
United States Patent [19] [ill Patent Number: 4,912,629
Shuler, Jr. [45] Date of Patent: Mar. 27, 1990

REAL-TIME GARBAGE COLLECI’ION FOR
LIST PROCESSING USING RESTRUCTURED
CELLS FOR INCREASED REFERENCE
COUNTER SIZE
Inventor:

Assignee:

Appl. No.:
Filed:

Robert L. Shuler, Jr., Friendswood,
Tex.

The United Statea of America aa
represented by the Admidstrator of
the National Aeronautics and Space
Administrrtlon, Washington, D.C.
878,916

Jnn. 26,1986

Int. c1.4 GO6F 9/00; GO6F 12/00
US. €3. 364/200; 3W281.1;

364/280
Field of Search ... 364/200 MS File, 900 MS File,

364/300
Referent- Cited

U.S. PATENT DOCUMENTS
4,016,545 4/1977
4,121,286 10/1978
4,193,115 3/1980
4,215,397 7/1980
4,432,057 2/1984
4,435,752 3/1984
4,435,766 3/1984
4,447,875 5/1984
4,463,424 7/1984
4,5Q2,118 2/198S
4,558,413 12/1985
4,695,949 9/1987
4,716,524 12/1987
4,758,944 7/1988
4,775,932 10/1988

Lipovski 364/900
Venton et al. 364/200
Albus .
Horn 364/101
Daniell et al. 364/300
Winkelman 364/200
Haber et al. 364/300
Bolton et al. 364/200
Mattson et al. 364/200
Hagenmaier et al. 364/200
Schmidt et al. 364/300
Thatte et al. 364/200
Oxley et al. 364/200
Bartley et al. 364/200
Oxley et al. 364/200

OTHER PUBLICATIONS
“Dynamic Page Reference Counter,” IBM Technical
Disclosure Bulletin, vol. 21, No. 8. Jan. 1979. J. N.
McCauley and J. A. WingeA, (pp. 3139-3140). .

\Y

“Efficient Real-Time Garbage Collection for LISP,”
Jun. 27, 1985, Robert L. Shuler, Jr.
“Performance Analysis of On the Fly Garbage Collec-
tion,’’ Communications of the ACM, vol. 27, No. 11,
Nov. 1984, Tim Hickey and Jacques Cohen, @p.

“Garbage Collection of Linked Data Structures,” ACM
Computing Surveys, vol. 13, No. 3, Sep. 1981, Jacques
Cohen, (pp. 341-367).
“A Real-Time Garbage Collector Based on the Life-
times of Objects,” Communications of the ACM, vol.
26, No. 6, Jun. 1983, Henry Lieberman and Carl Hewitt.
“LISP,” 2nd Ed., Addison-Wesley, 1984, Patrick
Henry Winston and Berthoid Klaus Paul Horn, (p. 141).
“An Efficient Machine-Independent Procedure for
Garbage Collection in Various List Structures,” Com-
munications of the ACM, vol. 10, No. 8, Aug. 1967, H.
Schorr and W. M. Waite, (pp. 501-506).
Primary Examiner-Gareth D. Shaw
Assirtant Examiner-Kevin A. Kriess
Attorney, Agent, or Firm-Russell E. Schlorff; John R.
Manning; Edward K. Fein
[571 ABSTRACT
In a list processing system, small reference counters are
maintained in conjunction with memory cells for the
purpose of identifying memory cells that become avail-
able for re-use. The counters are updated as references
to the cells are created and destroyed, and when a
counter of a cell is decremented to logical zero the cell
is immediately returned to a list of free cells. In those
cases where a counter must be incremented beyond the
maximum value that can be represented in a small
counter, the cell is restructured so that the additional
reference count can be represented. The restructuring
involves allocating an additional cell, distributing
counter, tag, and pointer information among the two
cells, and linking both cells appropriately into the exist-
ing list structure.

1143-1154).

22 Claims, 8 Drawing Sheeb

https://ntrs.nasa.gov/search.jsp?R=20080008780 2019-08-30T03:45:54+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10541851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US. Patent M=. 27,1990

* C A I 1 ,

tCF1 ’ b

L P G M

Sheet 1 of 8 4,912,629

i
I

,CAI 2
I
I
I

I
I

I
I

I

MM I

rCFLT b

I
I
I
I
I
1
I
I
L,,,

+-{TI j
I

i

US. Patent MU. 27,1990 Sheet 2 of 8 4912,629

FIG. 2.

A i
I

CTRX A LINK I
I
I
I
I
I
I 1 ': I

I
I
I
I
I
I

/ \ e C

U.S. Patent MU. 27,1990 Sheet 3 of 8 4,912,629

r--1

C F I I

I ' 1 T - J I
I C A
I

I ADD RJ

I

I H 1

CONTENT 2

I
1
1
1
I
I
I

I

+-?
I I

I

U S Patent ~ a r . 27, isao Sheet 4 of 8 4,912,629

A6

MEMKA) -CELL

I
I

CTRC-CA I
I

I ‘ I
I I
I I
1 - I
I t

I I
L-----------LJ

I TAGC-EXP
I CARC-CTRC I

I

MEM(OCAI-CELL ; I

FIG. 5

I-

. 5-)

88

M EM(CA)-CELL c N

61

CELL -MEM(OCAI
S -CTRC
CA -OCA
OCA -CELL(S)
s -S+l

812
--1

i
r- f I NO ,

I
!

