
United States Patent [19] [ill Patent Number: 4,980,824
Tulpule et al. [45] Date of Patent: Dec, 25, 1990

EVENT DRIVEN EXECUTIVE
Inventors: Bhnlchnndra R. Tulpule, Vernon;

Robert E. Collins, East Hartford;
John Cheethpm, Bristol; Smith
CornweU, East Granby, all of COM.

Hartford, COM.
Assignee: United Technologies Corporation,

Appl. No.: 298,291

Filed: Jan. 17,1989

Related U.S. Application Data
Continuation of Ser. No. 924,542, Oct. 29, 1986, aban-
doned.

Int. c l . 5 .. Go6F 9/00
U.S. Cl. 364/200; 364/965.4;

364/948.3
Field of Serrch 364/200, 900

References Cited
U.S. PATENT DOCUMENTS

4,152,761 VI979 Louie 364/200
4,153,932 5/1979 Dennis et al. 364/200
4,286,322 8/1981 Hoffman et al. 364/200
4,320,451 3/1982 Bachmn et al. 364/200
4,320,455 3/1982 Woods et ai. 364/200
4,333,144 6/1982 Whiteside et al. 364/200
4,369,494 VI983 Bienyenu et al. 364/200
4,394,727 7/1983 Hoffman et al. 364/200
4,394,730 7/1983 Suzuki et al. 364/200
4,413,318 11/1983 Hemngton 364/200
4,414,624 11/1983 Summer, Jr. et al. 364/200
4,447,874 5/1984 Bradley et al. 364/200
4,466,736 8/1984 De Santis et al. 364/200
4,494,188 1/1985 Nakane et al. 364/200
4,525,780 6/1985 Bratt et al. 368/200
4,590,555 5/1986 Bourrez 364/200
4,594,655 6/1986 Hao et al. 364/200
4,615,001 9/1986 Hudeins, Jr. 364/200
4,658,351 4/1987 Teng 364/200
4,675,806 6/1987 Uchida 364/200

4,736,318 4/1988 Delyani et al. 364/200

OTHER PUBLICATIONS
IBM Corporation Programming Publications,
"OS/VS2 MSV Overview," Second Edition (May
1980). Chapters 5-6.
Primary Examiner-Gareth D. Shaw
Assktant Examiner-John G. Mills
Attorney, Agent, or Firm-Francis J. Maguire, Jr.
P71 ABSTRACT
Tasks may be planned for execution on a single proces-
sor or are split up by the designer for execution among
a plurality of signal processors. The tasks are modeled
using a design aid called a precedence graph, from
which a dependency table and a prerequisite table are
established for reference within each processor. During
execution, at the completion of a given task, an end of
task interrupt is provided from any processor which has
completed a task to any and all other processors includ-
ing itself in which completion of that task is a
prerequisite for commencement of any dependent tasks.
The relevant updated data may be transferred by the
processor either before or after signalling task comple-
tion to the processors needing the updated data prior to
commencing execution of the dependent tasks. Coher-
ency may be ensured, however, by. sending the data
before the interrupt. When the end of task interrupt is
received in a processor, its dependency table is con-
sulted to determine those tasks dependent upon comple-
tion of the task which has just been signalled as com-
pleted, and task dependency signals indicative thereof
are provided and stored in a current status list of a
prerequisite table. The current status of all current pre-
requisites are compared to the complete prerequisites
listed for all affected tasks and those tasks for which the
comparison indicates that all prerequisites have been
met are queued for execution in a selected order.

3 Claims, 8 Drawing Sheets

https://ntrs.nasa.gov/search.jsp?R=20080008257 2019-08-30T03:34:00+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10541608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

*

U.S. Patent Dee. 25,1990 Sheet 1 of 8 4,980,824

US. Patent DW. 25,1990 Sheet 2 of 8 4,980,824

U.S. Patent DW. 25,1990 Sheet 3 of 8

€MER-

a A-

4,980,824

A
8

I '--

C
D

B . 0 - C €

D - E

I /46

I

I

I
I

I
I
I
I I

.#SR€QU/S/E mu
WR52 UST Cw?I? STATUS

A € N E . ENTER
8 A A -166

F I G . 3

3 C
D

E

E END

F / G . 4

A A d 6 8
A, B A 4/70
c, 0

US. Patent Dee. 25,1990 Sheet 4 of 8 4,980,824

F l G . 6

T
P2

m

P/ P3

F / G . 8’

