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Initial Experiments and Analysis of Blunt-Edge Vortex 

Flows 

James M. Luckring1 

NASA Langley Research Center, Hampton, VA, 23681 

A review is presented of the initial experimental results and analysis that formed the 

basis the Vortex Flow Experiment 2 (VFE-2).  The focus of this work was to distinguish the 

basic effects of Reynolds number, Mach number, angle of attack, and leading edge bluntness 

on separation-induced leading-edge vortex flows that are common to slender wings.  

Primary analysis is focused on detailed static surface pressure distributions, and the results 

demonstrate significant effects regarding the onset and progression of leading-edge vortex 

separation. 

Nomenclature 

b = wing span 

d = sting diameter 

CL = Lift coefficient 

Cm =  Pitching moment coefficient (referenced to (2/3) cr and based upon mac) 

CN = Normal force coefficient 

Cp = pressure coefficient 

Cp
* = sonic pressure coefficient 

c = chord 

cr = root chord 

E =  Young’s modulus 

LTPT = Low Turbulence Pressure Tunnel 

M, M! = free-stream Mach number 

mac = mean aerodynamic chord, (2/3) cr 

NTF = National Transonic Facility 

q! = free stream dynamic pressure 

Rmac = Reynolds number, based on mean aerodynamic chord 

rle = streamwise leading-edge radius 

t = wing thickness 

VFE-2 = Vortex Flow Experiment 2 

x,y,z = Cartesian coordinate system 

xv = longitudinal distance to vortex separation 

" = angle of attack, degrees 

# = Prandtl-Glauert compressibility factor, [1-(M!) 2]1/2 

$ = non-dimensional local semispan 

% = Leading-edge sweep, degrees 

I. Introduction 

n the early 1980’s expanded planning was undertaken to develop models and test programs1,2 for the National 

Transonic Facility (NTF) at NASA Langley Research Center. The models spanned research distinctions from 

fundamental to configuration concepts. The test programs for the most part addressed combinations of Reynolds 

number effects and high Reynolds number aerodynamics for attached and separated flows at subsonic or transonic 

speeds.  
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One of these programs was focused on separation-induced leading-edge vortex flows from slender wings with 

blunt leading edges. Various aerodynamic and testing considerations led to the selection of a 65o swept delta wing 

for the basic geometry. The wing supported testing with different leading-edge components as a means to vary the 

leading-edge bluntness. Maneuvering aircraft develop these flows with blunt-edge separation, and thus it was felt 

that this program would extend the previous knowledge obtained with sharp-edged delta wings in a useful manner. 

This test program was executed in the early 1990’s along with a companion experiment in the Low Turbulence 

Pressure Tunnel (LTPT), and first data analysis of the NTF data3-6 was published2,7-10 in the early 2000’s. The 

analyses not only demonstrated significant effects of the parameters investigated, but also indicated a new structure 

to the leading-edge vortex separation from the blunt edges that did not occur with sharp leading edges. Discussions 

and further analysis11 led to the proposal12 for an international research campaign that became known as Vortex 

Flow Experiment 2 (VFE-2). 

In this paper a brief review is presented of the knowledge leading up to the beginning of VFE-2.  Results are 

included from a number of the author’s previous publications along with analysis of some new results.   

 

II. Basic considerations for slender-wing vortex flows 

Many overall characteristics of vortex flows for the sharp-edged and highly-swept delta wing have been 

established13,14. For this case, the flow undergoes a primary separation at the wing leading edge and subsequently 

rolls up to form a stable, separation-induced leading-edge vortex over the wing. A sketch of this vortex, from 

Hummel13, is shown in Fig. 1. The primary vortex induces reattached flow over the wing, and the spanwise flow 

under the primary vortex subsequently separates a second time to form a counter-rotating secondary vortex outboard 

of the primary vortex. The flow under the vortices induces significant upper surface suction pressures that can result 

in large vortex-induced lift increments at moderate to high angles of attack. An example of these lift increments is 

also shown in Fig. 1 along with theoretical estimates of the vortex lift due to Polhamus14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        Hummel13                                                                       Polhamus14 

Figure 1. Some basic features of separation-induced leading-edge vortex flows for sharp-edged delta wings. 