I
I

I
I

I I REL(CA) 4 B

s - 4

SAVE -CELL (SI
CELL@) M C A
OCA -A
CA -SAVE
CTRC -S
MEM (OCA)-C ELL

I

US. Patent MW. 27,1990 Sheet 6 of 8

CI

CELL-MEM (CAI

c3

CA -CDRC

CELL -MEM(CA:
CTRC -SAVE

SAVE-CARC

NO
4 I

v
END RET

D

4,912,629

D:
SAVE - CDRC
CELL (CDRCI-MEM (CAI

CDRC CA -
CDRC- SAVE

I

MEM(CA1 -CELL r"li

US. Patent ~ m . 27,1990 Sheet 7 of 8

START 'NEW %-)

CELL -MEM(FREPTFU
CA -FREPTR
FREPTR-CDRC

.1.
END NEW

(START REL 1
FI

CDRC --FREPTR
FR EPTR +C A
CARC -NIL
CTRC -MIN
TAGC - UNEXPANDED CELL
MEM(CAI-CELL

US. Patent m. 27,1990 Sheet 8 of 8 4912,629

4,9 12,629
1

REAL-TIME GARBAGE COLLECTION FOR LIST
PRoeEssING USING RESTRUCI’URED CELLS

FOR INCREASED REFERENCE COUNTER SIZE

ORIGIN OF THE INVENTION
The invention described herein was made by an em-

ployee of the United States Government and may be
manufactured and used by or for the Government of the
United States of America for governmental purposes
without the payment of any royalties thereon or there-
for.

FIELD OF THE INVENTION
This invention relates to data processing systems and

their arrangements for allocation and deallocation of
memory space, particularly to an improved mechanism
for keeping track of the number of active references to
a memory cell in a list processing system.

bits, and a more complicated marking process which is
able to proceed without halting the list processor. One
such strategy is disclosed in U.S. Pat. No. 4,121,286
Venton, et. al. However, according to Hickey, “Perfor-

5 mance Analysis of On-the-Fly Garbage Collection,”
Communications of the ACM, Nov. 1984, pp.
1143-1 154, up to three times as much processing power
may need to be devoted to garbage collection as to list
processing in order to guarantee that list processing

lo need never halt to wait for the collector to find a needed
free cell.

A relative of mark and sweep, Baker’s Algorithm, is
the method used in many commercial list processing
systems. This method involves partitioning memory
into at least two spaces, evacuating structures from one
space to the other, and leaving behind forwarding
pointers in the evacuated space. The “to-space” is then
uuraed of all refkrences to the evacuated space via a

Lo kne& scan in which all pointers to the evacuated “from-
DESCRIPTION OF PRIOR ART

Many present data processing systems are concerned
with the manipulation of linked list structures. Each
memory cell in a list contains pointers, which refer
either to other list fragments, or to fundamental data 25
items which are called atoms. Atoms, which can be
symbols or numbers, may also refer to another atom or
to a list. New lists are constructed by allocating vacant
cells from a free list, and placing into them pointers to
existing lists, pointers to fragments of lists, or pointers to 30
atomsrPointers within existing lists are not normally
modified, and thus several lists or atoms may reliably
refer to the same underlying list fragment as part of
their value, without having to make their own copy.
The above described manipdation of linked list struc- 35
tures is termed list processing. It is implemented in
specialized data processors designed particularly for list
processing, and also in general purpose data processors.

All accessible memory cells may be reached either by
tracing down a list referenced by an atom, by tracing 40
down a list referenced by a stack entry, or by tracing
down the free list. As the values of atoms and the stack
change, some cells become inaccessible. Identifying
these cells and adding them back to the free list is called

In a survey by Cohen, “Garbage Collection of
garbage collection. 45

Linked Data Structures,” ACM Computing Surveys,
September 1981, pp. 341-367, garbage collection strate-
gies are clasaified as two main types: (1) mark and
sweep, and (2) reference counter based. The basic mark
and sweep strategy is to trace down all lists from the
base atoms and stack entries, marking each accessible
memory cell by setting a bit provided for that purpose.
Then memory is scanned, and all unmarked cells are
reclaimed. The mark bits are usually also reset during
this scan. Processing must be halted while the marking
operation is in progress, which can result in large de-
lays. These unanticipated delays cause inconvenience,
not to mention outright failure, in systems which must
exhibit real time or conversational response, such as
process control or spoken natural language communica-
tion. In addition to the delay of waiting on the collector
to find new free cells, data structures typically become
scattered through a large area of memory. In a paging
virtual memory system this results in page thrashing,
which degrades response time and generally limits the
amount of work that can be done by the machine. One
improvement to mark and sweep strategies is to use two

50

55

60

65

space” are replaced with the forwarding pointer. Copy-
ing a cell to the “to-space” is equivalent to marking.
Another advantage of Baker’s algorithm is that cells are
allocated sequentially from to-space. A variant of
Baker’s algorithm is described by Lieberman, “A Real-
Time Garbage Collector Based on the Lifetimes of
Objects,” Communications of the ACM, June 1983, pp.
419-429.

The second method described by Cohen requires
keeping a reference counter for each cell, which is in-
cremented when a new pointer to the cell is created,
and which is decremented when a pointer is destroyed.
When the counter is decremented to zero, the cell may
be immediately reclaimed and added back to the free
list, thus guaranteeing no delays in finding free cells.
Where large cells or blocks of storage are being infre-
quently manipulated, such as in certain operating sys-
tem data structures, reference counters have long been
used. Their use has not been as common in list process-
ing systems because of the overhead in storing and
updating the counters, and because of their inability to
reclaim cyclic lists.
Experts disagree over the importance of reclaiming

cyclic lists. For example Winston, in his widely used
text LISP, 2nd Ed., Addison-Wesley, 1984, p. 141,
points out the inadvisability of any structure requiring
modification of existing list cells (construction of cyclic
lists requires the sort of list modification which renders
multiple references to common underlying list frag-
ments unreliable; cyclic structures also render certain
processing operations interminable). Lieberman, in the
above mentioned article, considers use of cyclic lists to
be an important technique.