US. Patent Dec. 25,1990 Sheet 5 of 8 4,980,824

I I
i3 2 3

US. Patent Dec. 25,1990 Sheet 6 of 8 4,980,824

I
I

- 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 I
I
I
I
I
I
I
I
I
I

J

K

I (25) I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I

U.S. Patent Dec. 25,1990

A

B

C

D

E

F

G

H

1

J

K

C

D

E

- I I

A

.a
C

D

E

F

G
H

I
J

K

Sheet 7 of 8 4,980,824

A

A

A

A

C

US. Patent Dec. 25,190 Sheet 8 of 8 4,980,824

Pf?OVJDE END O f %ZSK
/NT€R?UPT S/GNAL 773 ANY

AND ALL OT.€R F)9ocEssORS
ZF€ND€NT ON c6MpLET/oN

I >

F K . N

4.980,824
1

EWENTDRNENEXECUTIW

The invention described herein was made in the per-
formance of work under NASA Contract No. NAS2-
1177 1 and is subject to the provisions of Section 305 of
the National Aeronautics and Space Act of 1958 (72
Stat. 435; 42 U.S.C. 2457).
This application is a continuation of Ser. No. 924,542,

tiled Oct. 26, 1986, and now abandoned.

CROSS REFERENCE TO RELATED
APPLICATION

The invention described herein may employ some of
the teachings disclosed and claimed in commonly
owned co-pending application filed on even date here-
with by Tulpule et al , Ser. No. 06/924,646, now aban-
doned and refded as Ser. No. 07/355,070 entitled n-

SOR LATTICE ARCHITECTURE, which is hereby
expressly incorporated by reference.

DIMENSIONAL MODULAR MULTIPROCES-

1. Technical Field
This invention relates to event driven executives for

2. Background Art
In recent years, there has been an increase in the

demand for high performance, real-time digital com-
puter systems capable of solving complex control prob-
lems demanding high throughput. The designers of high
performance digital computer systems have resorted to
multiprocessor architectures such as systolic, processor
array systems, pipelined systems, or multiprocessor
networks in an attempt to meet the demand. In most of
these systems, the arrays of processors share in the total
workload. Each processor performs the same set of
tasks and operates on the corresponding data sets under
the direction of a system controller. In many systems,
such as network processors. each processing element
controls and operates on its own internal data and com-
municates with other processors for data and execution
flow and control purposes.

In most real-time critical multiprocessor systems,
there is usually a concurrent need for minimizing the
overall computational delay. The computational delay
in a multiprocessor system depends on the worst case,
critical path task times in the proccssors, as well as the
interprocessor data handling delays. The need for mini-
mizing transport delay, therefore, translates to the need
for an operating system or task executive that can effi-
ciently interface with many tasks, both internal and
external to the local processing element, and minimize
the intertask handling of data and control signals.

In the prior art, the operating systems implemented
for real-time control applications were based on a real-
time executive in which real-time events were careNly

signal processors.

DISCLOSURE OF THE INVENTION
An object of the present invention is to provide a

scheme for an event driven executive for a signal pro-

Another object of the present invention is to provide
an efficient task executive which fulms the need to
balance, partition and repartition tasks between proces-
sors in a multiprocessor system in order to balance the

10 critical parameters such as path times, transport delays
and throughput throughout the multiprocessor system.

Still another object of the present invention is to
provide a task executive for starting, suspending and/or
stopping tasks and initiating new tasks after determining

Still another object of the present invention is to
provide a task executive in a multiprocessor system
which, in taking account of task dependencies and pre-
requisites, manages data and control flow signals in

20 order to timely and coherently provide required input
data for a task to the processor which requires that data
in order to properly execute the task.

Another object of the present invention is to provide
a task executive for a multiprocessor system which

25 takes into sccount an architecture in which a given
dependent task may require several prerequisite tasks to
be completed in local or any other processors before
being executed.

