and hence cause system failure.
Sources of common cause faults are many and varied and require special
consideration in the design of a fault tolerant system. The following is a partial
list of common cause faults:

• Design flaw (i.e. bug) in software
• Hardware design errors (e.g., logical error in a processor)
• Compiler error
• Manufacturing defects
• Environmental induced effects (e.g. MMOD, Lightning, EMI, Launch

shock/vibrations)

Computer systems can also be vulnerable to common-mode failure if they rely on
a single source of power or any other needed resource.

3.2 Errors

A rigorous definition of an error is non-trivial. Intuitively it is the manifestation of
the fault in some visible state of the system that you actually care about. The
standard IEEE definition states that an error impacts a service. Avizienis,
Laprie, Randell, Landwehr [Avizienis04] write

 5

Since a service is a sequence of the system’s external states, a service
failure means that at least one (or more) external state of the system
deviates from the correct service state. The deviation is called an error…
In most cases, a fault first causes an error in the service state of a
component that is a part of the internal state of the system and the
external state is not immediately affected. For this reason, the definition of
an error is the part of the total state of the system that may lead to its
subsequent service failure. It is important to note that many errors do not
reach the system’s external state and cause a failure. A fault is active
when it causes an error, otherwise it is dormant.

An error is detected if its presence is noted by the system via an error message
or error signal. Errors that are present but not detected are latent errors.

Note: a fault is usually defined fairly broadly as a defect within the system. This
definition includes “software bugs” in addition to physical failures such as a
memory “stuck-at-1” fault. It also includes the bit flips induced by noise in
communications systems. Because the techniques used to detect and remove
software bugs (e.g. logical mistakes) are very different from the techniques used
to handle physical faults, it is very important to distinguish situations where one is
talking about physical faults and when one is talking about “design errors”.

3.3 Fault Tolerance Mechanisms

The primary goal of fault-tolerance is to prevent errors from leading to system
failure. The fault tolerance functionality of a system is sometimes decomposed
into the following:

1. Fault masking – preventing an error from propagating to a system output.
2. Error detection -- observing a difference between system state and the

expected state.
3. Error recovery – an attempt to restore the system state to an error-free

state.
4. Reconfiguration – removing a faulty component from the system

The techniques used to achieve this functionality is a major focus of this paper.

It is very important to recognize that redundancy alone does not provide fault-
tolerance. There must be mechanisms that coordinate and control the
redundancy and make decisions and selections concerning the redundant
information. These mechanisms may be centralized or distributed, they may be
implemented in hardware or software, they may be simple or complex, but it is
absolutely essential that these mechanisms be designed correctly. If there is a
logical defect in the design of the redundancy management logic, system failure
can occur even when there is no physical failure in the system. For example,

 6

most of the problems which were discovered in the AFTI F-16 flight tests at
Dryden were due to defects in the redundancy management logic [Mackall88].

3.4 Fault Containment Regions

Fault tolerant systems are often built around the concept of fault containment
regions (FCRs). The primary goal of a FCR is to limit the effects of a fault and
prevent the propagation of errors from one region of the system to another. A
FCR is a subsystem that will operate correctly regardless of any arbitrary fault
outside the region. FCRs must be physically separated, electrically isolated, and
have independent power supplies. Physical dispersion limits the effect of physical
phenomena such as the impact of a micrometeoroid. Electrical isolation protects
against fault propagation from lightning or other forms of static discharge. Power
supply isolation prevents a power failure affecting the entire system. The number
of FCRs in a system is a primary factor in determining how many faults a system
can tolerate without failure.

3.5 Design for Minimum Risk

Design for Minimum Risk (DFMR) is a process that allows safety-critical
mechanisms to claim adequate fault tolerance through rigorous design, analysis,
testing, and inspection practices rather than through true physical redundancy.
DFMR is intended as an option when physical redundancy is highly impractical or
too expensive. DFMR is primarily used on mechanical systems and is not
intended for computer systems. Johnson Space Center policy [MA2-00-057]
permits the use of “fully compliant simple mechanical systems” without
redundancy in safety-critical applications when they meet certain special
requirements AND are approved by the Mechanical Systems Working Group and
the safety review panel. More information is available at

http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8705_002A_&page_name=AppendixB
http://mmptdpublic.jsc.nasa.gov/mswg/Policies.htm#DFMR

and from [Stephans04].

4 Watch-dog Timers

A well known type of system failure is the non-responsive system or locked-up
system, which is sometimes referred to as the “blue screen of death” in desktop
computers. This is usually the result of a software bug that throws the system
into a non-operable state (e.g. an erroneous jump into the data space). When
this occurs in a desktop computer, a simple reboot usually suffices to recover the
system. But in some safety-critical systems, operator restart is not available or

 7

appropriate (e.g. requires a response time that is beyond normal human
capability). In these systems, a watch-dog timer can be helpful.
The simplest approach is to have some watch-dog subsystem observe “I’m alive”
messages which are periodically produced by the primary. If these messages
disappear then the watch-dog system initiates some recovery action such as
reboot or rollback to a previous safe state. It is also possible to have the
watch-dog system turn over control to a backup system. There are several
issues here, but the most important is how to protect the system from failures in
the watch-dog subsystem.

5 Voting

 Fault tolerant systems are usually designed to handle more than just fail-
stop faults, so inevitably some form of voting must be employed. There are
many varieties, but there are roughly three basic categories of voting: exact
match, fault-tolerant average, and mechanical. In the exact match case all of the
replicates including their internal data are assumed to be identical so any bit in
an output that differs may be an indication of failure. One can simply select the
majority value and use that value for the system output. In averaging, the good
replicates are assumed to be “close” to each other but not identical. So the
medial values either come from non-faulty components or they are bound by
other good values1. Either way the selection of a median or an average of some
middle values is enough to mask a faulty component

Mechanical voting can be performed at the actuators of a system. Each replicate
provides a fraction of the “force” needed to actuate the physical component.
These forces are added mechanically. In this way a failed component can be
out-forced by the other good components. Though the force will be different than
nominally commanded, this is compensated by the use of feedback control.

Voting can also be used to detect or diagnose which component of the system is
faulty, but careful engineering is required to determine when a disagreement in a
vote may be used for the diagnosis of faults. This is discussed in Section 8
(Diagnosing Failed Components).

The following diagram illustrates the concept of voting:

1 By assuming that there is only one faulty component, we have two cases: (1) the faulty component is the
middle value, in which case it is between two good values, so the faulty component is still producing an
acceptable output, or (2) the faulty component is one of the extreme values, in which case the middle value
came from a good component.

 8

However, it should be noted that voting is often implemented as a distributed
algorithm that executes on the redundant computers themselves. Also voting is
not just employed at the outputs of fault tolerant systems. System inputs (i.e.
sensor inputs), and intermediate results can be voted as well. It is not uncommon
for the voting to occur in software when the underlying hardware has sufficient
interconnect. When software voting is done, information is passed between
processors and then voting algorithms are used to select a result. If not designed
properly, the logic for exchanging and voting can be another source of faults,
namely design defects. Some fault-tolerant systems are designed to maintain
exactly the same data in the redundant lanes, while other systems seek to
maintain close but not exact agreement in the lanes. See Section 16 (Re-Usable
Fault Tolerance and System Layering) for a discussion of the pros and cons of
these alternatives.

6 Interactive Consistency

A fundamental issue in a fault-tolerant system is how to distribute input data to
the replicates in a manner that preserves consistency. Because inputs begin as
single source data, we must be sure that the replicate consistency is not
destroyed by a failure in the distribution system.

Different methods can be used to distribute sensor values to the replicates

• Single sensor sampled by all processors
• Single sensor sampled by a processor that distributes the value to all

other processors
• Redundant sensors each sampled by all processors
• Redundant sensors each of which is sampled by a single processor that

distributes its value to all other processors

Even if there are multiple sensors the individual sensor values are distributed to
each of the computers:

sensors computer

sensors computer

sensors computer

VOTER Actuators

sensors computer

sensors computer

sensors computer

VOTER Actuators

sensors computer

sensors computer

sensors computer

VOTER Output

sensors computer

sensors computer

sensors computer

VOTER Output

 9

The following diagram illustrates the problem with asymmetric failure

So after the failure one good channel will be operating on a value of 177 and
another on a value of 176. If exact-match voting is used on the outputs, then the
wrong processor will be identified as failed. If mid-value select voting is used on
the outputs, then there will be no immediate problem. However, if the
asymmetric fault persists over many iterations, the deviation between the two
good channels can continue to get larger and larger and eventually exceed the
threshold set for fault diagnosis. Once again the wrong processor can be
reconfigured out of the system. Recent results at NASA Langley (Paul Miner)
have shown that a two-stage mid-value select can be designed to achieve
Byzantine Agreement. However most asynchronous systems today have not
been designed using this particular strategy.

As shown above some types of faults are more insidious and require more FCRs
to properly mask them. For example, it has been shown [Driscoll03] that
tolerating f Byzantine faults requires:

• 3f+1 Fault Containment Regions (FCRs)
• FCRs must be interconnected through 2f+1 disjoint paths
• Inputs must be exchanged f+1 times between FCRs
• FCRs must be synchronized to a bounded skew

Consequently a simple triple modular redundant (TMR) system is not Byzantine
Resilient, that is, there are some single faults that can defeat it. But it is important
to realize that the FCR need not be a complete processor. All that is needed is
enough circuitry to perform the interactive consistency algorithm. To withstand a

Analog Data (177)

176

177

107

faulty

Input channels processing

176,207,177

176,007,177

176,107,177

Mid-value

177

176

176

will look faulty in future majority votes

Analog Data (177)

176

177

107

faulty

Input channels processing

176,207,177

176,007,177

176,107,177

Mid-value

177

176

176

will look faulty in future majority votes

 10

single asymmetric fault, one needs four fault isolation regions, but they need not
all be full channels. A very simple circuit can provide the necessary functionality
to implement critical Byzantine Agreement algorithms. If the circuit is electrically
isolated it can serve as one of the fault isolation regions. This idea was first
exploited in the Draper FTP computer system:

A triplex FTP contains six components, but only three of them are full processors.
The three interstages are simple circuits requiring approximately 50 gates. Thus,
the overall hardware complexity, and hence the fault-arrival rate, of a triplex FTP
is less than a quadruplex. So its cost and reliability are correspondingly better
than using six complete processors. Furthermore, a quadruplex FTP provides
fault tolerance comparable to a 5-plex, but with only four full processors.

This idea of utilizing special hardware to off-load the redundancy management
functions from the computing resources has gained popularity in recent years.
This strategy has been used in SafeBUS, TTP/C, FTPP, and SPIDER.