Overhead is a problem because counters must be
theoretically as large as a pointer, and must be kept
current. Cohen mentions methods that have been sug-
gested to alleviate one or both the overhead problems
for reference counters. The earliest is based on the ob-
servation that most reference counters will be small; in
fact, many will never exceed one or two. In this
method, when a counter reaches its maximum value it is
no longer updated. When and if memory is finally ex-
hausted, a conventional mark and sweep method is used
to reclaim cells with maximum value counters, and to
reclaim cyclic lists. U.S. Pat. Nos. 4,447,875 and
4,502,118 disclose a very specialized type of list process-
ing system, called a Reduction Processor, having a

3
4,9 12,629

garbage collection system which uses reference count-
ers in conjunction with mark and sweep.

A more sophisticated method of employing small
reference counters, described in Cohen’s article, is to
assume all cells have a reference count equal to “one,”
unless the cell is entered in one of several hash tables.
The hash table for cells with counts greater than one
stores explicitly a counter of necessary maximum size.
The tables are not updated immediately, however, due
to overhead. Rather, a log of transactions is kept, and
the tables are periodically updated; which gets back to
the situation of occasional delays. One commercial ven-
dor of list processing machines states that reference
counters and tables are used, and these machines exhibit
visible pauses for garbage collection.
U.S. Pat. No. 4,435,766, although not related to l i t

processing or to garbage collection, discloses something
which is primitively like a reference counter. This is
called a lock counter, and is used to count the number
nested resource locks created by a process on a re-
source, such as a computer peripheral.

Other United States Patents containing teachings of
garbage collection in list processing systems, reference
counting, replication, cache partitioning, and memory
expansion are No. 4,432,057, Daniell, et. al.; No.
4,193,115, James Albus; No. 4,215,397, Gim Hom; No.
4,558,413, Schmidt and Lampson; and No. 4,463,424,
Mattson and Rodriguez-Rosell.

OBJECTS OF THE INVENTION
It b a n object of the present invention to provide an

improved reference counter garbage collection mecha-
nism for list processing, which has the advantages of
small reference counters, while retaining the absolute
determinacy and most of the simplicity of full sized
counters.

Additional objects of the invention include: reduction
of the overhead of updating reference counters; e l i a -
tion of memory fragmentation typically caused by mark
and sweep methods; and reduction of the complexity
and overhead of other reference counter systems at-
tempting to employ small counters.

Another object is to provide these advantages in such
a way that they can be incorporated into data process-
ing systems of the type currently in use, with a mini-
mum of impact to the design and operation of these
systems.

It is also an object of the invention to provide a
method of garbage collection which is simple and ro-
bust enough to be- used in next generation systems, espe-
cially those with large memories or employing highly
parallel processing.

It is a further object of the invention to provide prac-
tical real-time list processing garbage collection.

Further objects and advantages of the present inven-
tion will become apparent from a consideration of the
drawings and ensuing description thereof.

SUMMARY OF THE INVENTION
According to the invention, a reference counter of

arbitrarily small size is kept for each cell. Each time a
new pointer to the cell is created the counter is incre-
mented, and each time a pointer to the cell is destroyed
the counter is decremented. When the counter becomes
zero the cell is returned to the free list. When any point-
ers within said cell are in turn destroyed, the counters of
the cells to which they point are similarly decremented
and checked for zero.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
On the occasion that a counter can no longer be

meaningfully incremented because it has reached its
maximum value, an additional cell is obtained. Then the
contents of the original cell, some additional count in-
formation, and l i n g information to relate the two
cells to the former l i t structure, are stored in the two
cells. The additional count information is incremented
to reflect the new reference. The new reference pointer
value will be adjusted to point appropriately within the
new cell structure.

By the above method, all inaccessible cells are imme-
diately identifed and reclaim* thus there is never an
unanticipated delay when needing a free cell. The fixed
and deterministic overhead of updating counters is ac-
cepted in lieu of the unpredictable delays of all systems
which do not immediately identify and reclaim inacces-
sible cells. With small reference counters the overhead
can be made quite small; less, in fact, than that of mark
and sweep systems which either must use a lot of pro-
cessing power to continuously locate inaccessible cells,
or suffer degradation due to memory fragmentation.

DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic view of a list processing

system showing the invention incorporated therein.
FIGS. 2 and 3 show the structures of a standard cell

and an expanded cell, respectively.
FIG. 4 is a diagrammatic view of the registers and

data paths used by the garbage management system.
FIG. 5 is a flow diagram of the garbage collection

algorithm for adding references.
FIG. 6 is a flow diagram of the garbage collection

algorithm for deleting references.
FIG. 7 is a flow diagram of the garbage collection

algorithm for accessing cells of various types in a uni-
form manner.

FIG. 8 is a flow diagram of the garbage collection
algorithm for obtaining cells from the free list and re-
turning free cells to the free list.

FIG. 9 shows the data structures used to implement
an alternate embodiment of the invention in which ref-
erence counter information and references to a list
structure may be distributed among several memory
cells.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring first to FIG. 1 brief consideration will be
given to a typical list processing system organized on a
modular basis suited to the invention. The system com-
prises (i) a central processing unit or list processor LP,
(i) a memory system MEM. (i) peripheral units PU1,
PU2, AM, (iv) a garbage manager GM, and (v) an inter-
communication medium ICM for memory to processor
or peripheral unit communication. Modules include the
provision of needed control information about when
references to memory cells are being created and de-
stroyed, and the provision of space within the cell for-
mat for storing a reference counter. The arrangement
and quantity of the various modules shown in FIG. 1
are typical only and not intended to be limiting.