 

The blunt leading edge fundamentally alters this flow (Fig. 2). The origin of the vortex will be displaced from 

the apex of the delta wing, and any leading-edge vortex separation will occur from a location near, but not 

necessarily at, the leading edge. Moreover, the onset and progression of the vortex separation will be a function of 

the flow conditions and wing geometry. For example, at low to moderate angles of attack the wing could exhibit 

fully attached flow. As angle of attack is increased, leading-edge separation will first occur at a location near the 

trailing edge for two reasons. First, delta wing leading-edge upwash distributions increase from the apex to the 

trailing edge, and thus the local angle of attack is higher near the trailing edge. Second, the crossflow bluntness 
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(rle/bloc) tends to progress from blunter to sharper values as the trailing edge is approached. With further angle of 

attack increases the onset of this vortex separation will progress longitudinally up the leading edge. Thus, for some 

angle-of-attack range the wing will exhibit partial span leading-edge vortex separation with attached flow on the 

upstream portion of the wing and leading edge vortex separation on the downstream portion. Because the leading-

edge vortex separation is now occurring from a smooth surface, the physics of this flow could be quite different 

from the sharp-edged case, and the strength, position, and the very existence of the vortex will be affected by 

leading-edge radius and will change with Mach number, Reynolds number, and angle of attack. 
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Figure 2. Leading-edge bluntness consequences for the primary vortex separation. 

 

III. Models and Tests 

The wind tunnel model and test programs were designed to quantify the independent effects of Mach number, 

Reynolds number, angle of attack, and leading edge bluntness on the onset and progression of leading edge vortex 

separation. 

Some basic characteristics of the model are summarized in Fig 3. The 65o delta wing had no twist or camber and 

had interchangeable leading-edge segments that incorporated the various leading-edge radii. The central portion of 

the wing was flat. With this approach, the new blunt-edged delta wing data would relate to previous data bases 

developed with flat-plate sharp-edged delta wings. The wind tunnel model was designed to generate delta-wing 

aerodynamics with minimal wind-tunnel test interference effects.  

The leading-edge contours had a NACA-like polynomial form with a single parameter, the leading edge 

bluntness. See Fig. 4. The contours matched the inner flat-plate portion of the wing with continuity through second 

derivative and, hence, curvature.  This continuity is of course crucial to avoid unintended separation artificially 

induced by the model. The bluntness values were selected to be practical as regards values used for maneuvering 

aircraft and included a sharp leading edge (rle=0) within the same functional family. 
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Figure 3. Delta wing configuration for tests in NTF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Leading-edge geometry. 

 

The emphasis for the experiment was on static surface pressure measurements, and for most configurations there 

were approximately 183 pressure taps organized along constant percent local semispan locations at constant percent 

root-chord stations. Pressure taps were also situated directly on the leading edge (i.e., $=1) to facilitate separation 

onset measurement. Because of the extensive pressure instrumentation, there was no room in the model for a 

conventional internal strain-gauge balance. However, the sting itself was gauged to provide measurement on normal 

force and pitching moment. 
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Figure 5. National Transonic Facility test program. 

 

Primary experiments were performed in the National Transonic Facility15,16 (NTF) at the NASA Langley 

Research Center.  This tunnel allows for independent control of Mach number (0.1 to 1.2), total pressure (1.2 atm to 

8.8 atm), and total temperature (-250 F to 120 F) through the injection of cryogenic nitrogen.  The test section is 

slotted and 8.2 feet square. 

Through the combination of pressure and cryogenic temperatures the NTF can test at very high Reynolds 

numbers. Because the tunnel has three degrees of freedom in operation conditions (speed, total pressure and total 

temperature), it can also be used to vary one free-stream parameter while holding two other free-stream parameters 

constant. For example, free-stream Reynolds number can be varied while holding Mach number (compressibility 

effects) and q!/E (aeroelastic effects) constant. This feature can be exploited for other means as well, say to vary 

Mach number while holding Reynolds number and q!/E constant.  Thus, Reynolds number, Mach number, and 

aeroelastic effects can be isolated experimentally. 