Another object of the present invention is to provide
30 a task executive for a multiprocessor system which is

flexible enough to be changed around either during the
design process or dynamically in response to changes in
the execution times of tasks which can change signifi-
cantly during execution.

Another object of the present invention is to provide
a simple, low overhead task executive for a multiproces-
sor system.

Another object of the present invention is to provide
a task executive for a multiprocessor system in which

40 interprocessor interrupts and data blocks are efficiently
handled.

Another object of the present invention is to provide
a task executive for a multiprocessor system which
avoids log jams and hidden transport delays endemic to

Another object of the present invention is to provide
a task executive for a multiprocessor system which
optimizes time critical paths.

Another object of the present invention is to provide
SO for ease of relocateability of tasks in a multiprocessor

system, as between processors.
Another object of the present invention is to provide

for efficient handling of pass-through data and control
signals between several processors.

According to the present invention, an event driven
task executive for a signal processor determines
whether an end of task signal has been generated and
then consults a dependency table in order to determine
those tasks which demnd uwn comdetion of the com-

5 cessor.

15 their priority and precedence.

35

45 prior art multiprocessor systems.

55

3
4,980,824

graph; thus, the tasks are illustrated interdependently in
terms of completion of one task as being a prerequisite
to execution of a subsequent task. The executive is then
designed to operate in conformance with the preced-
ences and interdependencies laid out in the precedence
graph. When a task is completed, an end of task signal is
triggered and provided to the executive in order to
indicate a completed task which is a prerequisite to
commencement of execution of another, dependent
task. Any updated data, resulting from the completion
of the task is provided for use by the subsequent task, if
applicable. The executive determines from a depen-
dency table those tasks which depend upon completion
of the task represented by the end of task interrupt
signal. Current status signals are generated according to
this determination for the purpose of updating the cur-
rent status of the prerequisites for each task. The cur-
rent status is stored in a current status list of a task
prerequisite table. Thus, all tasks yet to be executed
which are dependent on the completion of the task
represented by the end of task interrupt signal have the
current status of their prerequisites updated, with re-
spect to that task, in the current status list of the
prerequisite table. Tasks for which all prerequisites
have been met are queued for execution in a selected
order.

In still M e r accord with the present invention, task
precedences and signal dependencies in a multiproces-
sor system in which tasks are partitioned between pro-
cessors may be expressed graphically in terms of a de-
sign aid called a precedence graph; thus, the assigned
tasks are illustrated interdependently in terms of tasks
being assigned among various signal processors in the
multiprocessor system and in terms of interrupts and
transfer of data between processors at the proper time.
The executive is then designed to operate in confor-
mance with the precedences and interdependencies
laid-out in the precedence graph. When a task com-
pletes, an end of task signal is triggered and provided to
the executive which in turn provides an end of task
interrupt signal to another processor, the completed
task being a prerequisite to commencement of execution
of another, dependent task in the other processor. Up
dated data, resulting from the completion of the task in
the processor providing the interrupt signal is trans-
ferred to the other processor at the time of completion
of the task. Coherency of data transferred may be en-
sured by sendmg the data prior to generating the inter-
rupt. When the executive in each processor receives the
end of task interrupt signal either from one of its own
tasks or from another processor in the multiprocessor
system, it determines from a dependency table those
tasks which depend upon completion of the task repre-
sented by the end of task interrupt signal. Current status
signals are generated according to this determination
for the purpose of updating the current status of prere-
quisites for each task. The current status signals are
stored in memory as a current status list of a task
prerequisite table. Thus, all tasks vet to be executed
which are dependent on the completion of the task and
the associated end of task interrupt signal have the cur-
rent status of their prerequisites updated, with respect
to that task, in the current status list of the prerequisite
table. Tasks for which all prerequisites have been met
are queued for execution in a selected order.