INTERFACE TO THE LIST PROCESSOR
The list processor LP is provided with a cell access

interface CAI1 for retrieving or updating the contents
of memory cells. Such accesses from the list processor
LP to the memory system MEM are intercepted by the
garbage manager GM, which is interposed between the

d

4,9 12,629
5 6

list processor LP and the memory system MEM. The transmits the address of the head of the free list to the
memory system MEM as shown in FIG. 1 is comprised garbage manager GM, along with the enable function
of a memory manager MM, a cache memory CM, a EGM, which initiates garbage manager GM control of
main memory MA, and an auxiliary memory AM which the free list. After that point, the garbage manager GM
is typically a peripheral unit such as a disk used as a 5 assumes all control of the free list, and the list processor
backing store. Some data processing systems may omit LP retains control of all list elements traceable from
or add elements of the memory system MEM. atoms and stack entries. The list processor LP may

A second interface to the list processor LP is the regain full control and retrieve the free list pointer by
control function interface C m l which the processor issuing the disabling command DGM on the control
uses to indicate what type of access to memory is being 10 function interface CFI1. The garbage manager GM
made, and to perform certain control functions. In addi- may also notify the list processor LP of exceptional
tion to a retrieve RTV and a ston STR function nor- conditions, such ns free list exhaustion, ushg the control
mally associated with memory interfaces, there are function interface CFIl.

DATA STRUCTURES special control functions which are normally used only
by list processors employing reference counter garbage 15
collection. If these special control fundons are not FIG. 2 shows the format of a list element LE, corn-
already present, the l i processor can be appropriately prised of a cell A, to which there are small numbers of
modified to include them in the control function inter- references R. A description of each field of bits within
face CFI1. The functions which the control function cell A is as follows:
interface CFIl communicates to the garbage manager 20 CTR-reference counter having a range of possible
GM are: values from 2 to the Nth power of 2, where N is the

RTV-Access to retrieve cell contents number of bits allocated for the counter.
STR-Access to store cell contents TAG-a code used by the list processor to indicate
NEW-Get a cell from the free list the type of cell or other memory data item, in this
ADD-Add a new reference to a cell case an appropriate code to indicate a standard
DEL--Destroy a reference to a cell small counter cell.
EGM--Set the free list pointer and enable garbage CAR-the first of the two pointers contained in the

DGM-Retrieve free list pointer and disable garbage CDR-the second pointer contained in the cell.
FIG. 3 shows the same list element as FIG. 2, with an

SDL-Set dynamic space delimiter additional reference RA, exceeding the capacity of
With each function presented on the control function reference counter CTR. As will be explained subse-

interface CFI1, the list processor LP also provides a cell quently, two physical memory cells are now used to
address on the cell access interface CAI1. With access represent list element LE. The original cell A has been
functions, the l i t processor LP will also provide cell 35 modified to contain an expanded reference counter
content data (STR), or expect cell content data to be CTRX in place of its first pointer CAR, a link pointer
provided to it (RTV). The control function interface LINK to a second cell in place of its second pointer
CFIl is also used to return status and exception infor- CDR, and an appropriate tag TAG2 to indicate the
mation to the list processor LP, as for example whether format of the cell. A second cell AA contains the TAG,
the function was successfuUy completed, and if not 40 CAR, and CDR of the original cell.

OPERATION OF THE GARBAGE MANAGER why.
There is also a cell access interface CAI2 and control

function interface CF12 from the garbage manager GM The garbage manager GM is a sequential state ma-
to the memory MEM, which are similar to the cell chine implementing the process states of FIGS. 5
access interface CAIl and control function interface 45 through 8 as described below. The garbage manager
CFI1, except that the control function interface CFI2 GM has the puposes of maintaining the reference
provides only access (retrieve and store) functions. The counters and the free l i t , and of handling memory ref-
cell access interfaces CAIl and CAI2 and the control erences on behalf of the list processor LP so that the list
function interface CFI2 may be part of the intercommu- processor LP need not normally concern itself with
nication medium ICM; however, the control function 50 those aspects of cell format which have to do with
interface C H l , because of the various unique functions various reference counter configurations.
described above, will be specialized. The garbage manager GM has internal storage regis-

ten, data paths, and functional units as shown in FIG. 4.
When the list processor LP requests a function of the

25

manager cell.

manager 30

DIVISION OF RESPONSIBILITY
In a typical list processing system there are several 55 garbage manager GM, it sends the appropriate function

tasks, each with its own logical area of memory. There code on the control function interface CFI1, sends cell
may also be more than one method of garbage collec- address information on the address portion ADDRl of
tion available. It is desirable, therefore, that the initia- the cell access interface CAIl to a cell address register
tion and termination of the operation of the garbage CA, and sends and accepts cell content and other infor-
manager GM for specified areas of memory be con- 60 mation on the content portion CONTENT1 of the cell
trolled by the list processor LP. access interface CAIl to a group of cell content regis-
When the list processor LP wishes the garbage man- ters CELL, which include: a reference counter CTRC,

ager OM to manage free space in an area of memory, it an extended reference counter portion XC, a tag
link the free cella in that area into a free list. If there are T A W , a fmt pointer CARC, and a second pointer
preexisting list structures in the area which were not 65 CDRC. Similarly, the garbage manager GM uses the
maintained under garbage manager GM control, the list cell address register CA and cell content registen
processor LP computes and stores correct values for CELL to communicate with the memory manager MM
their reference counters. The list processor LP then over the control access interface CAI2, along with