The facility operation envelope for the NTF delta wing along with the range of the delta wing experimental 

program is shown in Fig 5.  The range of test conditions were chosen to be representative of operating conditions for 

a variety of aircraft incorporating slender-wing flows; transonic cruise conditions for a representative military 

transport (C17) and a conceptual High Speed Civil Transport (HSCT) are also shown for reference. 

The tests were designed to minimize potential data contaminants including those often referred to as pseudo 

Reynolds number effects.  The wing was hydraulically smooth (k+<5) for the range of Reynolds numbers 

investigated.  Wing design analysis indicated negligible aeroelastic effects.  An offset sting kept the model on the 

tunnel centerline for the angle-of-attack range investigated.  In addition, wind tunnel wall interference was believed 

to be negligible based on established best practices for the slotted-wall test section (e.g., the model span relative to 

the tunnel width, model area relative to the tunnel cross sectional area, model positioning). 

The gauging requirements for the high loads encountered in the NTF test campaign precluded acceptable 

measurement accuracies at test conditions below a free-stream Mach number of  0.4. To obtain lower speed data, a 

second wing was designed for testing in the Low Turbulence Pressure Tunnel17 (LTPT) located at the NASA 

Langley Research Center. The test conditions were focused at a free-stream Mach number of 0.2, and Reynolds 

numbers were varied between 2 x 106 and 12 x 106. The model was a ! scale version of the NTF delta wing model. 
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This size was determined18,19 to provide correctable wall-interference effects. A comparison of the two models in 

their respective test sections is shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. LTPT and NTF delta wings. 

 

IV. Aerodynamics of blunt-edged vortex flows 

A contrast between sharp-edged and blunt-edged vortex flow results is presented first. These results are followed 

by a discussion of Reynolds number effects for the varying leading-edge bluntness values.  Mach number effects are 

presented next followed by some discussion of the significance of isolating these effects. 

A. Contrast of sharp and blunt edge flows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of leading-edge bluntness on normal force and pitching moment coefficients. Sharp and 

medium bluntness leading edges, M! = 0.4, Rmac = 6 x 10
6
. Data from NTF. 

 

A comparison between the sharp and medium bluntness leading-edge configurations is presented in Fig. 7 for the 

normal force and pitching moment coefficients at a free-stream Mach number of 0.4 and a free-stream Reynolds 

number of 6 million. The blunt leading edge separation weakens the vortex compared to the sharp leading edge case, 

and the normal force coefficient is reduced from the sharp-edged values for the angle of attack range investigated. 

Pitching moment results show the blunt-edged wing to have a more forward (i.e., toward the wing apex) center 

of pressure than the sharp-edged case. Leading-edge vortex loadings tend to be situated further aft than attached 
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flow loadings, and thus this forward shift in pitching moment is consistent with the reduced vortex strength from the 

blunt leading edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Static surface pressure coefficients for medium bluntness delta wing. " = 13
o
, M! = 0.4, 

Rmac = 6 x 10
6
. Data from NTF. 

 

A comparison of the static surface pressure coefficients for the sharp-edged and medium bluntness delta wing is 

shown in Fig. 8 for a nominal angle of attack of 13o. The sharp-edged wing exhibits typical separation-induced 

leading-edge vortex properties.  The primary vortex suction peak is situated conically on the wing and diminishes in 

magnitude as the trailing edge is approached. At this moderate angle of attack vortex breakdown does not occur in 

the vicinity of the wing, and this drop in primary vortex suction is due to the trailing-edge Kutta condition in 

conjunction with longitudinal vortex curvature effects.  Outboard of this suction peak turbulent secondary separation 

is also indicated. 

The blunt-edged delta wing surface pressure coefficients clearly demonstrate part span leading-edge vortex 

separation, Fig. 8.  Attached flow pressures are evident at 20% root chord while leading-edge vortex-like pressures 

are evident from 60% root chord aft.  The origin of the blunt leading-edge vortex for this case is in the vicinity of 

30% root chord. This class of leading-edge vortex separation does not exist for corresponding flat-plate sharp-edged 

wings. The direct comparison of the pressures in Fig. 8 at 60% root chord demonstrates the outboard shift of the 

vortex footprint due to leading-edge bluntness. 