In further accord with the present invention, in a
multiprocessor system, the architecture may be such
that data cannot be transferred directly from one pro-

4
ceSSOr to another either due to lack of a direct path or
failure thereof; in such a case, according further to the
present invention, the data must instead first pass
through one or more other processors or associated

5 memory devices. In such an architecture, the intermedi-
ary processor or processors or their associated memory
devices will serve as intermediaries for the reception of
a task interrupt signal and its associated updated data
relating to the completion of the task from the source

10 processor to the destination processor. In such a case,
the source processor will send an interrupt which is
received by the intermediary and which also receives
the updated data After reception of the data, the inter-
m e d i i sends the task interrupt signal and data to the

15 destinntion processor which then receives the interrupt
and the data. Such “handoffs” of interrupts and data
may be chained in cases where several processor bound-
aries must be crossed.

In still further accord with the present invention, the
20 tasks scheduled for execution, for which all prerequi-

sites have been met, may be scheduled in a plurality of
task execution queues. The number of execution queues
will be greater than or equal to the number of different
task rates for the control system. In other words, there

25 may be several layers of tasks being accomplished at
Merent rates within the control system. Each control
rate may have one or more queues associated with it.
The reason for the additional queues within a given task
rate is that in many cases, one set of tasks are considered

30 more time critical and, therefore, their overall transport
delay must be minimized. Of course, the order of execu-
tion of queued tasks may be selected according to other
types of criteria or as dictated by other priorities.

In order to effectively utilize the possible growth and
35 to achieve the flexibility and other desirable capabilities

of multiprocessor architectures, such as the architec-
tures pictured without limitation in FIGS. 1 and 2 be-
low, a new approach, according to the present inven-
tion, is required for the design of the executive.

This is particularly true in a particular class of prob-
lems where the computational tasks are irregular and
each processor operates differently on a different data
base; in other words, where non-homogeneous data
bases are present within a heterogeneous multiprocessor

45 architecture. That class of problems requires real-time,
sequential computations which are capable of making
data dependent decisions and branching off in non-regu-
lar patterns. Therefore, there is a need for a versatile
multiprocessor system architecture and task executive

50 that can meet the changing, real-time applications for
such problems by efficiently performing large and ever-
changing complex computations in a sequential manner.

The throughput requirements of these irregular, real-
time cornputatid applications are very large and

55 complex and can change drastically from application to
application. The full range of arithmetic and data ma-
nipulation, as well as input-output signal handling capa-
bilities required, can also change drastically, according
to application. In many cases, the computational com-

60 plexities are due to the presence of intertwining, looping
and mixing of data flow paths between functions. The
data flow paths and task executions depend on the mode
of operation and serial, data driven decisions.

The need for high throughput is synonomous with
65 the need for performing a given task within a given time

with a minimum waiting time. For example, in avionic
real-time control systems applications, the computa-
tional transport delay requirements are extremely strin-

40

4.9 80,824
5

gent since they determine the performance and capabili-
ties of the system in terms of bandwidth, as well as the
failure management and reliability qualities of the over-
all system. The use of multiprocessors stretches the data
and execution flow across processor boundaries and
becomes an added factor contributing to the overall
transport delay. The need for reducing this additional
transport delay is thus closely associated with the re-
quirement of efficient and high bandwidth communica-
tion between the interprocessor data elements. A high
communication bandwidth capable of rapidly tramfer-
ring a large number of signals is particularly necessary
because of the presence of irregular and unpredictable
data and execution flows spread across the multiproces-

A given computational task to be executed in multi-
processor architectures, e.g., such as are illustrated,
without limitation, in FIGS. 1 and 2, can be approached
using a number of different methods. A straightforward
approach would consist of using one or two processors
for the management of input data and Using several
other processors for most of the computational tasks.
Output voting planes and built-in-test tasks could then
be performed by the input/output processors. The
problem with this approach is that it does not efficiently
utilize all of the processors aII of the time. Some proces-
sors may be under utilized while some others may run
out of real-time.

Further improvement in effective throughput re-
quires a different scheme in which tasks can be selected
to be performed in parallel without significant software
overhead in the executive. Such an approach to the
design of the task executive involves splitting and merg-
ing of critical, interdependent tasks for the purpose of
balancing the overall computational burden. However,
this calls for a fair amount of sophistication in the execu-
tive requiring a potentially significant overhead.