7
4,912,629

8
appropriate function codes on the control function in-
terface CFI2. A memory address can also be supplied
from a free pointer register FREPTR, which is used to
store the address of the head of the free list, and an old
cell address register OCA, which is used in deleting
references. A multiplexer MPX is used to select which
of these three sources of address information will be
sent on the address portion ADDRZ of the cell access
interface CAI2 An arithmetic and logic unit ALU is
provided for computation and testing. A temporary
register SAVE is used for computations and exchanges.
Simple transfers are accomplished directly via an inter-
nal bus IB. The entire group of cell content registers
CELL is transferred on the cell access interfaces as a
unit, but one of its component registers is transferred on
the internal bus IB. A select register S has the special
function of selecting the fmt pointer CARC or second
pointer CDRC for transfer. The delimiter register
DLIM is used to partition logical memory space into a
dynamic region in which cell allocation is handled by
the garbage manager GM, and a static region managed
by the list processor LP as will be explained in the
discussion of Partial Tag Encoding in Pointers.

FIGS. 5 through 8 define important processes of the
garbage manager GM using the functional units of FIG.
4 and the following special terms and conventions:

EXP-A tag value indicating use of the expanded
counter format of FIG. 3.

NIL-A special pointer value designating an empty
list.

MAX-The maximum reference counter value that
can be represented in the small counter format of
FIG. 2.

MIN-The minimum counter value representing that
only one reference is present.

MEM(x)tY-The operation of storing the contents
of a register Y into a cell of memory MEM whose
address is in a register X.

Y%MEM(XZ)-The operation of retrieving a cell
of memory MEM whose address is in a register X2,
and placing the contents of that cell into a register
Y2.

CELL-Indicates the entire group of registers
CTRC9 TAGC, CARC, CDRC is referenced or
updated, except that when transfer is to or from
memory MEM, the extended portion XC of the
reference counter CI'RC is not included in the
transfer.

CELL(S)-References the register CARC when the
contents of the register S are zero, and references
the register CDRC when the contents of S are one.

CELL(CDRC)-Indicates transfers which take place
as if the entire group of registers CELL were par-
ticipating, but in which only the register CDRC is
allowed to be updated.

NEW(CA) and REL(CA)-Indicate invocation of
the obtain cell process NEW and the release cell
process REL, which will be described subse-

FIG. 5 defines the process the garbage manager GM
uses in response to a request from the list processor LP
to add a reference to a cell. The list processor LP must
supply a cell address, and may supply the cell contents.
Step A1 checks whether cell contents have been sup-
plied, and if not, the garbage manager GM will retrieve
them from the memory system MEM. The reference
counter is then identified and incremented in step AZ.
Step A3 checks for small counter overflow. If a previ-

quently.

ously small format cell's counter becomes larger than
can be accommodated within the format, then cell ex-
pansion will take place as follows. The garbage man-
ager GM obtains an additional cell from the free list via

5 step AS, which step A6 uses to contain the CAR, CDR,
and TAG of the original cell. Step A7 places into the
original cell in memory the expanded count, a link to
the new cell, and an appropriate tag. Step A8 saves the
updated reference counter in memory in the case where

FIG. 6 defines the process of deleting a reference to
a cell. In step B1 the old cell address register OCA is
initialized to the value NIL. If in step B3 the cell is
found to be not in the dynamic portion of memory, then
no further processing of the cell is required, and the
terminating step B4 is invoked. At step B4 the old cell
address OCA is checked to see whether this deletion
was the result of an original request, in which case the
process terminates. If in step B3 the reference is to a cell

2o in the dynamic portion of memory (Le. not an atom),
then the cell is retrieved and its counter decremented in
step B5. In step B6 the counter portion of an expanded
format cell is returned to memory, and expanded count-
ers decrementing below the threshold of expansion

25 cause the cell to be reformatted as a small counter cell,
with one of the two cells of the expanded format being
returned to the free list. If in step B7 the last remaining
reference to the cell has not been deleted then the small

3o format cell is stored in memory via step B8, otherwise
the cell must be returned to the free list. Returning the
cell to the free list requires deleting any references
which the cell makes to other cells, a process handled
entirely within the garbage manager GM. This recur-

35 sive function is accomplished without a stack by using
the cells being freed to store information which is local
to each level of recursion. The CA register contains the
address of the cell of current interest. If there was a
previous cell, its address is in OCA. A still prior cell
address is stored in the cell addressed by OCA. The S
register is used to indicate which pointer within the
current cell is being processed, the CAR or CDR.
When a cell is to be freed, then S is set to zero in step
B9, which selects the CAR. In step B10 an exchange is

45 then performed in which the old cell address OCA is
moved into CELL(S), the current cell address CA is
moved to OCA, the former contents of CELL(S) are
moved to CA, which will become the new cell address
of interest, and the value of S itself is saved in the

50 counter field of the current cell. The current cell is then
stored back to memory so that the S and OCA values in
it, as well as the CDR pointer, may be recalled when
needed. The process of considering the current cell
address in register CA as a deleted reference then begins

55 again with step B3. When such process is finished, the
value in register OCA is used to determine whether it
was an initial deletion requested by the list processor
LP which has finished, or whether it is a deletion that
was invoked by the garbage manager GM. In the latter

60 case, the OCA register is used in step B11 to retrieve the
former cell of interest, whose contents are used to re-
store other necessary information that was saved ear-
lier. Then S is incremented, and it selects the CDR of
the current cell for deletion. When control is again

65 returned to step B11, incrementing S reveals neither
CAR or CDR to be selected, so the current cell is ready
to be returned to the free list via step B12, and its han-
dling is complete.