The pressures at 60% root chord station also indicate a second suction peak near 60% local semispan.  This is 

inboard of the primary suction peak and may indicate a second co-rotating primary vortex shed from the blunt 

leading edge. This was also a new feature for the blunt leading edge vortex separation as compared to the sharp edge 

case. Two sketches of this postulated flow structure of these vortices are presented below in Fig. 9 from private 

discussions11. Co-rotating vortices can be sensitive to their relative strength and position, and small differences 

(flow, geometry, etc.) could result in the vortices either developing separate and roughly streamwise trajectories or 

developing a mutually intertwined trajectory. Such details are difficult to discern from the static surface pressures. 
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Figure 9. Sketches of blunt leading-edge dual co-rotating leading-edge vortex separation
11

. 

 

The details of the flow leading up to the primary vortex separation, with an inner and an outer co-rotation vortex 

also are curious. The pressures at 40% root chord in Fig. 8 exhibit neither a customary attached flow nor a 

conventional vortex flow trend. It is unclear if the inner vortex separation is initiated upstream and then triggered by 

the outer primary separation or if the inner and outer vortex separation occurs in a more tightly coupled fashion.  

 

B. Reynolds number and bluntness effects 

Reynolds number effects for a variety of constant Mach numbers were determined for all leading edges of the 

test program in both the NTF and the LTPT facilities. In this section Reynolds number effects on the static surface 

pressure coefficients and on the inferred onset and progression of leading-edge vortex separation will be reviewed. 

The effect of Reynolds number on the blunt leading edge vortex flow is summarized in Fig. 10.  Results on the 

left portion of this figure are the same ones used in Fig. 8 to compare with sharp-edged flow.  Comparison of these 

results at Rmac = 6 million (typical of wind-tunnel conditions) to those at 60 million (representative of flight 

conditions) show significant recovery of attached flow at the higher Reynolds number.  The origin of the leading-

edge vortex separation has shifted downstream in association with the higher Reynolds number. 

Leading-edge pressures provide a useful means to identify the passage of leading-edge vortex separation onset 

(see Fig. 11).  At low angles of attack the leading-edge pressure will follow a trend that can be deduced from 

attached-flow slender wing theory as Cp,le = C0 - C2 sin2" where C0 and C2 are constants, obtained in this case from 

a fit to the data at low angles of attack. Analyses of the NTF data have demonstrated that this trend is sustained as 

angle of attack is increased and departure from this trend correlates with separation onset7-9. 
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Figure 10. Effect of Reynolds number on static surface pressure coefficients. Medium bluntness, 

" = 13
o
, M! = 0.4, Rmac = 6 x 10

6 
and

 
60 x 10

6
.  Data from NTF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Correlation of leading-edge pressure coefficients with the onset and progression of leading-edge 

vortex separation. Medium bluntness, M! = 0.4, Rmac = 6 x 10
6
. Data from NTF. 
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Figure 12. Reynolds number effect on leading-edge pressures. Medium bluntness, M! = 0.4. 

 

The leading-edge pressures can be used to assess the effects of various parameters on leading-edge separation.  

An example is given in Fig. 12.  Here Reynolds number is shown to delay separation at three root chord stations.  

Reynolds number effects occur over a significant angle of attack range at values typical of maneuver conditions.  

The Reynolds number effects also persist over a greater angle of attack range on the forward portions of the wing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Leading-edge bluntness and Reynolds number effects on the onset and progression of leading-edge 

vortex separation. M! = 0.4. 

 

A summary of leading-edge bluntness effects on the onset and progression of leading-edge separation at low and 

high Reynolds numbers is presented in Fig. 13.  At the low Reynolds number the smallest leading-edge bluntness 
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delayed separation onset to approximately 6 degrees angle of attack.  Both the medium and the large bluntness 

values further delayed separation onset.  The largest bluntness showed a gradual progression of separation compared 

to the other two blunt leading edges. At high Reynolds number separation onset for the small and medium bluntness 

values has been delayed by about 2 degrees, and separation progression appears to be more gradual.  Reynolds 

number had little effect on the bluntest leading edge. It must be noted that there is most likely some additional 

uncertainty associated with the results the results of Fig. 13 because they are obtained by inference from the leading 

edge pressure distributions as opposed to being obtained by direct measurement (say, from surface flow 

visualization). 