Another, -haps more important reason for requir-
ing a sophisticated executive, is the problem of log jam
in which the data and control dependencies can force
processors to wait for each other. This is a particularly
difficult situation to predict, test or simulate for in a
system consisting of more than two processors. If al-
lowed to develop, it could lead to catastrophic results.
Other, more subtle forms of log jams can lead to unnec-
essary and hidden transport delays in the execution of
critical timing paths. This problem is caused by ineffi-
cient techniques of scheduling tasks which have met
their prerequisites, i.e., which are ready to go. Another
source of large transport delay, is the lack of efficient
techniques for passing data between processors.

The event driven executive for a multiprocessor sys-
tem, according to the present invention, has the very
important advantage of being unaffected by design
changes which might in turn affect the execution times
of tasks. An event driven executive remains unaffected
by these changes because its execution sequence de-
pends only on the task dependency specified by the
precedence graph.

The problem of obtaining a high overall throughput
in a multiprocessor system is solved, according to the
present invention, by using a flexible, event driven exec-
utive that utilizes a precedence graph for outlining task
definition for efficient execution of the workload.

Each modular processing element (e.g., 12) includes a
signal processing entity 24 (referred to as “SF”’), having
data lines 26, address lines 28, and control lines 30 con-
nected to a ring bus 32.

sors.

6
An event driven executive for a multiprocessor sys-

tem, according to the present invention, provides the
flexibility of implementation lacking in real-time execu-
tives and is a key element essential for the effective

In sti l l further accord with the present invention, the
occurrence of each event suspends the present task for
a review of the relative priorities of the currently sus-
pended task and the new task(s) for which the event is

10 a prerequisite. A task of the highest priority, which has
atso met all its prerequisites, is then searched for and, if
found, it is then invoked for execution. If not found, the
currently suspended task is re-entered. Thus, dynamic
changes in the relative timings of tasks do not affect the

15 executive. The executive can also be easily changed
during the design proccss to reflect a new precedence
graph by simply changing the prerequisite and depen-
dency tables.

The present invention provides a generic executive
20 for all configurations and requirements which is driven

by tables of precedences and dependencies based on a
precedence graph of tasks and signals. The executive is
dynamically independent of task timings. It provides
the flexibility needed for design changes which often, in

25 the design process of the prior art, resulted in architec-
tural upheavals at very high cost. The present invention
provides the ability to easily optimize any and all criti-
cal paths. Moreover, efficient handling of interproces-
sor interrupts is provided. Data signals between proces-

30 sors are transferred in a coherent manner simply by
sending the data before the interrupt and at the same
time eliminating the need for polling and its associated
inefficiencies and the potential for lock-ups is also

5 utilization of multiprocessor architectures.

35

40

45

50

55

60

65

thereby eliminated. Pa& through tasks are-also effi-
ciently handed. Traceability and monitoring of normal
task completion events is assured. Fault tolerance for
abnormal events is an additional feature of the present
invention.

These and other objects, features and advantages of
the present invention will become more apparent in
light of the detailed description of a best mode embodi-
ment thereof, as illustrated in the accompanying draw-

BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a pictorial representation of a two dimen-

sional multiprocessor lattice architecture in which a
multiprocessor task executive according to the present
invention may be utilized;

FIG. 2 is a pictorial representation of a three dimen-
sional multiprocessor lattice architecture in which a
multiprocessor executive according to the present in-
vention may be utilized,

FIG. 3 is a simplified block diagram illustration of a
precedence graph, showing a number of tasks to be
executed in a number of processors and showing the
interdependencies between the tasks;

FIG. 4 is a pictorial representation of a dependency
table showing each of the tasks of FIG. 3 and each of
the dependent tasks relating to each;

FIG. 5 is a pictorial representation of a prerequisite
table showing a prerequisite list for each of the tasks of
FIG. 3 and also showing a current status list for each of
the prerequisites for each task;

FIG. 6 is a pictorial representation of a task identifier
associated with each of the real time interrupts as well
as the interprocessor interrupts associatea with the ex-
ecutive, according to the present invention;

ing.