10 cell expansion did not take place.

4.9 12,629
9

FIG. 7 defines how the garbage manager GM re-
sponds to requests from the list processor LP for cell
storage and retrieval. On a retrieval function RET the
cell contents are obtained from memory in step C1. If in
step C2 the cell turns out to be in expanded format, then
the second cell of the pair is also be retrieved, and the
information it contains is passed back to the list proces-
sor LP. On a store function STO step D1 determines
whether or not the cell is in expanded format by looking
at the count value of the cell, which is always main-
tained to full precision in communications between the
garbage manager GM and the list processor LP. If the
cell is in expanded format, then the first member of the
cell pair is retrieved in step D2 in order to obtain the
address of the second cell of the pair, which is then used
by step D3 to store the CAR, CDR, and TAG from the
list processor.

FIG. 8 defines the processes of obtaining a cell from
the free list, NEW, and of releasing a cell to the free list,
REL. These processes may be invoked by the list pro-
cessor LP by using the function codes for retrieval
RTV and storage STR on the control function interface
CFI1, or by other garbage manager GM processes. In
the obtain cell process NEW, step E l checks for possi-
ble free list exhaustion, and step E2 obtains the address
of the first cell from the free list, putting that address in
the cell address register CA for communication back to
the invoking process. In the release process REL, the
cell to be released is threaded on to the head of the free
list by updating its pointers and updating the free list
pointers as shown in step F1.

CACHE OPERATION
While correct logical function of the garbage man-

ager GM is not dependent on any particular implemen-
tation of the memory subsystem, its efficiency is. As
seen from the preceding process descriptions, the gar-
bage manager generates additional memory references,
many of which are store operations. References to the
same cell are frequently close together in time. There-
fore, if the memory subsystem uses a high speed cache
buffer having the characteristic that every update oper-
ation is not written to main memory (i.e. main memory
is updated only when the contents of that particular
cache cell must be evacuated to hold another memory
cell), then overall performance will be greatly im-
proved.

ADDITION AND DELETION OF REFERENCES
BY THE LIST PROCESSOR

The list processor LP exercises a great deal of control
over the efficiency of the garbage manager GM by the
frequency with which it requests addition and deletion
of references. Whenever the list processor performs a
modular operation over a list structure which is static
for the duration of the operation, however complex that
operation may be, the reference control requests may be
deferred until the end of the operation. This results in
the elimination of many intermediate reference control
operations. For example, consider a list processing
primitive which scans a list looking for a particular
item. Each operation in updating a list scanning pointer
to the next element in the list could be viewed as requir-
ing one reference deletion and one reference addition.
Alternately, knowing the structure of the operation
being performed, it becomes necessary to perform only
one reference addition (for the result at the end of the
operation), and one deletion (for the initial argument

5

IO

15

20

25

30

3s

40

45

so

55

60

65

10
structure, again performed at the end of the operation).
To go even further, reference addition and deletion in
the above example can be made the responsibility of
whatever routine invoked this function, allowing that
routine to also optimize its reference control operations.

PARTIAL TAG ENCODING IN POINTERS
A further efficiency consideration concerns the abil-

ity to determine whether a referenced memory item is a
dynamically allocated cell, or a static entity such as an
atom, by examining the pointer to the item. This may be
done, for example, by partitioning the address space
into static and dynamic portions as described above,
which is particularly convenient in virtual memory or
segmented memory systems. If such is the case, then
addition and deletion of references to static items will
not require additional memory references. If such is not
the case, then the items will have to be retrieved and
their tag fields examined even if they are static. Stack
entries are considered static for this purpose.

DESCRIPTION OF ALTERNATE
EMBODIMENTS

The embodiment described above has the advantage
that it easily interfaces with certain types of existing list
processing systems. Those skilled in the art will recog-
nize various alternate embodiments, some of which are
more suitable for their purposes. Selected ones are
briefly described below.

SOFTWARE IMPLEMENTATIONS
Dynamic expansion of reference counters could be

emulated by l i t processing software running on a con-
ventional data processor. This has been accomplished to
verify the concepts and principles of the method of
garbage collection set forth above. Software implemen-
tation also has a use in studying the behavior of the
garbage manager for alternate configurations of refer-
ence counter size and expansion format.

ZERO SIZE REFERENCE COUNTERS
The small counter format cell may be so structured

that it has no space allocated for a reference counter in
which case it is presumed to have the value one. When
a reference to such a cell is deleted, then the cell is
returned to the free list. When a reference is added, the
cell must be expanded. The effectiveness of such small
counters depends upon the observation that a majority
of counters have the value one in many list processing
applications, and upon the ability of a cache memory to
handle temporary excursions above the value one with-
out actually expanding and contracting the cell in mem-
ory. The cache might, for example, employ a third
counter size chosen to handle most such excursions.

Using such a counter size, the reference counter
method could be more easily adapted to a list process-
ing system which does not have any bits reserved for
garbage collection purposes. This includes some sys-
tems which use Baker’s algorithm. A second principle
advantage of a zero count system is that it allows all
nondata bits, such as tags, to be moved out of the cell
and into the reference (pointer) to the cell. In mark and
sweep garbage collection this cannot be done because
the cells are accessed during the sweep phase by a scan
of memory independent of the pointers to the cell. In a
normal reference counter system it cannot be done
because the counter itself must be present. To remove
all such nondata bits, fully encoding the tag in the

4.912,629 .A 11
pointers to the cell, has the advantage that the type of
cell is known from the pointer without having to re-
trieve the cell, and the advantage that cell data content
may use the full memory cell size. Standard 32 bit data
formats could, for example, be used in a processor em-
ploying a common 32 bit memory width.