C. Compressibility effects  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Effect of compressibility on normal force coefficients. Medium bluntness. Data from NTF, LTPT. 

 

The effects of compressibility on the normal force coefficient are shown in Fig. 14 for the medium bluntness 

configuration. Results are included from both the NTF and the LTPT experiments. Data from LTPT were not 

available at the identical Reynolds number as the data from NTF, but it is felt that any Reynolds number effect of 

this slight mismatch (6 million as compared to 8 million) should be small. For example, at these conditions the zero 

pressure gradient transition distance differs by only 1.4 percent root chord, and this transition would occur within the 

first 6 percent root chord from the apex. 

The primitive variable data (CN) demonstrate expected compressibility trends, namely the increase of normal 

force slope as Mach number is increased. To more clearly assess this effect, similarity scaled results are also shown 

(#CN) where the scaling is based upon linear Prandtl-Glauert theory. By this theory the data would be expected to 

collapse under conditions dominated by small perturbations and hence the linear Prandtl-Glauert governing 

equation. This would coincide with small angles of attack, and the collapse of the data is very good at low to 

moderate angles of attack. At the higher angles of attack the flow includes nonlinear effects in association with the 

leading-edge vortex, and this can also be seen in the scaled results of Fig. 14. 

To further assess the compressibility effects, a comparison among static surface pressure coefficients is 

presented in Fig. 15 at a nominal angle of attack of 7o at one chordwise station for this same wing. At these 

conditions the flow is still attached, and the Prandtl-Glauert similarity scaling would be expected to hold under the 

same caveats just mentioned in association with Fig. 14. Although not as compelling as the force data, the collapse 

of the pressure data is good over most of the station shown.  The largest mismatch among the scaled results is near 

the leading edge for the highest Mach number of the comparisons for which the small perturbation assumption is 

expected to be less valid. 
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Figure 15. Effect of compressibility on static surface pressure coefficients. Medium bluntness, x/cr = 0.6,  

" = 7
o
, data from NTF, LTPT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Compressibility effect on leading-edge pressures. Medium bluntness, x/cr = 0.5, Rmac = 6 x 10
6
,  

data from NTF, LTPT. 

 

The leading-edge pressure coefficients were shown previously to be useful in inferring onset and progression of 

leading-edge vortex separation including assessment of Reynolds number and leading-edge bluntness effects. The 

effect of compressibility on the leading-edge pressure coefficient is shown in Fig. 16 at the same mid-chord station 

as before and for a fixed Reynolds number of 6 million. Data are included from both the NTF and the LTPT 

experiments. 
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The data demonstrate that the trend with increasing Mach number is to promote departure of the data from 

attached flow theory and, hence, to promote leading-edge vortex separation. The leading edge flow includes 

nonlinear contributions since, in general, the perturbations will not be small in this region and, in particular, the 

onset and progression of leading-edge vortex separation is itself a nonlinear phenomenon. Thus, the correlation 

between the NTF and the LTPT measurements in terms of exhibiting consistent trends is very encouraging. 

Additional analysis of the LTPT results for the other leading edges configurations would be of interest. 

 

 

The compressibility effects on overall static surface pressures are shown in Fig. 17 for the medium wing at an 

angle of attack of 13o and a Reynolds number of 60 million. The increase of mach number from 0.4 to 0.6 has show 

a significant increase in the extent of leading-edge vortex flow over the wing. For example, at the 60% chord station 

the pressure coefficients exhibit an essentially attached-flow trend at M = 0.4 whereas these pressure coefficients 

show a well-defined leading-edge vortex distribution at M = 0.6. There is also evidence of incipient separation at the 

40% chord station for the higher Mach number results. Similar trends were found at the lower Reynolds number 

case (6 million). 

D. Summary effects 

The following three figures present a summary of the combined effects of Mach number, Reynolds number, 

leading-edge bluntness, and angle of attack for the onset and progression of leading-edge vortex separation. For this 

analysis the leading-edge pressure coefficients are used. 