The beauty of modern fault-tolerance is that you don't have to replicate entire
"strings" to increase your ability to withstand more types of faults. To withstand a
single asymmetric fault, one needs four fault isolation regions, but they need not
all be full channels. A very simple circuit called an interstage can provide the
necessary functionality to implement critical Byzantine Agreement
algorithms. This was first done by Draper Labs in their FTP architecture [Lala].
Since the interstage is electrically isolated it can serve as one of the fault
isolation regions. It merely relays messages and does not participate in the
voting steps that provide fault-tolerance in FTP. Full protection from a Byzantine
fault is achieved with only three processors and three interstages. The Draper
FTPP built on this foundation and developed a parallel processing version
[Harper91].

7 Clock Synchronization

It is usually advantageous to provide many layers of voting in a fault-tolerant
system and not just rely on a final force-sum voting at the actuators. If the system

processors

interstages

processors

interstages

 11

is designed to perform a vote within the processors itself, it is necessary that
there be some mechanism to synchronize the clocks of the system so that this
vote can be scheduled and accomplished. Fault tolerant systems that
synchronize the clocks on the redundant processors are called synchronous
fault-tolerant systems. Systems that do not synchronize the clocks are called
asynchronous fault-tolerant systems.

The algorithms that perform clock synchronization are inherently distributed
algorithms because the algorithm would not be fault-tolerant if it were based on
some centralized timer. Fault-tolerant clock synchronization algorithms are
notoriously difficult to get right. Simple intuitive solutions don’t always work.

7.1 Impact of Asymmetric Failures

An intuitive yet vulnerable approach is to build a fault-tolerant clock using three
different clocks that are fully connected. At a pre-determined fixed rate, each
clock sends its value to the other clock. Each clock then examines the arriving
clock values and updates its own clock to the mid value of the three. So if there
is only one faulty clock, it is either one of the outer values or it falls between two
good values. Either way the selection of the mid value is appropriate. But this
analysis overlooks the impact of an asymmetric failure, i.e. where the failed clock
sends one value to one of the good clocks and a different value to the other good
clock. This is illustrated in the following figure.

Here both clocks 1 and 2 are non-faulty, but clock 1 is faster than real time
and clock 2 is slower than real time. When clock 3 fails it sends clock 1 a

Clock Time

Real Time

Perfect Clock

Re-sync time

Clock 1
(fast)

Clock 2
(slow)

Clock 3
as seen by 1

Clock 3
as seen by 2

Clock Time

Real Time

Perfect Clock

Re-sync time

Clock 1
(fast)

Clock 2
(slow)

Clock 3
as seen by 1

Clock 3
as seen by 2

 12

value bigger than clock 1 and sends clock 2 a value smaller than clock 2.
Therefore both clock 1 and clock 2 select themselves as the mid value and
continue to drift apart. If clock 3 continues to do this, clocks 1 and 2 can drift
arbitrarily far apart even though they continue to execute the synchronization
algorithm.

7.2 Fault-tolerant Clock Synchronization Algorithms

Many different algorithms have been developed which achieve fault-tolerant
clock synchronization. Because of the subtleties associated with these
algorithms they are usually accompanied by formal proofs of correctness
[Ramanathan90]. A proof is provided that the algorithm maintains all of the good
processor’s clocks to within a small skew of each other, often denoted as ε2:

 |Cp(t) - Cq (t) | < ε

Where Cj(t) denotes the clock time of processor j at real time t. Once you have
this implemented in your system, the voting system can be reliably built on top of
this as follows:

1. A vote is scheduled at a predetermined time (usually in a static schedule
table)

2. Let D = the maximum transport delay in sending a clock value from one
processor to another over the communication system3.

3. The vote is delayed until D + ε time units after the scheduled vote time. In
this way all of the good processors are guaranteed to have good values
from all of the good clocks.

Fault-tolerant clock synchronization algorithms are based on the idea of periodic
resynchronization. At a predetermined cycle time, all clocks exchange their
current values. Then each local clock executes some filtering and/or averaging
function to calculate a new clock value. It then updates its own local clock value
with the new value. Most of these algorithms are simple to describe but the
proof that the algorithm works correctly in the presence of an arbitrary failure can
be very difficult [Rushby89].

2 The bound on the clock skew is determined by the variance of the communication times and
not the mean. The mean can be subtracted out in the clock sync algorithms.

3 Note that this means that communication system must have a maximum delay. If a databus is
used it must have predictable behavior and bounded communication delays. Therefore fault-
tolerant systems are developed using TDMA rather than CSMA/CD communication protocols.

 13

7.3 Application-Level Reference Time

Although we have talked about clock synchronization between replicate
computers, we have not addressed the issue of obtaining a clock time that is
synchronized to an external time source. This is important if the application level
software is event-driven by external events. If the fault-tolerant system must
interact with other external systems and this interaction is based upon some
external time, then the operating system must provide this time source to the
applications.

The NIST Internet Time Service can be used to synchronize the clock of any
computer connected to the Internet. However, due to the unreliability of the
internet, this is not a suitable candidate for a safety-critical system. For a safety-
critical system the Global Positioning System (GPS), which is a used for
navigation throughout the world, is more suitable. GPS signals are derived from
atomic clocks on the satellites so they can be used as a reference for time
synchronization and frequency calibration.

8 Diagnosing Failed Components

There are 3 basic methods for diagnosing when a component has failed:

• Using the discrepancies in the exact-match votes
• Thresholds on the mid-value select voting
• Using built-in test (BIT)

8.1 Detection Using Exact-Match Voters

The most straight-forward mechanism for detecting a failed processor is the
exact-match voter. If the lanes of the fault-tolerant system are synchronized,
then system can use exact-match, majority voting. Detection of the faulty lane is
simple because the correct lanes all agree bit by bit. Any deviation from the

sensors computer

sensors computer

sensors computer
VOTER

Actuators

sensors computer

sensors computer

sensors computer

sensors computer
VOTER

Actuators

sensors computer

 14

majority value is an indication of failure. But it should be noted that this strategy
depends critically upon the use of interactive consistency algorithms to properly
distribute single source data to the replicates. See Section 6 (Interactive
Consistency).

8.2 Detection Using Thresholds

If the lanes (i.e. FCRs) are asynchronous, then the inputs will be sampled at
slightly different times and so the memory states of the different lanes will not be
exactly the same. In this case the system must use a mid-value select or
averaging algorithm. Unfortunately, mid-value selection algorithms alone do not
provide a way to detect and isolate a faulty lane. To accomplish this, thresholds
must also be used. A threshold is the maximum amount of deviation from the
average value that is tolerated before a lane is declared to be faulty. The system
designer must set thresholds so that most failures are detected, but he must be
careful not to make them too tight so as to cause excessive false alarms.
Consequently it can be very difficult to determine appropriate levels for the
thresholds and it requires extensive testing [Mackall88].

8.3 Detection Using Built-in-Test (BIT)

Built-In-Test (BIT) mechanisms run automatically and seek to isolate faulty
components without the use of redundancy. There are two basic types: power-
on bit (PBIT) which executes at startup and continuous BIT (CBIT) that runs
continuously on a system. CBIT can be periodically scheduled or executed
whenever there is any slack time available. Built-In-Test can be implemented in
software or directly on an integrated circuit. The latter is sometimes referred to
as circuit-level Built In Self Test (BIST) and is characterized by well-developed
standards (e.g. IEEE 1149).

The ideal BIT would be one that could detect every possible fault, but 100%
coverage is rarely achievable in practice. It is not uncommon to see requirements
on the order of 98% coverage, that is, the BIT can detect 98% of all possible
faults. Also most BIT mechanisms also produce some level of false alarms.
Because of the imperfection of BIT, it is not usually used as the first line of
defense in most safety-critical systems. Rather it used to augment the
functionality of the redundancy management system and aid in identifying a
faulty component. BIT is also extremely important for off-line maintenance and
repair.

 15

9 Real time Operating Systems and Fault Tolerance

Traditional real time operating systems (RTOS) do not provide direct system
services that manage redundant processes. Nevertheless, custom software can
be developed that accomplishes this task. A primary goal of this custom
software is to hide the details of the process management and voting. The
application software should be designed as if there were only simplex versions of
the software. All of the details about replication and voting should be hidden
from the applications. Nevertheless, the applications will have visibility into
whether the simplex abstractions are preemptible or non-preemptible. If the
tasks are preemptible, then an additional challenge must be met, namely how
can I be assured that all of the critical tasks meet their hard real-time deadlines.
While this is the classic problem that RTOS’s solve, it should be noted that in this
situation the RTOS will be scheduling redundant tasks with a strict need to vote
their outputs at task completion. In the non-preemptible case, this problem is
usually solved by using a preplanned static table. This is what was done in
SafeBUS and TTP/C [Rushby01].

10 Reconfiguration

Once a component has been identified as faulty, it is sometimes advantageous to
remove the faulty component from the system through a reconfiguration process.
Reconfiguration is built around the idea of “ignoring the outputs” of components
that have been diagnosed as faulty by the community of good processors (i.e.
the working set). There are diagnosis algorithms that work in the presence of
even malicious asymmetric failures yet guarantee that all of the good processors
have a consistent view of who is faulty as long as a majority of the processors
are working. It is usually not a good idea to design the system in a manner that
allows a component to shut down (e.g. power-down) another component.
Failures in the shut-down circuitry can lead to the removal of good components.
Of course it is often appropriate to provide manual means for the human
operators to accomplish this task.

A system that can survive a single fault is sometimes referred to as one fault-
tolerant. A system that can survive two faults is referred to as two fault-tolerant4.
A two fault tolerant system is usually constructed using reconfiguration, however
a five-plex with five-way voting can mask two simultaneous faults.5 A four plex
that reconfigures to a three-plex is an example of a two fault-tolerant system.

4 The N fault-tolerant characterization is very crude. The use of actual reliability numbers is much to be
preferred. A one fault-tolerant system can be more reliable than a two fault-tolerant system if the latter has
a higher processor failure rate.
5 This assumes that there are at least two additional fault containment regions for solving the interactive
consistency problem in order to be sure that we are guaranteed to have replicate consistency in the 5-plex.

 16

Because the reconfiguration process relies on fault-detection, it is usually
desirable to augment the detection by voting with built-in test. If the system
reliability requirements do not warrant reconfiguration, then built-in test may not
be needed, since the voters can provide the needed fault masking capability.
However, in a reconfigurable system it is desirable to minimize fault-latency (i.e.
the time period from fault arrival to its manifestation as an error) because while
the first fault is latent, a second fault may arrive in another component. The
simultaneous presence of two faulty components will defeat the typical 3-way
voter. The time that it takes for the system to detect, isolate and reconfigure a
faulty component directly impacts its reliability. Interestingly, a two-fault tolerant
system can actually have a lower reliability than a one-fault tolerant system, if its
reconfiguration time is poor or if its components have much higher failure rates.
Therefore it is desirable to specify the system fault tolerance requirements in
terms of a probability of system failure rather than as simply one or two-fault
tolerant.