OTHER ARRANGEMENTS OF CTR, TAG, CAR,
CDR AND LINK

When a counter must be expanded, there are many
ways of allocating the cell information among the two
cells. In addition to just placing the information differ-
ently than in FIG. 3, the counter information may be
distributed between the two cells. FIG. 9 shows an
expansion in which an original cell OLDCELL is left
completely unmodified by the expansion, and a new cell
NEWCELL contains a new counter CTR2 of a the
same size as the old counter CTR1. The added refer-
ence NEWREF is adjusted to point to the new cell
NEWCELL. The pointers CAR1 and CDRl of the
new cell NEWCELL are copied from the original cell
OLDCELL. In this way the link is from the new cell
NEWCELL to the list structure BB and CC being ref-
erenced by the original cell OLDCELL, rather than
between NEWCELL and OLDCELL. This distribu-
tion has the result that no reference is added to the
original cell OLDCELL, and its reference counter
CTRl may remain at the same value. The new refer-
ence NEWREF is to the new cell NEWCELL. The
new cell NEWCELL then adds new references to two
other already existing cells BB and CC, whose refer-
ence counters must be incremented, and which may of
c o w have to be expanded if their reference counters
are already at maximum value. In the worst case the
entire structure being referenced has all its reference
counters at maximum value, and thus the entire struc-
ture is copied through individual expansions of each of
its cells.

This distribution of counter information amone sev-

5

10

15

20

25

30

3s

eral small counters has the advantage of maintaikg a 40
uniform cell format, and of eliminating the extra re-
trieve operations to get the second member of an ex-
panded cell pair. Its disadvantage is that list processing
software which employs list splicing techniques would
need to be carefully examined to assure that it would 45
produce the anticipated result.

Strategies may be mixed. For example, zero size
counters may be maintained for dynamically allocated
numeric quantities resulting from computation, while
s n d counters of some other she are used for list cells 50
containing pointer pairs. Any of the distribution
schemes, or a mix in which some cells are expanded one
way and some another, may be used with the various
cell types.

ADDITION TO A CONVENTIONAL DATA
PROCESSOR

The function of the garbage manager GM may be
placed on the memory bus of a conventional data pro-
cessor, in a manner similar to a memory module or 60
peripheral controller. It may include its own memory,
or redirect references again on the bus to @e system’s
memory. Since there are no dedicated signal paths for
the reference control information, it would be commu-
nicated by some other means, as for example by storing 65
a special code in a fued address, or by accessing one of
several fued addresses. The “store immediate” instruc-
tions of some processors would be suitable for this pur-

55

1L
pose. Such an embodiment would allow efficient use of
the invention in conjunction with a conventional pro-
cessor.

CLOSELY INTEGRATED PROCESSOR AND
GARBAGE MANAGER

The list processor and garbage manager may share
data paths, functional units, and sequencers. This would
require a close coupling of the two, but could produce
an economic embodiment for purposes such as imple-
mentation of a list processor on a VLSI (Very Large
Scale Integration) chip.

MULTIPLE PROCESSORS AND HIGHLY
PARALLEL PROCESSORS

Where there are multiple processors and each has its
own memory, each would also have its own garbage
manager. The simplicity and determinacy of garbage
management using the present invention would permit
simpler processors and would make coordination
among the processors easier. The immediate identifica-
tion and reuse of garbage cells minimizes the amount of
memory required for each processor.

Where there are memory modules separate from the
processors, with some means of interconnecting the
processors and the memories, a garbage manager could
be included either with each processor, or with each
memory module. In the case of including a garbage
manager with each processor, some means would need
to be provided to assure consistent results when two or
more processors were updating elements of the same
memory module. In the case of including a garbage
manager with each memory module, interconnection
traffic would be reduced (because expansions and sec-
ond cell accesses are handled locally), and the problem
of synchronizing multiple access would be somewhat
reduced.

The above configurations avoid the problem typi-
cally encountered of having to scan the pointers of all
other memory modules when looking for garbage
within a particular module. This becomes more impor-
tant as memories become larger and are partitioned into
more modules to support parallel processing.

Garbage management in the manner prescribed by
the invention is also compatible with methods of con-
trolling the sharing of transient list structures, such as
copying lists, or use of a forwarding table. The garbage
manager may even be used to implement the operation
of a forwarding table by merely marking the table
entries as being in expanded format, and by providing
some means to inhibit the de-expansion of table entries
(which could be as simple as initializing each entry with
a count exceeding the maximum small format counter
value).

Those skilled in the art will recognize that many
other embodiments may be found which use the basic
principles of the invention.

What is claimed is:
1. In a data processing system having a list processor

and a memory formed of cells, each cell having two
pointers, the first pointer being the CAR and the second
pointer being the CDR, each cell also having a code
(TAG) to indicate the type of cell, some of the cells
being organized into linked lists by the pointers refer-
encing other cells, which lists are continually being
modified by some new cells being added from a free list
and some cells being rendered inaccessible by destruc-
tion of references to such cells, a reference counter

4,912,629
13

being attached to each cell, each time a new reference
to the cell is created the counter being incremented and
each time a reference to the cell is destroyed the
counter being decremented, when the counter becomes
zero the cell is returned to the free list, a real-time gar-
bage collection system comprising:

means for obtaining an additional cell from the free
list for each original cell whose reference counter
reaches its maximum value;

means for storing the contents of the original cell,
linking information relating the two cells to the
original list structure, and additional reference
count information in the two cells; and

means for incremenhg and decrementing the addi-
tional reference count information provided by the
two cells to reflect created or destroyed references.