4.980,824
7

FIG. 7 is a pictorial representation of the operation of
a multi-tasking hierarchical executive in which several
tasks rates are operating at the same time;
FIG. 8 is a pictorial representation of an execution

sequence illustrating the execution of the tasks illus-
trated in FIG. 3;

FIG. 9 is an illustration of a second precedence graph
for a second multiprocessor system,

FIG. 10 illustrates a dependency table and a
prerequisite table for the precedence graph of FIG. 9;
and

FIG. 11 is a simplified flow chart illustration of a

plementing a task executive for a multiprocessor sys-
tem, according to the present invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

FIG. 1 is a pictorial representation of a two-dimen-
sional multiprocessor lattice architecture 10. A number
of two-dimensional modular proccsSing elements 12,14,
16, 18 are illustrated connected to one another in a
manner to be described in more detail below. The num-
ber of processing elements is at least two but may be any
number.

It should be understood that the architectures de-
picted, in both FIGS. l and 2 are not presented by way
of limitation since the event driven multiprocessor task
executive disclosed herein is broadly applicable to a
wide range of different entities, from a mere individual
“uniprocessor” to a general multiprocessor system.

A two-dimensional modular input/output controller
(IOC) 20, as shown in FIG. 1, may be used in the two-
dimensional multiprocessor lattice architecture 10.
Such an IOC serves the purpose of communicating data
and control signals between the outside world and the
multiprocessor architecture. Additional IOCs may be
utilized as is indicated by an additional IOC 22, which
helps to share the input/output task load. It may be
advantageous from the point of view of modularity to
have both modular processing elements and modular
IOCs for use as symmetrical building blocks in the lat-
tice architecture 10. This does not necessarily imply,

series of logical ~ t c p ~ which may be carried out in im-

5

10

15

20

25

30

35

40

however, that such building blocks would be used, or if
used, that they would operate identically. In other 45
words, a heterogeneous multiprocessor system is con-
templated to be within the mpe of the present inven-
tion.
As mentioned above, the task executive of the present

invention may be used in an architecture such as shown 50
in FIG. 1, but the present invention is not restricted
thereto, although it is particularly advantageous
therein, as will be discussed in greater detail below.

In a two-dimensional architecture each two-dmen-
siod modular processing element 12,14,16,18 should, 55
optimally, have four ports. Such are shown in FIG. 1 as
emanating from, e.g., the ring bus 32 and exiting the
modular processing element 12, through each of the
four sides of the dashed lines which indicate the bound-
aries of the modular processing element. It will be un- 60
derstood that an actual circuit implementation of the
two-dimensional multiprocessor lattice architecture (or,
for that matter, an any dimension architecture) need not
have any relation to the square shapes shown in FIG. 1
since the circuits can be mounted on printed circuit 65
boards inserted into a chassis with other circuit boards.
The interconnections in such a case will not be so sim-
ple or symmetrical as illustrated here. Thus, these Fig-

8
urcs will, for many caaes merely be pictorial and func-
tional representations which aid in the presentation of
the concepts involved.

The two-dimensional lattice architecture pictured in
FIG. 1 relies on a dedicated memory storage area be-
tween each modular entity and every other modular
entity with which it communicates in the lattice. This
dedicated function can most effectively be implemented
by a dual port random access memory (DPR). Of
course, a DPR is not absolutely essential since memory
arbitration using more traditional memory devices
could be accomplished in lieu thereof.

If modularity is desired for each of the two-dimen-
sional modular processing elements 12,14,16,18, it will
be best to provide two dual port RAMS per modular
processing element. The other two ports in each ele-
ment will not have a dual port RAM since they will be
interfacing with other modular processing elements
which do. The symmetry of processing elements con-
structed in this manner are most advantageous as may
be illustrated in FIG. 1. There, it will be observed that
modular processing element 12 has a “South” port with
a DPR 34 which interfaces with a “North” port of
modular processing elements 16, which does not have a
DPR associated with it. Similarly, the “Eastern” port of
modular processing element 13 does not have a DPR
associated with it but the “Western” port of modular
processing element 14 does have a DPR 36 associated
with it. In this way, the symmetry of the modular pro-
cessing elements 12,14,16,18 enhances the facility with
which a multiprocessor lattice may be constructed, in
which each modular processing element communicates
with another modular entity, in general, through a dedi-
cated DPR. Of course, the symmetry of the individual
processing elements could be different than shown.