It is important to note that the view of the working set must be consistent
throughout the system. This is sometimes referred to as the distributed
diagnosis problem. It is essential that one verifies that all good components
agree who is in the working set. In system initialization or in recovery from a
massive transient upset, establishing this working set is the fundamental
challenge. If the system employs smart actuators, it is necessary that the
computers systems in these smart actuators know what is in the “working set” so
that the physical force-sum voters can know which inputs to ignore.

Reconfiguration can be accomplished by (1) removing a faulty processor and
hence reducing the level of redundancy or (2) by replacing the faulty processor
with a spare processor. These spares can be either hot or cold. A hot spare is
one which executes continuously in parallel with the processors which are
currently in the working set. The use of hot spares minimizes the reconfiguration
time because the state of the spare is already loaded when it is needed.
However, hot spares increase the amount of power consumed. Also, the spare
is subject to the same operating conditions as the working set processors and
can fail just as the active ones. A cold spare is powered off until it reconfigured
into the working set. Cold spares do not use power and are usually assumed to
have a zero (or low) failure rate while inactive.

Reconfiguration is used to increase the reliability of the system without adding
more redundancy. The effectiveness of this strategy depends upon how fast a
faulty FCR can be removed from the system. See section 17 (Reliability
Analysis) for more details about this. A more crude method of characterizing the
level of fault-tolerance is the “N fault tolerant” terminology. A “N fault tolerant”
system is a system that is still operational after N consecutive faults (not
simultaneous). For example, a two fault tolerant (2 FT) system is a system that
is "fail operational, fail operational", i.e. after two sequential faults, the system is

 17

still a functioning system. This definition implicitly assumes that there is
adequate time for the system to reconfigure from the first fault before the arrival
of the second fault. Without reconfiguration in a quad system, the arrival of the
second fault can create a 2-2 dilemma case that can lead to directly to system
failure. For example, if the two good processors report that the Boolean variable
release_parachute is true, while the two faulty processors report that the
value is false, the voting logic could easily pick the wrong value.

11 Transient Faults

The reliability of a fault-tolerant system depends upon a reasonably fast detection
of faults to ensure that two faults are not active at the same time. The detection
and removal of faults is complicated by the presence of transient faults. Although
a transient fault can corrupt the internal state of the system and must be handled,
it does not permanently damage the hardware. Therefore the recovery
mechanism is different. You want to restore the state of the memory but you do
not want to remove hardware. So the redundancy management system must
make a judgment about whether a fault is permanent or transient.

11.1 Distinguishing Transient Faults from Permanent Faults

 There are two basic techniques:

• If error persists, declare the fault to be permanent
• Reconfigure a faulty component immediately upon indication of failure, run

built in test (BIT) diagnostics, and then re-integrate if it passes the BIT
diagnostics.

When using the first technique, the designer has to decide on an appropriate
time period (or an error count level) before declaring a fault to be permanent
rather than transient. Surprisingly the reliability of a typical N-modular redundant
(NMR) system is not very sensitive to this parameter. Even a delay of a few
minutes does not degrade the system reliability [DiVito90].

11.2 Transient Fault Recovery

Even though a fault is transient, it can still corrupt memory. The process of
correcting memory errors is sometimes called scrubbing.

Several approaches can be used to recover the state of memory in a transiently
affected digital processor. The most common method is through the use of error-

 18

correcting codes (ECC) which take advantage of extra bits in the memory.6
Another approach is to rely on the reading of new inputs to replace corrupted
memory. Of course, this does not give 100% coverage over the space of
potential memory upsets, but it is much more effective than one might expect at
first glance. Since control-law implementations produce outputs as a function of
periodic inputs and a relatively small internal state, a large fraction of the memory
upsets can be recovered in this manner. This accounts for the fact that although
many systems in service are not designed to accommodate transient faults, they
do actually exhibit some ability to tolerate such faults.

Another important technique is the use of a watchdog timer. Since a transient
fault can (and frequently does) affect the program counter (PC), a processor can
end up executing in an entirely inappropriate place -- even in the data space. If
this happens, then the previous technique becomes totally inoperative. The only
hope in this situation is to recognize that the PC is corrupted. A watchdog timer is
a countdown register that sets the PC to a pre-determined “restart" location if the
timer ever counts down all the way to 0. In a non-transiently affected processor,
the watchdog timer is periodically reset by the operating system. Once a fault has
been detected by a watchdog timer, the entire system may be “rolled-back" to a
previous state by use of a checkpoint -- a previous dump of the dynamic memory
state to a secondary storage device of some kind. This technique has not been
used very often in flight control systems because of the unacceptable overhead
of this type of operation.

A more appropriate technique is the use of majority-voting to replace the internal
state of a processor. It is important to note that this is done continuously rather
than just after a transient fault is detected. Of course, such voting can be
expensive if the dynamic state is not small. The use of hardware-based
memory-management units (MMUs) can also mitigate the impact of transient
faults by containing the propagation of an error to within a single memory-
mapped region.

12 Self-Checking Pairs

A fault-tolerant system can be built on the foundation of self-checking pairs. The
use of self-checking pairs brings several key advantages, but this is not without
some additional cost. The key benefit is that self-checking pairs can greatly
simplify the design of certain aspects of the system by providing a high
probability that faults will manifest themselves as “fail-stop”. However, this
comes at the price of a more inefficient reconfiguration process which wastes
more good hardware than the more traditional NMR approach.

6 Single Error Correction Double Error Code (SECDEC) is commonly used for spacecraft
systems. However, the processor’s internal caches often do not have this level of correction.
Periodic cache flush is sometimes used or a flush on error detect is employed.

 19

The basic idea of a self-checking pair (SCP) is to combine two identical
processing elements which are given identical inputs and their results are
compared. If there is a mis-compare of their outputs, then the comparator circuit
shuts-down the SCP and prevents the output from leaving the SCP. This can be
a temporary shutdown (e.g. the current output only) or a permanent shutdown.
Because it is usually not desirable to permanently remove a SCP due to a
transient fault, a persistence counter can be used which delays permanent
shutdown until a number of consecutive faults have occurred.

To achieve system-level fault-tolerance, self-checking pairs must be organized
together so that when a self-checking pair shuts itself down, its function can be
taken over by another self-checking pair. Conceptually, this can be pictured as
follows:

Processor 1

Processor 2

input

comparator

output

error,
shutdown

Self-checking pair

Processor 1

Processor 2

input

comparator

output

error,
shutdown

Self-checking pair

Processor 1

Processor 2

input

comparator

output

error,
shutdown

Self-checking pair

Processor 1

Processor 2

input

comparator

output

error,
shutdown

Self-checking pair

Bus

Processor 1

Processor 2

input

comparator

output

error,
shutdown

Self-checking pair

Processor 1

Processor 2

input

comparator

output

error,
shutdown

Self-checking pair

Bus

 20

This type of architecture is often referred to as Dual-Dual. The key advantage of
this strategy is that it provides low level, autonomous processor fault detection
and isolation. There is no need to design voting mechanisms and high-level
strategies for redundancy management.

Of course there must be some mechanism to handle the transition from one self-
checking pair to another. Under the assumption that a self-checking pair fail
stops, the bus can just accept the first broadcast from either one of the pairs or
search for a valid output in some pre-determined order. Alternatively one of the
pairs can be active while the other one “shadows” the active one. Either way you
are employing four-fold redundancy to avoid the problem of loading the data
state after the primary fails. But of course this only takes care of faults in the
processing element. What about failures in the connection from the processor to
the bus? To deal with these failures we need something more sophisticated –
bus guardian units (see next section).

Although systems designed with self-checking pairs require more redundancy
than a corresponding NMR approach, the software that manages the redundancy
is much simpler. Significant cost savings may accrue from not having to design
detection and isolation mechanisms and from the reduced software verification
and validation effort.

13 Bus Guardian Units

A bus guardian unit protects the inter-processor communication channels (e.g.
bus) from transmission faults. A bus guardian can also serve a “repeater
function” to strengthen the signal from a processor and thereby protect the bus
from signals that are degraded and potentially ambiguous. The bus guardian unit
protects the system from the “babbling idiot” phenomena where a failed
transmitter floods the communication subsystem with illegal transmissions.
When the communication mechanism is a time-division multiplex bus, the bus
guardian protects the bus by preventing a transmission outside of its pre-
determined time slot and thus providing fail-silence of the self-checking pair and
its connection to the bus.

A fundamental challenge in designing a system using bus guardian units and
time-division multiplex communication is to provide a consistent time-source to all
of the bus guardian units so that they can provide properly enforce the time-slot
for its self-checking pair. This time must be synchronized with all of the rest of
the other bus guardian units and so in many modern fault-tolerant systems, a
fault-tolerant clock signal is generated in the communications subsystem and
provided to the bus-guardian units and processor pairs. Clearly the bus guardian
unit cannot be triggered off of its own local processors clock. A single failure in
this clock would enable the processing pair and bus guardian unit to access the
bus at an illegal time.

 21

The bus guardian unit must protect the bus from any transmission outside of its
allocated time slot, while not keeping the self-checking pair from transmitting at
correct times. Because the fault-tolerant clock signal cannot be assumed to be
perfect, the bus guardian must open the window slightly earlier than the
start of the time slot, and close it slightly later than the expected end of
its time slot. The system designer must be careful to make sure that these small
excesses do not overlap with the excesses of other units. So there has to be
some wasted bandwidth of the bus to achieve fault-tolerance this way. The
selection of these time intervals must be analyzed carefully to insure that the
system functions properly.

14 Integrated Modular Avionics (IMA)

Physical separation of critical avionics functions from less critical functions has
been the primary strategy used by the designers of civil aircraft to produce safe
avionic systems. Traditional avionics systems are built around federated
architectures in which each processing site contains a single application such as
an autopilot, flight management system, or display. Typically, each application is
assigned a single level of criticality and all software and hardware at that
processing site is verified and certified to that level of criticality. Critical functions
are protected from non-critical tasks by physical isolation. NASA has used this
approach on interplanetary spacecraft, where functions critical to the survival of
the spacecraft are handled by an attitude and articulation control system that is
separate from the systems that control the science experiments.