2. The data processing system specifed in claim 1 in
which the two l i e d cells provide additional space- for
the provision of an expanded counter which can be
further incremented.

3. The data processing system specified in claim 1 in
which the additional cell provides a new counter
whereby the new reference is directed to the additional
cell, the new counter being available for additional
incrementation.

4. The data processing system of claim 2 wherein the
handling of the reference counters is under the control
of a garbage manager means, the garbage manager
means maintaining the reference counters and the free
l i t and handling memory references and cell formats on
behalpthe list processor.

5. The data processing system of claim 4 in which the
garbage manager means in response to a command from
the list processor that a new reference has been created
operates on the referenced memory cell incrementing
the reference counter, in the event that the reference
counter has reached its maximum value, the garbage
manager means obtains an additional cell from the free
list in which is stored the contents of the original cell,
and the original cell is provided with an expanded
counter and a link to the additional cell.

6. The data processing system of claim 4 in which the
garbage manager means in response to a command from
the list processor that a reference has been destroyed

‘14
from the list processor to store a cell into memory, in
the event that the cell is in original format the garbage
manager.means stores the cell, in the event that the cell
is in the expanded format, the garbage manager means

5 retrieves the l i to the additional cell which the gar-
bage manager means uses to store the TAG, CAR and
CDR.

11. The data processing system of claim 3 wherein the
handling of the reference counters is under the control

10 of a garbage manager means, the garbage manager
means maintaining the reference counters and the free
list and handling memory references and cell formats on
behalf the l i t processor.

12. The data procesSing system of claim 11 in which
15 the garbage manager means in response to a command

from the list processor that a new reference has been
created operates on the referenced memory cell incre-
menting the reference counter, in the event that the
reference counter has reached the maximum value, the

20 garbage manager means obtains an additional cell from
the free list in which its store the TAG, CAR and CDR
of the original cell and a reference counter indicating a
count of one and changes the new reference to point to
the additional cell.
13. The data processing system of claim 1 in which

the handling of the reference counters is implemented
by software.

14. The data processing systems of claim 1 in which
the cell has no space allocated for the arbitrarily small

30 size reference counter, in which case the reference
counter is presumed to have the value one.

15. The data processing system of claim 1 wherein the
handling of the reference counters is under the control
of a garbage manager means which is an intergral part

16. The data processing system of claim 1 wherein the
handling of the reference counters is under the control
of a garbage manager means which is interposed be-
tween the list processor and the memory.
17. The data processing system of claim 1 in which

there are multiple list processors and multiple memories
interconnected together into a coordinated system with
a garbage manager means for each processor.
18. The data processing system of claim 1 in which

25

35 of the list processor.

40

operates- on the referenced memory cell, decremenhg 45 there are multipie list pr&essors and multiple memories
its reference counter, in the event the reference counter interconnected together into a coordinated system with
is decremented to zero the garbage manager returns the a garbage manager means for each memory.
cell to the free l i t . 19. The data processing system of claim 1 in which a
7. The data procesSing system of claim 6 in which the high speed buffer memory is used for cell manipulation

garbage manager means when decrcmenting a reference 50 to reduce the number of references to the main memory.
counter of an expanded cell obtains a maximum value 20. The data procesSing system of claim 19 in which
equal to or less than the value of the small reference the cells used in the high speed buffer have a counter
counter of an original cell restores the contents of the designed to eliminate cell expansion for brief excursions
original cell to the on@ cell and returns the addi- above maximum s m a l l counter value.
tional cell to the free list. 21. A method for controlling reference counts in a
8. The data processing system of claim 4 in which the computer system in which a count of how many point-

garbage manager means in response to a command from ers which reference blocks of memory are held in asso-
the list processor to retrieve a cell from memory re- ciation with associated blocks of memory, and in which
trieves the indicated cell, if the cell is in expanded for- the count is incremented and decremented as pointers to
mat the garbage manager means also retrieves the addi- 60 the blocks are created and destroyed, and in which
tional cell and provides the cell content to the list pro- there is a means of obtaining unused blocks of memory
cessor. and their associated counters, comprising, when a new

9. The data procesSing system of claim 8 in which the refaence pointer is created which would require a
cell content provided to the list processor is the TAG, counter associated with a first block to be incremented
CAR and CDR of the original cell and the reference 65 beyond its maximum value:
counter in expanded format.
10. The data processing system of claim 4 in which

the garbage manager means in response to a command

55

obtaining an unused second block of memory;
copying the contents of the first block, including

pointers, to the second block, the copying of any

15
4,9 12,629

16
pointers from the first to second block being
treated normally as the creation of new pointers;

unused memory pool and for adding blocks to the un-
used memorv mol. ComDriSic

setting the counter of the second block to indicate a
single reference and leaving the counter of the fmt
block unchanged; and adjusting the new reference '
pointer to point to the second block.

22. A method for controlling reference counts in a
computer system in which a count of how many point-
ers which reference blocks of memory are held in asso-
ciation with associated blocks of memory, and in which
the count is incremented and decremented as pointers to
the blocks are created and destroyed, and in which
there is a means for obtaining unused blocks from an

15

initially dki'gnatkg ali blocics of memory as normal;
when a pointer is created which would require incre-

menting the counter of a normal first block beyond
its maximum value, obtaining a second block from
the unused pool, redistributing the information
from the first block into the two blocks, placing a
l i i g pointer to the second block in the first
block, allocating a larger reference counter in ei-
ther block, designating the two blocks as being in
expanded format, and incrementing the resulting
larger counter.

* * I * *

20

25

30

35

40

45

50

5s

60

65