The effects of compressibility and bluntness on the leading edge pressure coefficients are presented in Fig 18 at 

the mid-chord station for a Reynolds number of 6 million. Results are included only from the NTF experiments, and 

the medium bluntness leading edge results in this figure are the same as was shown in Fig. 16. The smaller bluntness 

leading edge only shows minimal compressibility effects although the trend (increase of Mach number promoting 

leading-edge separation) is sustained. Onset of separation is confined to a narrow angle of attack between 4o and 5o. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Effect of compressibility on static surface pressure coefficients. Medium bluntness, " = 13
o
,  

Rmac = 60 x 10
6
, data from NTF. 
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Figure 18. Compressibility and bluntness effects on leading-edge pressures. Rmac = 6 x 10
6
, x/cr = 0.5,  

data from NTF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Compressibility and bluntness effects on leading-edge pressures. Rmac = 60 x 10
6
, x/cr = 0.5,  

data from NTF. 
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Results with the bluntest leading edge show that separation onset occurs at a higher angle of attack than the 

medium bluntness configuration. For example, at a Mach number of 0.4 the departure from the attached flow trend 

line shifts from about 11o for the medium bluntness wing to about 15.5o for the large bluntness wing.  Similar 

compressibility trends are sustained for the blunt leading edge. 

The same organization of results is presented in Fig 19 but now for a Reynolds number of 60 million. At this 

Reynolds number, the small bluntness leading edge now exhibits significant compressibility effects consistent with 

the other data already discussed. Moreover, a comparison between Fig. 18 and Fig 19 demonstrate the delay in 

separation onset and progression with an increase in Reynolds number. Using the same example from the discussion 

of Fig. 18, the departure from the attached flow trend line for the medium bluntness leading edge at a mach number 

of 0.4 shifts from about 11o for the low Reynolds number case (Fig. 18) to about 14o for the high Reynolds number 

case (Fig. 19). 

With the results shown in Fig. 18 and Fig. 19, as well as those from other wing stations or other free-stream flow 

conditions, the data from these experiments quantify the following trends:  

(i) an increase in Reynolds number delays the onset and progression of blunt-leading-edge vortex separation, 

(ii) an increase in Mach number promotes the onset and progression of blunt-leading-edge vortex separation, 

(iii) an increase in angle of attack promotes the onset and progression of blunt-leading-edge vortex separation, and  

(iv) an increase in leading-edge bluntness delays the onset and progression of blunt-leading-edge vortex separation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Compressibility and Reynolds number effects on onset and progression of leading-edge vortex 

separation. Medium bluntness, data from NTF 
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testing, then the separate effects of compressibility flow physics and viscous flow physics would be confounded. 

These effects are sustained for the other leading edge bluntness values investigated. 

V. Concluding  Remarks 

A summary has been presented of some initial experiments and analysis for separation-induced leading-edge 

vortex separation for a 65o delta wing that lead to the initiation of an international collaborative research effort 

known as Vortex Flow Experiment 2. The baseline experimentation from NASA Langley showed significant effects 

of Mach number, Reynolds number, angle of attack, and leading-edge bluntness for the onset and progression of 

leading-edge vortex separation. The data primarily included detailed static surface pressure distributions for a wide 

range of Reynolds numbers and Mach numbers taken in a manner that allowed for the isolation effects associated 

with these free-stream parameters. 

The physics of blunt-leading-edge vortex separation fundamentally differs from the sharp-edged case in at least 

two regards. First, for the blunt leading edge the origin of the leading edge vortex is displaced from the apex of the 

delta wing. The onset and progression of this separation will be a function of flow conditions as well as leading-edge 

bluntness. Second, the existence of an inner, co-rotating vortex was inferred from the measurements. Neither of 

these phenomena occurs with the corresponding sharp leading edge. Both of these effects are quantified with the 

present data in terms as static surface pressure coefficients and limited force and moment coefficients. 

However, it was clear that additional measurements would be required to better understand these effects. This 

need for new and more detailed data led to the VFE-2 experimental activities. The original experiments as well as 

the promise of new data sets also served as impetus for the computational program contained within VFE-2. 
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