Physical separation of criticality in avionics, however, is a costly approach. Each
piece of hardware must be separately supported and maintained. Furthermore,
each of these functions (hardware/software) is certified in isolation; there is no
notion of a common hardware platform that has been certified and can thus be
used for multiple functions. The concept of a certified reusable computer
(probably multi-processor) that could execute multiple applications with different
levels of criticality is commonly referred to as Integrated Modular Avionics (IMA).
Because of the utilization of IMA in the Civil Aviation Industry, information is
available about IMA application in safety-critical systems. IMA may also have
some special advantages for space applications, where power, weight, and
volume are of particular concern. By hosting many applications on the same
platform, some of which run at different times than others, the total amount of
hardware needed can be reduced and consequently there will be weight and
volume savings and perhaps some power savings as well.

14.1 ARINC 653

The API (ARINC 653) defines an APplication EXecutive (APEX) for space and
time partitioning that is gaining support in the commercial avionics markets.

 22

Several vendors currently offer ARINC 653 compliant real-time operating
systems including the LynxOS®-178 RTOS, Green Hills Integrity-178,
VxWorks653, and the BAE Systems CsLEOS, the first two of which have been
used and certified under the FAA’s DO-178B guidelines. Each partition in an
ARINC 653 system represents a separate application and makes use of memory
space that is dedicated to it. Similarly, the APEX allots a dedicated time slice to
each, thus creating time partitioning. Each ARINC 653 partition supports
multitasking. The advantages are:

• Uses a simple approach to memory and time partitioning and provides
support for common I/O through a well-defined application program interface
(API).

• Simplified maintenance through the ability to modify or add hardware without
impacting application software.

• Enhanced safety assurance through software fault isolation. For example,
software faults in one partition cannot corrupt the memory space in another
partition or impact the timing of another partition.

• Better use of computing resources (as compare to federated system) results
in reduction of mass and power

• Scalable: the centralized processing function can be distributed in multiple
computers (cabinets)

It should also be noted that a fault-tolerant operating system can provide different
levels of fault tolerance on the same platform. The tasks can be dispatched at
different levels of redundancy. Some tasks can run as simplex tasks while others
may be triplex or higher.

15 Protecting a System from Common Cause Faults

There are some failure mechanisms than can impact multiple fault containment
regions all at once and can thus create multiple errors in these separate regions
at the same time. These kinds of faults are often referred to as common cause
faults (CCF) or generic faults and the associated phenomena is sometimes
referred to as common mode failure. We will use the term common cause fault
exclusively to prevent confusion. Because common cause faults can completely
undermine a fault-tolerant system, system designers give considerable attention
to this class of faults.

15.1 Types of Common Cause Faults

Sources of common cause faults are many and varied and require different
mitigation strategies. Examples that can lead to common cause failure are:

• Logic errors in software (i.e. programming bugs, requirements oversights)
• Hardware logic errors (i.e. bug in the instruction set of a processor)

 23

• Compiler/loader programming error
• Manufacturing defects
• Environmental induced effects (i.e. MMOD, Lightning, EMI, total dose

radiation)
• A Byzantine asymmetric fault in a system not designed to handle such

faults

A valuable resource for learning more about CCF is the SAE ARP 4761, which
outlines guidelines for conducting safety assessment for civil airborne systems.
This standard enumerates a total of eight common mode types, twenty two
common mode subtypes with between two and nine example sources for each
subtype. Due to the breadth of this topic, it cannot possibly be covered
completely in this report, but some brief mitigation strategies are given as
examples.

15.2 Software Common Cause

Software common cause can be addressed through rigorous verification and test
methods which seek to discover and remove potential errors before the system is
placed in operation. Software dissimilarity is another technique that has been
advocated to address software CCF. The use of dissimilarity at the code level
has been discredited (Knight-Leveson)7. However, at the requirements level
where a completely different function or approach can be specified, this is
deemed by most experts generally to be a good idea. Another method that can
provide some mitigation of software common cause errors is the use of restarts
and retries though the latter can sometimes be complicated by the need for some
rollback mechanism. The hope is that after the restart, the software will not
traverse through exactly the same set of inputs that triggered the software bug,
because the system will be processing new sensor values. Software errors can
also result from compiler design errors. However, these errors are less common
due to the heritage of the compilers and a large user base which tends to weed
out the bugs in the field. Probably the most promising of all approaches is formal

7 It has been demonstrated that even independently-developed software versions can fail on the same input.
In fact the probability that this occurs was shown to be much greater than one would expect (i.e. the
independence assumption is false) [Leveson]. It is believed that low-level design diversity (e.g. often
called software fault tolerance) is more vulnerable to this problem than high-level design diversity. .
Because design diversity does not provide a strong guarantee against common mode failure, a combination
of all the approaches is highly recommended. In the most critical systems and subsystems the use of formal
verification is prudent, even though it is may impose higher early life cycle costs.

Both N-version programming techniques and recovery block schemes have been proposed as code-level
mechanisms. For an excellent tutorial on software fault tolerance see [Pomales00]. Recovery blocks are
based around the idea of an acceptance test. If the output of a module fails the acceptance test, a backup
software routine is used to produce the output. N-version programming relies on multiple versions of a
program created by different programming teams. All versions are created from the same specification so
that the outputs can be voted.

 24

methods. Formal methods are able to mathematically establish the absence of
hazardous behavior over all possible inputs using formal proof (using theorem
provers) or exhaustive search (using model checkers).

15.3 Design Errors in Hardware

Design errors in hardware (i.e processors, ASICs, FPGAs) are also possible.
These types of errors generally have lower failure rates than software errors
because of the lower complexity and more rigorous verification culture present in
the hardware industry. Adding hardware dissimilarity is a method that mitigates
this class of error, but this can easily be “straining at a gnat”. The author knows
of no loss of a safety-critical system due to a design error in the hardware.
Whereas the loss of safety-critical systems due to errors in the application
software are quite numerous. Is should also be noted that adding dissimilarity
to a redundant computing system can actually increase the probability that it fails
due to CCF. Whenever redundancy is added to a system, additional logic (in
hardware/software) must be created to manage that redundancy. Mistakes in
that logic can be catastrophic –- creating a new single point of failure. So
dissimilarity is no panacea. It should be used with the utmost of care and
probably only where there is a commitment to formally prove the managing logic.

15.4 Radiation Induced Common Cause Failure

The impact of radiation on spacecraft electronics can be dramatic. For example,
in September 2005 a solar flare upset the ROSETTA spacecraft electronics
leaving the primary star tracker function in INIT mode and the secondary Star
Tracker in standby mode.

Radiation can cause single-event upsets (SEUs) such as memory bit-flips or
transients on clock or data lines. SEUs do not cause permanent damage but can
cause data and/or code corruption that can lead to functional upsets. Permanent
damage can result from single event latch-up (SEL) event. A SEL event can
activate a parasitic low-impedance path between the power supply rails of an
electronic component (which acts as a short circuit) and cause displacement
effects (i.e. the cumulative effect of displacing atoms out of their lattice, which
can destroy the device). A third radiation effect is accumulated total incident
dose (TID). As TID accumulates in electronic components (over months or years)
transistor parameters can shift and eventually lead to device failure . Pritchard
et.al. [Pritchard02] list the following NASA missions which were adversely
impacted by radiation effects including (1) TOPEX-Poseidon (permanent failure
of optocouplers), (2) Cassini (solid-state recorder errors), (3) Deep Space 1
(Latchup in stellar reference unit, upset in solar panel control electronics), (4)
QuikScat (GPS receiver failure, 1553 bus lockups), (5) Mars Odyssey (entered

 25

safe mode due to processor reset caused by latch upset in DRAM) and (6)
GRACE (Resets, reboots, double-bit errors in MMU-A, some GPS errors).

Although redundancy is helpful to some extent, a serious radiation event can
impact a majority of the FCRs and defeat the architectural-level fault-tolerance.
Therefore classic architectural-level fault-tolerance must be augmented with
other strategies for spacecraft. The primary methods are

• Use of radiation hardened parts and materials. (This reduces TID, can
effectively eliminate SEL, and improves SEU susceptibility)

• Latch-up detection and device reset
• Low-level Error Detection and Correction (EDAC) mechanisms such as

memory ECC (See Section 11.2 “Transient Fault Recovery”).
• Use of shielding (This is primarily used to reduce TID effects, but can have

some impact on low energy particles that can result in SEUs).
• Low-level rewriting of the control state in hardware (e.g. rewriting of mode

registers in SDRAMS.)
• On-chip redundancy. (TMR is common in space-qualified FPGAs)
• Device-level redundancy (e.g, multiple processors configured as a TMR

within a single board computer.)
• Use of self-stabilization algorithms. (A distributed algorithm is self-

stabilizing if, starting from an arbitrary state, it is guaranteed to converge
to an operational state within a bounded amount of time.)

15.5 Other Common Cause Faults

Common cause manufacturing defects can be partially mitigated through
redundancy and fault tolerant techniques depending on their manifestation.
Screening and inspection can also identify manufacturing defects before system
deployment. Part defects can be mitigated through dissimilarity. Sometimes
manufacturing defect manifestation is due to the environment (physical stress,
temperature, radiation etc.). Therefore testing in appropriate environments helps
to identify some defects.

Common cause power related problems are worthy of special mention. Because
there are often significant constraints on mass and cable length, fault
containment regions share the redundant power lanes. Therefore if a power fault
occurs, multiple FCRs (from a defect or data transfer perspective) can be
affected. Also NASA has a history of power related faults, making it appropriate
for extra scrutiny. Parts screening, derating, testing and careful fault containment
analysis and design help mitigate this class of fault.

A final example that can lead to common cause failure is due to the vibration and
shock loads of a launch or reentry. The harshness of these environments needs
to be carefully analyzed and designed for with ample margin for uncertainty.
Fault containment through physical separation and isolation are mitigation

 26

strategies. Also, environmental testing can identify problems that may not be
identified by system modeling.

15.6 Functional-level Dissimilar Backup System

Sometimes safety-critical systems are designed with a completely independent
backup system. The Space Shuttle for example has a primary system that is a
quadraplex and a fifth dissimilar computer that serves as a backup. This backup
system has never been used, but has provided a level of comfort to the
astronauts and the operators. Typically a backup system is an extremely simple
system that provides only basic functionality. . It is usually programmed with
different software from the primary system and provides just enough functionality
to get the crew home safely. Simplicity in the hardware (i.e. reduced part count)
reduces the fault arrive rate and hence makes it more reliable. Simple software
reduces the software defect rate and potentially enables formal verification.

The process that governs the switchover to the backup system is of critical
importance. You cannot have the backup unilaterally takeover, because it may
do so improperly when it has failed. And the failure rate of the simplex backup
system is much higher than the primary fault-tolerant system. Of course it is
reasonable to allow the primary system to give control to the backup, but this
cannot be relied upon for all situations. Therefore inevitably, the switchover
process must involve the human operator. But it should be remembered that the
effectiveness of this strategy depends upon the ability of the astronauts to
recognize the need for and accomplish the switchover to the backup in adequate
time.

Adding hardware dissimilarity is one method that mitigates common cause
failure. But as noted previously, additional redundancy should always be added
judiciously and complexity must be carefully managed. For example, adding a
dissimilar backup to a primary redundant computing system can help mitigate
common cause failure, but system designers must carefully understand how
control is passed from primary to backup. Unintended results could occur if a
fault in the backup system enables it to take control from a perfectly good primary
system. Design error in the system level redundancy management logic is one
class of common cause failure that can only be mitigated through rigorous design
assurance techniques.

Before a backup system is given control, the backup has to be initialized with all
of the relevant program state. Sometimes the backup system is run as a hot
spare and performs all of the same calculations as the primary system, only its
outputs are not sent to the system actuators. If the backup is “cold” it has to be
loaded with appropriate code and data prior to being given control.

The cost of a backup system can be considerable given that different software
has to be written for it. Also the backup system must be connected to the

 27

input/output communications systems or have its own set of sensors and
actuators.

15.7 Common Cause Failure and Integrated Modular Avionics

The impact of IMA on the problem of common cause failure is a complicated
issue:

• The use of IMA creates a higher potential for common mode failure due to
the extensive use of common hardware modules and a common operating
system, but

• The ready availability of partitions provides a tool to the application
designer to isolate the impact of insidious software bugs to smaller
regions. A divide-by-zero error may temporarily halt one function but will
not impact all of the others.

It is the author’s opinion that IMA can provide a net gain in the area of common
mode failure. The following factors mitigate the unique risks associated with
IMA:

• Historically processor design errors have not resulted in catastrophic
failure.

• Several IMA operating systems are being designed in accordance with the
FAA’s DO-178B software standard.

• More rigorous verification techniques such as formal methods can be
deployed because the cost is amortized over many different applications
and vehicles.

• The IMA operating systems will become increasingly reliable as they are
deployed in aerospace applications and millions of operational hours flush
out the bugs with very low fault arrival rates.

16 Re-Usable Fault Tolerance and System Layering

Many fault-tolerant computer systems have been built with voting strategies that
utilize information about the applications. Although at first this may seem like a
good thing to do, i.e. we might as well use the maximum information available to
detect faults, it turns out that this is really very counter-productive. The problem
is that one cannot verify and validate the fault-tolerant aspects of the system
without the applications. There is no divide-and-conquer approach that can
simplify the verification and validation. The aviation industry has frequently used
application-level fault-tolerance in the design of their flight control systems.
Interestingly they have largely avoided this approach in the design of fault-
tolerant flight management systems. Here architectures based upon self-
checking pairs are frequently employed.

 28

16.1 Asynchronous Flight Control Systems

Asynchronous digital fault-tolerant flight control systems arose in the 1980s.
They exploit the fact that the control laws that run on them are periodic in nature
and that they sample inputs and produce actuator outputs. Therefore, if the
channels are allowed to drift apart (i.e. no clock synchronization), then they will
never really drift more than the sample period apart (e.g. 40 ms), because once
they get a full frame apart the channels are once again sampling the sensors at
the same time.

Voting in an asynchronous architecture is built around the idea that the rate of
change of output value is bounded and that the sensor data can be separated in
time by no more the period of the sample rate. This is illustrated below

Therefore the error between the outputs is:

 Tf max (df/dt)

where Tf = sensor sample period, and max (df/dt) = the maximum rate of change
of the output function. If the control laws are stable then the output differences
will be bounded if the input differences are bounded. Using these bounds,
thresholds can be set at the voters. The mid-value from the channels is used to
drive the actuators and if the difference between an output and the mid-value
exceeds the threshold then the channel is declared as failed.

But eventually the designers have to deal with the fact that the control laws have
state variables associated with them (e.g. integrator variables). So although the
input variables are re-aligned once a channel drifts a full period apart, the
integrator variables are one iteration step apart! So inevitably in these
architectures the designers end up using cross-channel strapping and data
synchronization techniques. So this is typically handled by performing data
synchronization at the application level. For example Y.C. Yeh of the Boeing
Commercial Aircraft Company describes how this is done for the Boeing 777:

Read
sensors

Read
sensors Output Outputcompute compute

Read
sensors

Read
sensors

Read
sensors Output Outputcompute compute

Read
sensors

Read
sensors Outputcompute

⎭
⎬
⎫

⎩
⎨
⎧≤

dt
dxTError fx max

Read
sensors

Read
sensors Output Outputcompute compute

Read
sensors

Read
sensors

Read
sensors Output Outputcompute compute

Read
sensors

Read
sensors Outputcompute

⎭
⎬
⎫

⎩
⎨
⎧≤

dt
dxTError fx max

 29

 “The potential for functional asymmetry, which can lead to disagreement
among digital computing systems, is dealt with via frame and data
synchronization and median value selection of the PFC’s output
commands” []

So although the original design was built around the concept of no clock
synchronization between the channels, they end up synchronizing anyway. But,
instead of solving this problem at a lower level of the system in an application-
independent way, the problem is solved at the application level while dealing with
a lot of other issues. In other words, there is no separation of concerns. It is
possible to defer the issue of synchronizing the channels, but eventually this
issue must be at solved at some higher level of the system.

The whole strategy for diagnosing failed channels is based upon bounded rates
of change of the output values. But what happens when there is a discrete
change or a mode change? Well this could lead to an erroneous diagnosis of a
channel failure. So another ad-hoc solution is patched onto the architecture--
the channel outputs are passed through an output filter which ramps up and
ramps down the actuator outputs in a way that bounds the rate of change. These
ramps also serve to smooth out any rapid change of an output to an actuator.

So the designers are essentially dealing with the lack of clock synchronization
using a suite of ad-hoc patches. But there is no separation of concerns, no
divide and conquer and thus one ends up with an extremely complex architecture
that is difficult to validate and test. Dale Mackell wrote about this problem after
Dryden had flight tested the asynchronous F-16 DFCS, “The fault-tolerant design
should also be transparent to the control law functions. The control laws should
not have to be tailored to the system’s redundancy level.” [Mackall88]

There are some additional concerns associated with mid-value select algorithms.
Because the channel outputs are not identical even in fault-free conditions,
exact-match voting cannot be used. A mid value select algorithm must be used,
but mid value select algorithms cannot be used for diagnosis because they do
not decide which of the other two channels are faulty. Therefore, thresholds
based upon dynamics must also be employed for fault diagnosis. But this is not
as good a fault detector as an exact match voter. A permanently faulty processor
may remain undiagnosed for a long time, e.g. if it “flat lines” between two good
channels. So fault latency increases and this impacts the reliability analysis. Also
where to set the thresholds is fundamentally a trial-and-error process. These
thresholds change as the control laws change. It is not unusual for the control
laws to be modified at integration testing when the vehicle dynamics are better
understood. System designers have to wait until they have a full-scale simulation
(e.g. iron-bird) to debug the fault-tolerance of the system. But this means that the
basic fault-tolerance design is being modified at integration time as well. What

 30

should be an early-life cycle, low level activity is deferred until late in the life-cycle
when repair of errors are notoriously expensive to repair.

16.2 Synchronous Fault-Tolerant Systems

 A synchronous fault-tolerant system is built on the foundation of a fault-
tolerant clock synchronization algorithm which can keep all of the good
processor’s clocks within a small skew of each other, often denoted as ε. This
foundation enables all of the good processors or processes to be exact replicas
of each other. A simple timing protocol suffices. Because all non-faulty
processors or processes are exact replicas, exact match voting is used to both
mask faults and detect failed components. Interactive consistency algorithms
(see Section 6 “Interactive Consistency”) are used to distribute single source
data (such as sensor data) to the replicas in a way that guarantees that all good
processors receive the exact same value even in the presence of faults. As long
as 3f+1 FCRs (processors and/or interstages) are non-faulty, f faults can be
tolerated. Finally a distributed diagnosis algorithm is used to identify faulty
components.
 Because the management of redundancy can be done independently of
the applications (using exact-match voting), a layered approach to the system
design is possible as illustrated below:

Many cost-saving and safety benefits accrue from this approach. First, the
application software can be designed by a different vendor than the one building
the fault-tolerant computing platform. This prevents the government from getting
locked into a single large vendor. Second, the software can be developed as if it
were running on a single ultra-reliable operating system. It can be tested and
verified independently from the fault-tolerant system. Third, the fault-tolerant
computing platform can be reused over many different applications. The fault-
tolerant computing platform can be highly configurable and scalable supporting
different safety and reliability goals. Fourth, the redundancy management
algorithms can be designed in a processor-independent manner which enables
the use of COTS processors that won’t lock you into an antiquated hardware
technology. The following characteristics of the redundancy management layer
are highly desirable:

• Fault-masking, fault detection, and reconfiguration are independent of the
applications software

Redundant processors + interconnect

Redundancy Management

Operating System Supporting IMA

App 1 App 2 App 3 App 4

Redundant processors + interconnect

Redundancy Management

Operating System Supporting IMA

App 1 App 2 App 3 App 4

 31

• The redundancy management should be handled in a processor-
independent way (either via software or via small custom hardware that
interfaces to COTS processors)

• The redundancy management should be highly configurable allowing
some processes to run in triplex, some as simplex, some as dual-dual etc.

• The redundancy management should support low power modes, allowing
systems to be turned on and off without interruption of critical applications
and processes.

• The redundancy management should provide a standard interface so that
multiple IMA operating systems could be supported.

Sometimes it is argued that a synchronous system is more vulnerable to
electromagnetic interference (EMI) or single-event upset (SEU) than an
asynchronous system. But a strategy that can be helpful is to schedule the
redundant tasks so that they run at different times:

16.3 Maintaining Independence between the applications and
the fault-tolerant mechanisms

Many fault-tolerant systems that are deployed today are not reusable because
the fault-tolerance mechanisms used in these systems are intimately connected
to the specific applications that run on them. If the applications are changed,
then the fault-tolerance mechanisms must be changed as well.

To enable reuse, the fault-tolerant system’s methods for detecting and
reconfiguring in the presence of physical faults should not be dependent upon
the application software. In particular, the system should not be design using
threshold voting. Rationale for this is:

• Threshold voting based on control software characteristics defers
validation of the fundamental fault tolerance until integration testing (late
life cycle).

• The thresholds have to be changed as the controls are changed and so
we have a serious maintenance and configuration management problem.

A B D V

V

V

I/O

I/O

I/O

C

A

D B

F

E

B A V I/O

V I/O

C

D

E

P1:

P4:

P3:

P5:

P2:

. .

.

. .

.

. .

.. .

.

. .

.

A B D V

V

V

I/O

I/O

I/O

C

A

D B

F

E

B A V I/O

V I/O

C

D

E

P1:

P4:

P3:

P5:

P2:

. .

.

. .

.

. .

.. .

.

. .

.

 32

• Threshold voting based on application software characteristics leads to
false alarms because of uncertainty in the cause of a threshold being
exceeded (e.g. did vehicle dynamics change or was it a processor fault).

• Exact match voting detects errors without regard to the nature of the
applications.

• Exact match voting can be validated early in the life cycle.
• Exact match voting can be used in conjunction with BIT to provide 100%

fault masking and high probability of a timely reconfiguration.
• You do not have to artificially ramp-up/ramp-down outputs to make sure

that voting thresholds won’t be exceeded during non-linear actions such
as mode switching.

• You do not have to introduce cross-channel synchronization of integrator
values because the interactive consistency algorithms used will maintain a
globally consistent state on all good processors.

• Diagnosis of faulty processors, memories, and I/O resources is not
confounded by uncertainty over whether the fault is due to computational
resource failure or due to failure in an external vehicle system or actuator
that is affecting the thresholds.

The fault-tolerant system should be developed in a layered systems approach
with well-defined APIs between the layers. It should reside in a layer below
the applications and create an interface that provides an abstraction that
hides the redundancy and voting from the higher layers to the maximum
extent possible.

16.4 Technology Obsolescence and Refresh

The fault-tolerance used in most avionics systems today is not easily updated by
new technology. Because much of the timing and voting in the system is
handled by the processors themselves and depends upon specific aspects of
these processors, they cannot be easily updated with more capable processors.
The fault-tolerant system must be designed with this goal in mind and carefully
configured to avoid these dependencies. The SPIDER is a modern architecture
that has been designed with this as a primary goal [Geser02]. See
http://shemesh.larc.nasa.gov/fm/spider/ for details about this fault-tolerant
system.

17 Reliability Analysis

Since fault tolerance seeks to increase the reliability of a system through
redundancy it is important to be able to compute the reliability of a fault-tolerant
system as a function of measurable parameters such as processor failure rates
and system recovery rates.

 33

17.1 Markov Models

Markov analysis is a powerful mathematical approach that accomplishes this
goal. The Markov model shown in Figure 1 describes the behavior of a simple
degradable quadraplex system.

Figure 1. Reliability model for a degradable quadraplex system.

The states of the system are labeled with two digits. The first digit denotes the
number of processors that are currently being voted. The second digit denotes
the number of faulty processors in the system. The system starts in state 40,
where all four active processors participate in the vote and none of them are
faulty. Anyone of these processors can fail, which takes the system to state 41
at rate 4λ, where λ represents the single processor failure rate. Because the
processors are identical, the failure of each processor is not represented with a
separate transition. For example, at state (41), the system has one failed
processor but there is no delineation as to which processor has failed and so the
total rate of reaching this state is 4λ. Here, the system analyzes the errors from
the voter and diagnoses the problem. The transition from state (41) to state (30)
represents the removal (reconfiguration) of the faulty processor. The
reconfiguration transitions are labeled with a distribution function (Fr(t)) rather
than a rate. The reason for this labeling is that experimental measurement of the
reconfiguration process has revealed that the distribution of recovery time is
usually not exponential. Consequently, the transition is not described by a
constant rate. This label indicates that the probability that the transition time from
state (41) to state (30) will be less than t is Fr (t). The presence of a non-
exponential transition generalizes the mathematical model to the class of semi-
Markov models. At state (30), the system is operational with three good
processors. The recovery transition from state (41) to state (30) occurs as long
as a second processor does not fail before the diagnosis is complete. Otherwise,
the voter could not distinguish the good results from the bad. Thus, a second
transition exists from state (41) to state (42), which represents the situation
where two out of the four processors have failed and are still participating in the

 40 41 42

30 31 32

10 11

4λ 3λ

λ

3λ 2λ

Fr(t)

Fr(t)

40 41 42

30 31 32

10 11

4λ 3λ

λ

3λ 2λ

Fr(t)

Fr(t)

 34

vote. The rate of this transition is 3 λ, because any of the remaining three
processors could fail. State (42) is a death state (an absorbing state) that
represents failure of the system due to coincident faults. It is labeled in red to
indicate system failure. Of course, this is a conservative assumption. Although
two out of the four processors have failed, the failed processors may not produce
errors at the same time nor in the same place in memory. In this case, the voting
mechanism may effectively mask both faults and the reliability of the system
would be better than the model predicts.

At state (30), the system is operational with three good processors and no faulty
processors in the active configuration. Either one of these processors may fail
and take the system to state (31). At state (31), once again, a race occurs
between the reconfiguration process that ends in state (10) and the
failure of a second processor that ends in state (32). The recovery distribution
from state (31) could easily be different from the recovery distribution from state
(41) to state (30). However, for simplicity it is assumed to be the same. State (32)
is thus another death state and state (10) is the operational state where one
good processor remains. In this case the system was not designed to operate as
a dual so the system degrades to a simplex here. The transition from state (10)
to state (11) represents the failure of the last processor. At state (11) no good
processors remain, and the probability of reaching this death state is
often referred to as failure by exhaustion of parts.

17.2 Solution of a Markov Model

The mathematical solution of a Markov model involves the solution of a system of
linear differential equations often referred to as the Chapman Kolmogorov
equations. Because the analytic solution becomes unwieldy as the number of
states is increased, numerical approaches for solving Markov models has been
pursued. Several programs have been developed at NASA Langley to solve
Markov and semi-Markov models (a generalization) numerically: SURE, PAWS,
STEM and ASSIST and their Windows versions WinSURE, WinSTEM, and
WinASSIST8. These programs are approved for public release and available for
free. See http://shemesh.larc.nasa.gov/people/rwb/rel.html for information about
how to obtain them.

The SURE program is a program for solving semi-Markov models useful in
describing the fault-handling behavior of fault-tolerant computer systems
[Butler88, Butler92, Butler95]. The only modeling restriction imposed by the
program is that the nonexponential recovery transitions must be fast in
comparison to the mission time—a desirable attribute of all fault-tolerant

8 The SURE and WinSURE programs solve semi-Markov models. A semi-Markov model is more general
than a pure Markov model in that it allows non-exponential transitions. The SURE program requires the
mean and standard deviation for all of the non-exponential distributions. The PAWS and STEM programs
accept the same input language as SURE, but they assume that all transitions are exponentially distributed.
The exponential rate is derived from the specified mean.

 35

systems. The PAWS and STEM programs accept the model input in exactly the
same format as the SURE program. They assume that all of the recovery
transitions are exponential because they are pure Markov solvers. The ASSIST
program is a tool that generates large models for SURE, STEM, or PAWS
[Johnson95].

The model shown in figure 1 can be described in the SURE input language as
follows:

LAMBDA = 3E-6; (* processor failure rate per hour *)
REC_TIME = 1/3600; (* 1 second recovery time *)

40,41 = 4*LAMBDA;
41,42 = 3*LAMBDA;
41,30 = <REC_TIME, REC_TIME>;
30,31 = 3*LAMBDA;
31,32 = 2*LAMBDA;
31,10 = <REC_TIME, REC_TIME>;
10,11 = LAMBDA;
TIME = 1; (* Mission Time of 1 hour *)

The SURE program produces the following output:

 LOWERBOUND UPPERBOUND
 -------------- -------------- --------------
 2.865386E-0014 3.005409E-0014

The upper and lower bounds are due to numerical inaccuracy.

17.3 The Impact of Long Mission Times

Redundancy loses its effectiveness as the mission time increases. As the
mission time approaches the mean time between failure (MTBF), there is an
increasing probability that multiple processors will have failed before the end of
the mission. For example suppose you have a non-reconfigurable quadraplex.
This can be modeled as follows:

The SURE input is simply

 40 41 424λ 3λ

 36

LAMBDA = 1E-5; (* processor failure rate *)
TIME = 10 TO+ 4000; (* mission time *)
1,2 = 4*LAMBDA;
2,3 = 3*LAMBDA;

The following logarithmic plot shows the dramatic impact of a large mission time.

The WinSTEM output is

 TIME PROBABILITY ACCURACY
 ----------- ------------------- --------
 1.000E+0001 5.99860018498E-0008 14 DIGITS
 1.000E+0002 5.98601848251E-0006 14 DIGITS
 1.000E+0003 5.86183262937E-0004 13 DIGITS

From this graph it is clear why the fault tolerance used in deep space missions is
very different from that used in commercial aircraft. In long mission scenarios,
the designers focus on reducing the processor failure rate λ and sometimes use
cold spares.

17.4 Beware of the Ambiguous Term “coverage”

If you hang around reliability people for a while, you will inevitably encounter the
term “coverage”. Unfortunately the term is terribly ambiguous. It is used in many
different ways in different contexts. In this section, four of the most common
uses will be explained. It is the author’s opinion that this term should be used
with caution or totally avoided, because it is easily mis-interpreted.

1e-008

1e-007

1e-006

1e-005

0.0001

0.001

0.01

1 10 100 1000 10000

Prob
Failure

TIME (hrs)

14 days

60 days

100 days

 37

First fault coverage: Some systems are not fully capable of surviving all first
faults. The percentage of first faults that they can recover from is often called
coverage. For example, suppose you have a dual system which runs a built-in
test diagnostic with coverage C. The following model describes this system:

The system starts in state 20 with two good processors. State 21 represents the
system after the arrival of a fault which the system cannot detect and hence
mask so it is a death state. State 10 represents the system after the arrival of a
fault that is covered. Here the system successfully removes the faulty processor
and continues operation with one good processor. The following table shows
the dramatic impact of first fault coverage with a fixed λ = 1.0 x 10-5/hour:

C Pf
0.9999 2.1 x 10-9
0.999 2.0 x 10-8
0.99 2.0 x 10-7
0.9 2.0 x 10-6
0 2.0 x 10-5

Detection coverage: Some systems are fully capable of masking all first faults but
can only detect a fraction of the first faults. Suppose we have an asynchronous
quadraplex system that relies on threshold voting for detection. Hence there can
be some faults that remain latent because they do not propagate errors that
violate the thresholds. Suppose C represents the fraction of faults that are
detectable by the threshold voters and the built-in test (BIT). This means that C
percent of all faults will be detected and reconfigured out. The following Markov
model describes this quadraplex:

20 10 11
2Cλ λ

21

2(1-C)λ

20 10 11
2Cλ λ

21

2(1-C)λ

 38

40 41 42

30 31 32

10 11

4Cλ 3λ

λ

3Cλ 2λ

r

r

41u 42u3λ

4(1-C)λ

31u 32u

3(1-C)λ
2λ

40 41 42

30 31 32

10 11

4Cλ 3λ

λ

3Cλ 2λ

r

r

41u 42u3λ

4(1-C)λ

31u 32u

3(1-C)λ
2λ

Figure 2. Model of a degradable quadraplex voting system with C% of detectable faults.

Notice that here the “uncovered” faults do not lead to system failure because
they are outvoted (i.e. masked), but they do take the system to a state (i.e. 41u)
where no reconfiguration transition is found.

Second Fault coverage: Because some analysis tools are combinatorial in
nature, they cannot solve a Markov model directly. In these tools, the Markov
reconfiguration process is modeled as a coverage. For example, the following
triplex system model:

is replaced by

where C represents the effectiveness of the reconfiguration process. The
advantage of course is that this model can now be solved combinatorially without
the need to solve differential equations. But unfortunately the C is not directly
measurable. It is a simply an artifact of the model reduction and combines many

30 31 32

10 11
λ

3λ 2λ

Fr(t)

30 31 32

11

3λ 2Cλ

2(1-C)λ

30 31 32

11

3λ 2Cλ

2(1-C)λ

 39

concepts into one number. It is the author’s opinion that this type of coverage
should be avoided.

BIT coverage: the fraction of the faults that can be detected by a Built-In-Test
technique. (See Section 8.3 “Detection Using Built-in-Test (BIT)”).

18 The Synergism Between Formal Verification and
Reliability Analysis

The question is often raised how do you prove that the reliability of the system is
10-9? The answer is that you decompose the problem into two components, one
of which is answered by formal methods and the other which is answered by a
numerical reliability analysis:

Using formal methods one seeks to prove formulas of the form

 Enough Good Hardware SAFETY-PROPERTIES

where the indicates logical implication. The symbol “SAFETY-PROPERTIES”
represents all the properties that must be true of the system if it is to avoid
reaching some hazardous system state. Using reliability analysis one calculates
the probability

Prob [Enough Good Hardware]

Together these provide a basis for assuring the safety of the system.

Formal methods also offers an approach to overcoming a serious dilemma for
the reliability analyst, namely, how can I assure myself that the reliability model
itself is a valid representation of the implemented system? The key assumptions
of the Markov model can be formally verified. For example, a formal proof of the
system’s fault tolerant operating system can be used to establish the absence of
any direct transition from the fault-free state to a death state.

19 Function Migration

Though a fault-tolerant system is inherently a distributed processor system,
systems designers need not identically schedule all of the applications on the
available processors. Spare processing power can be allocated as needed. In
fact it is possible to move one function (including all replicates) from one set of
processors to another. This is often referred to as function migration or dynamic
task allocation. Function migration requires that a flexible communication
scheme be employed that provides connections between all of the sensors and
actuators and the processors. The application program code must be available to

 40

all of the processors in the system. This can be accomplished by providing
access to a mass memory where all of the software codes are stored or by
making copies of the codes on all of the local stores. Often fault-tolerant
systems rely on time-division multiplex buses that are driven by static schedule
tables. In these systems, function migration requires that there be some
mechanism for updating these tables in a fault-tolerant and safe manner.

Sometimes the distinction is made between

• Asymmetric multiprocessing: where specific processors can execute only
certain task types, and

• Symmetric multiprocessing: where any processor can execute any task.
Symmetric multiprocessing enables each processor to be utilized to the fullest. It
is usually achieved through identical processors and full interconnection and a
flexible operating system interface.

20 Vehicle Health Management

It is useful to distinguish faults that occur in the computing resources themselves
from faults that occur in the subsystems that are external to the computing
resources. This primer has concentrated on the mechanisms that handle failures
in the computing resources. The process of detecting, isolating and recovering
from faults and failures in the external subsystems is referred to as Vehicle
Health Management (VHM).

20.1 Basic Concepts

This is a huge topic in itself but a few observations about this topic will be
provided here:

1. The mechanisms that are used for FDIR (fault detection, isolation, and
recovery) are very different from those used in the computing resources
and are often based upon concepts from artificial intelligence.

2. The VHM system is usually implemented as a software application that
runs on the fault-tolerant computing system.

3. The VHM system seeks to diagnose which external components have
failed on the basis of observables.

4. The scope of a VHM system can be huge including sensors, actuators,
power systems, displays, thermal systems, landing gear, hydraulics, etc.

5. The use of a single, unified approach to diagnose many different kinds of
subsystem failures is usually referred to as Integrated Vehicle Health
Management (IVHM).

In some systems, the fault-tolerance mechanisms of the computing platform are
included in the IVHM functionality. It is the author’s opinion that this is generally
a bad idea. Since the IVHM system is a software application that inevitably
executes on the computing resources, a layered approach is desirable and the

 41

IVHM system should remain independent of lower-level redundancy
management:

IVHM systems fall roughly into two categories:

• Rule based
• Model based

In the more traditional rule-based approach, rules which associate symptoms
with underlying faults are used to diagnose the system. The model-based
approach uses a model of the subsystem components which are given that same
inputs as the system. The outputs of the model are compared with the actual
system outputs in real time. If the output of the real system component differs
significantly from its model, a failure of that component is indicated. See
[Davis88] for an excellent introduction to this topic.

20.2 Failure Modes and Effects Analysis (FMEA)

A number of tools and techniques have been developed to aid the system
designer in the identification of hazards in safety-critical systems. Some
examples are (1) Failure Modes and Effects Analysis (FMEA), (2) Hazard and
Operability Studies (HAZOP), and Deviation Analysis. While performing an
FMEA, the analyst creates a list of component failure modes and tries to deduce
the effects of those failure modes on the system. Then an assessment is made
about the severity, the likelihood of these failures and the ability of the system to
detect them. Sometimes these factors are rolled up into a single risk priority
number that is assigned to each identified failure mode. This enables the
designer to focus his attention on the most critical failure modes. While this type
of analysis can be applied to the low-level design of the computing platform
components, it is most useful when applied to the vast array of components of
the subsystems external to computing resources. This type of analysis aids the
designer of an IVHM system or the designer of application software which
performs some local diagnosis and recovery from subsystem component failures.
This analysis aids the designer in identifying the critical component failures and
helps him develop mechanisms to handle these failures. For more information
about FMEA, the reader is referred to [Dailey04].

Redundant processors + I/O

Redundancy Management

Operating System

App 1 IVHM App 3 App 4

Redundant processors + I/O

Redundancy Management

Operating System

App 1 IVHM App 3 App 4

 42

20.3 Sensor Fault Tolerance

Fault-tolerant control systems periodically sample inputs from the environment
and produce outputs which are sent to the actuators. Although it is possible for
each application task to directly sample sensors and seek to mask sensor
failures appropriately, many fault-tolerant systems separate this functionality into
a separate application task. In aerospace application this function has often
been handled in a separate computer called the flight data computer. In an
integrated modular avionics system, this function is typically allocated to a
separate partition. In either case, for every measurement needed, a single value
must be extracted from a set of redundant sensor values, which can then be
made available to the application software for processing. Sensor failures must
be detected and factored into this selection process. Sensor failure can be
detected with local algorithms and/or by a separate IVHM system.

Due to the criticality of the sensor selection software it must also run as a
redundant task on the fault-tolerant computing platform:

Each sampled sensor value is initially a non-replicated data item, so it must go
through an interactive consistency algorithm before it is processed by the sensor
selection logic. This insures that every redundant task executing the sensor
selection logic is operating on the same set of values and that faults in the I/O
system do not corrupt this selection process. In a properly layered system, this is
accomplished by the lower redundancy management layer. In this approach, the
designer of the selection logic can focus on the algorithm for selecting a value
from multiple distinct sensors.

For discrete inputs, the sensor selection process involves selection of a
value from a set of redundant 1 or 0 values. The input selection process for
sensors with a range of values is significantly more complicated. Usually some
form of mid-value selection is used on all inputs that did not come from sensors
detected as failed is employed. In systems that do not have a separate IVHM
capability, thresholds can be used to detect sensor failure locally. If a value of a
sensor deviates significantly from the mid-value, it is declared as failed.

Redundant processors + I/O

Redundancy Management

Operating System

Sensor
Selection App 2 App 3 App 4

Redundant processors + I/O

Redundancy Management

Operating System

Sensor
Selection App 2 App 3 App 4

 43

Sometimes there are dynamic relationships between different kinds of sensors,
e.g. speed and acceleration. These dynamic relationships can be leveraged to
synthesize more accurate values for the required measurements. This can be
especially useful when critical sensors have failed. This approach is called
analytic redundancy. These techniques tend to be very application specific
because they depend upon the dynamic characteristics of a particular vehicle.

21 Concluding Remarks

The design of a fault-tolerant computing system is an extremely challenging
endeavor. The algorithms and techniques that are at the center of fault-tolerance
are among the most subtle and difficult to prove in Computer Science.
Fortunately these algorithms have been vigorously studied and analyzed by the
academic world. Many of these have been formally verified and mechanically
checked using theorem prover technology [Miner04]. It would be foolish to
design and implement a fault-tolerant computer today without taking advantage
of this storehouse of results.

The study of fault tolerance cannot be divorced from reliability analysis. A basic
understanding of Markov modeling and analysis is essential to understanding the
tradeoffs that must be made in the design of a fault-tolerant computer.
Fortunately this is not a difficult thing to obtain [Butler95]. The solution of these
models is straight-forward using freely available programs such as SURE or
STEM [Butler88].

The selection the appropriate fault-tolerance for a system is a complex process
that depends upon the specified reliability, mission duration, maintenance
processes, cost, expected lifetime and many other factors. In this short primer
the key concepts and techniques available to the fault-tolerant system designer
have been introduced.

22 Glossary

Application Programming Interface (API): A language processed by an operating
system (or lower layer in the system), which is used to provide services to the
applications.

Application software: the software that implements the primary functions of the
system. This software executes in an environment providing by system software
(e.g. the operating system) which is distinct from the application software.

Asynchronous: Systems that do not synchronize the clocks of the redundant
processors are called asynchronous systems

 44

Built-In-Test (BIT): diagnostics which run automatically and seek to isolate faulty
components.

Byzantine fault: A fault with arbitrary failure manifestation including asymmetric
ones where different good components get different values.

Clock Synchronization: Clock synchronization is a fundamental issue in fault
tolerance which overcomes the problem that the internal clocks of different
processors drift apart. Clock synchronization is based upon distributed
algorithms that periodically adjust the local clocks in a way that is not vulnerable
to a failure in any single clock.

Coincident faults: The presence of two or more faults in a redundant system at
the same time.

Common Cause Fault (CCF): A fault that can trigger multiple simultaneous errors
in different fault containment regions.

Commercial Off-The-Shelf (COTS): software or hardware that is available for
sale to the general public.

Coverage: An ambiguous term that is the fraction of faults “covered”. See
section 17.4 for several different definitions.

Design Error: A design error is a difference between the system requirement and
the specified design. The failure mechanism is in the human mind. Design errors
range from syntax errors in the program code to fundamental mistakes including
the use of wrong algorithms, inconsistent interfaces, and software architecture
mistakes.

Design for Minimum Risk (DFMR): is a process that allows safety-critical
mechanisms to claim adequate fault tolerance through rigorous design, analysis,
testing, and inspection practices rather than through true physical redundancy.

Distributed Diagnosis: A key capability in a fault-tolerant system: each
component of the system must maintain correct information about which other
components in the system have failed. It is important that the view of all working
components be the same.

Error: The manifestation of a fault -- an incorrect state of hardware or software
due to a defect in a component, physical interference from the environment, or
from an incorrect design.

Error detection: The process of detecting that a component has failed by
observing a difference between system state and the expected state.

 45

Error recovery: the process of restoring the system state to an error-free state
after the occurrence of a fault (usually transient).

Exact-match voting: The process of determining a “voted” value in a system
where any value that is not bit-for-bit identical to the majority value is known to be
faulty.

Fail stop: A component stops producing outputs when it fails.

Failure: The result of a system deviating from the specified function of that
system because of an error.

Failure Modes and Effects Analysis (FMEA): A methodology that helps the
system designer to identify and handle hazards in safety-critical systems.

Fault: A defect in the hardware, software or system component that can lead to
an incorrect state (i.e. error).

Fault Containment Region (FCR): a subsystem that will operate correctly
regardless of any arbitrary fault outside the region.

Fault masking: A method for preventing an error from propagating to a system
output and hence insuring that only correct values are propagated.

Formal Methods: Formal Methods refers to mathematically rigorous techniques
and tools for the specification, design and verification of software and hardware
systems. The phrase "mathematically rigorous" means that the specifications
used in formal methods are well-formed statements in a mathematical logic and
that the formal verifications are rigorous deductions in that logic (i.e. each step
follows from a rule of inference and hence can be checked by a mechanical
process.) The value of formal methods is that they provide a means to
symbolically examine the entire state space of a digital design (whether hardware
or software) and establish a correctness or safety property that is true for all
possible inputs.

Integrated Modular Avionics (IMA): An architectural concept wherein functions
that have historically been separated and often of different criticality are hosted
on a common computing resource.

Integration testing: A late life-cycle phase of software development where all of
the software modules of the system are combined and tested together.

Interactive Consistency: A property of a system which states that the input values
to the system are distributed in a manner that guarantees that all redundant tasks
get exactly the same value even in the presence of faults.

 46

Intermittent fault: A fault that appears, disappears and then reappears.

Mean Time Between Failure (MTBF): is the average time between failures of a
system. When the failure rate of the system is constant, it is the reciprocal of the
failure rate.

N fault tolerant: a system that is still operational after N consecutive faults (not
simultaneous). For example, a two fault tolerant (2FT) system is a system that is
"fail operational, fail operational", i.e. after two sequential faults, the system is still
a functioning system.

N-plex: a fault-tolerant computer composed of N voting lanes (i.e. N FCRs). Also
referred to as a N-modular redundant (NMR) system.

Permanent fault: a fault that continues to produce errors.

Quadraplex: a fault-tolerant computer composed of 4 voting lanes (i.e. 4 FCRs).

Real Time Operating System (RTOS): is a multitasking operating system
intended for applications with strict deadline requirements.

Reconfiguration: the process of removing a faulty component from the system.

Self-Checking Pair: Built out of two identical processing elements. The two
outputs are compared and if there is a miscompare, then the output is inhibited
making the SCP fail-stop.

Synchronous: Systems that synchronize the clocks of the redundant processors
are called synchronous systems

Threshold Voting: A threshold is the maximum amount of deviation from the
average value that is tolerated before a component is declared to be faulty.
Threshold voting refers to the use of thresholds when voting in a fault-tolerant
system. It is usually used in conjunction with mid-value select.

Transient fault: a fault that appears for a short time and then disappears

Triplex: a fault-tolerant computer composed of 3 voting lanes (i.e. 3 FCRs). Also
referred to as a triple-modular redundant (TMR) system.

Triple Modular Redundancy (TMR): A fault-tolerant architecture that uses three
processors and voting to produce the output.

Voting: the process of selecting a final result from the outputs of redundant
channels or redundant computations.

 47

23 References

[Avizienis04] Algirdas Avizienis, Fellow, IEEE, Jean-Claude Laprie,
Brian Randell, and Carl Landwehr, Basic Concepts and Taxonomy of
Dependable and Secure Computing, IEEE Transactions On Dependable And
Secure Computing, Vol. 1, No. 1, January-March 2004

[Butler88] Butler, Ricky W.; and White, Allan L.: SURE Reliability Analysis:
Program and Mathematics. NASA Technical Paper 2764, Mar. 1988.

[Butler92] Butler, Ricky W.: The SURE Approach to Reliability Analysis. IEEE
Transactions on Reliability, vol. 41, no. 2, June 1992, pp. 210--218.

[Butler95] Ricky W. Butler and Sally C. Johnson, Techniques for Modeling the
Reliability of Fault-Tolerant Systems With the Markov State-Space Approach ,
NASA RP-1348, September 1995, pp. 130.

[Dailey04] Dailey, Kenneth W. The FMEA Pocket Handbook, DW Publishing,
2004.

[Davis88] Davis, Randall and Hamscher, Walter. Model-Based Reasoning:
Troubleshooting, Exploring Artificial Intelligence, Shrobe, H. E. (ed), Morgan
Kaufmann, 1988, Chapter 8.

[DiVito90] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: Formal
Design and Verification of a Reliable Computing Platform For Real-Time Control
(Phase 1 Results). NASA Technical Memorandum 102716, NASA Langley
Research Center, Hampton, Virginia, October 1990.

[Driscoll03] Driscoll, Kevin; Hall, Brendan; Sivencronam, Hakan; Zumsteg, Phil:
Byzantine Fault Tolerance, from Theory to Reality: Computer Safety,
Reliability, and Security, Publisher: Springer-Verlag Heidelberg, ISBN: 3-
540-20126-2, Volume 2788 / 2003, October 2003, pp. 235 - 248

[Geser02] Alfons Geser, Paul Miner. A Formal Correctness Proof of the SPIDER
Diagnosis Protocol.. Theorem-Proving in Higher-Order Logics (TPHOLs), track B,
2002.

[Harper91] Richard E. Harper and Jaynarayan H. Lala. Fault-tolerant parallel
processor, AIAA Journal of Guidance, Control, and Dynamics, 14(3), pp. 554-
563, May-June 1991.

[Johnson95] Johnson, Sally C.; and Boerschlein, David P.: ASSIST User Manual.
NASA technical memorandum 4592, August 1995.

 48

[Lala86] Jaynarayan H. Lala. A Byzantine resilient fault tolerant computer for
nuclear power application. IEEE Fault Tolerant Computing Symposium 16
(FTCS-16), pp. 338-343, Vienna, Austria, July 1986.

[MA2-00-057] http://mmptdpublic.jsc.nasa.gov/mswg/Documents/MA2-00-057.pdf

[Mackall88] Mackall, Dale A. Development and Flight Test Experiences With a
Flight-Crucial Digital Control System. Technical Report NASA TP-2857,
Research Engineering, NASA Dryden Flight Research Center, 1988.

[Miner04] Paul Miner, Alfons Geser, Lee Pike, and Jeffrey Maddalon: A Unified
Fault-Tolerance Protocol. Presented at Formal Modelling and Analysis of Timed
Systems - Formal Techniques in Real-Time and Fault Tolerant System
(FORMATS-FTRTFT 2004), Grenoble, France, September 22-24, 2004.

[Pomales00] Wilfredo Torres-Pomales. Software Fault Tolerance: A Tutorial,
NASA/TM-2000-210616, October 2000.

[Pradhan86] Pradhan, Dhiraj K. Fault-tolerant computing: theory and
techniques. Prentice-Hall, Inc., 1986.

[Pritchard02] Pritchard, Bruce E., Swift, Gary M, Johnston, Allan H. Radiation
Effects Predicted, Observed, and Compared for Spacecraft Systems, Radiation
Effects Data Workshop, 2002.

[Ramanathan90] Ramanathan, P.; Shin, K. G.; and Butler, Ricky W.: Fault-
Tolerant Clock Synchronization in Distributed Systems. IEEE Computer, October
1990, Vol. 23, No. 10, p. 33-42.

[Rushby89] Rushby, John; and von Henke, Friedrich: Formal Verification of a
Fault-Tolerant Clock Synchronization Algorithm. NASA Contractor Report 4239,
June 1989.

[Rushby01] John Rushby, Bus Architectures for Safety-Critical Embedded
Systems, Lecture Notes In Computer Science; Vol. 2211, Proceedings of the
First International Workshop on Embedded Software table of contents, 2001, pp
306 – 323.

[Stephans04] Stephans, Richard A: System Safety for the 21st Century,
John Wiley & Sons, Inc., 2004, Print ISBN: 9780471444541, Online ISBN:
9780471662549.

[Thambidurai88] Thambidurai, P., and You-Keun Park, "Interactive Consistency
with Multiple Failure Modes”, 7th Symposium on Reliable Distributed Systems,
Columbus Ohio, Oct 10-121988, pp 93--100.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
A Primer on Architectural Level Fault Tolerance

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Butler, Ricky W.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

 L-19403

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This paper introduces the fundamental concepts of fault tolerant computing. Key topics covered are voting, fault detection,
clock synchronization, Byzantine Agreement, diagnosis, and reliability analysis. Low level mechanisms such as Hamming
codes or low level communications protocols are not covered. The paper is tutorial in nature and does not cover any topic in
detail. The focus is on rationale and approach rather than detailed exposition.

15. SUBJECT TERMS
Fault Tolerance; Redundancy; Reliability Analysis; Safety; Voting

18. NUMBER
 OF
 PAGES

53
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

604746.02.06.08.04

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2008-215108

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
02 - 200801-