The “Northern” port of modular processing element
12 contains a DPR 38 having data and address lies 40
emanating therefrom for connection to another modu-
lar entity (not shown). Of course, it will be understood
that the data and address lines 40 need not necessarily
be connected to another modular entity since the
boundaries of the architecture must end somewhere.
Control lines 42 also emanate from the ring bus 32 for
communication across the “Northern” boundary for the
modular processing element l2. Such lies are not abso-
lutely necessary but would normally consist of hard
wired interrupts. Such interrupts can also pass through
the DPR rather than being routed separately.

The “Eastern” boundary of the modular processing
element 12 is shown having data and address l i e s 44
and control lines 46 emanating from the ring bus 32 for
connection to the “Western” boundary of processing
element 14, including DPR 36.

Similarly, the “Westem” boundary of entity 12 is
illustrated having data and address lines 48 and control
lines 50 emmating from the ring bus 32.

The “Southern” boundary of the modular processing
element 12 has a port which interface with data and
address lines 52 which interface with the ring bus 32 via
the DPR 34. Control lines 54 provide the hard wired
interrupts to the adjacent modular processing element
16.

It will be observed that the modular symmetry of the
modular IOC 20, with respect to the number of DPRs
contained therein, is different from that of the modular
IOC 22. This showing is merely illustrative, however,
as it will be realized that once a particular symmetry is
selected for either an IOC or SP there will be little

9
4,980,824

10
incentive to have another symmetry available. This is context in which the task executive of the present inven-
not to say, however, that one or more different symme- tion may be utilized. Thus, it will be understood that the
tries of either IOOCS or SPs cannot be used in the same task executive presented and claimed herein may simply
architecture. For example, two types of SPs could be be used on a single processor and, furthermore, is not
used, one having three DPRs and another having one 5 restricted in application to the types of architectures
only. Furthermore, the processing entities themselves shown in FIGS. 1 and 2 but is broadly applicable to
may all have dserent processors or processor struc- other architectures as well.
tures in them with interfaces that are uniform across the In breaking up a computational job into small Units,
system. the smallest individual unit of software module(s) plus

The modular IOC 22 of FIG. 1 comprises a central 10 data and control blocks which may be located in a se-
input/output controller (IOC) 60 surrounded by a ring lected processor is defined as a task. For example, in
bus 62 which communicates with data lines 64, address avionics control systems, signal management of a sensor
lines 66, and control lines 68 emanating from the IOC set would be defined as a task; a triplex signal selection
60. It will be observed that the ring bus 62 for the IOC subroutine may not be defined as a task but would in-
22 is slightly different from the ring bus 32 in that it 15 stead be defined as a component or subtask to be joined
comprises a “broken circle’’ with a gap through which with other subtasks to make up a task. It should be
a pair of data lines 70 and control lines 72 emanate at the noted that the definition of a task is not necessarily a
“Western” port of the modular IOC 22 for communicat- fm one. It requires the tradeoff of modularity and
ing with I/O devices in the outside world. executive overhead for processing. Since the executive

At the “Northern” and “Southern” boundaries of the 20 overhead directly depends on the number of tasks in the
modular IOC 22 there exist ports having dedicated precedence graph, a ‘‘small” number is usually desir-
memories 74,76 which may be DPRs, and which may able.
be used to communicate with other modular entities in A precedence graph shows the interrelation a job
the lattice architecture via data and address bus lines 78, subdivided into a set of tasks. In other words, a prece-
80 and control lines 82, 84, respectively. The “North- 25 dence graph specifies the dependencies and prerequi-
ern” boundary communicates with IOC 20. The modu- sites of each task. An example of a precedence graph is
lar entity, if any, communicating with its “Southern” provided in FIG. 3. In this Figure, a task 142, labelled
boundary is not shown but may be an empty slot, an- “A” is started by an ‘‘external‘‘ event, not specified, but
other modular IOC, or a modular processing element. which may generally be indicated by an ENTER step

At the “Eastern” boundary of the modular IOC 22 30 140. Tasks 143, 144, 146, respectively labelled, “B”,
there is shown a port having data and address lines 86 “C”, and “D” depend on task A. However, only tasks B
and control lines 88 for communicating with an adja- and C can be started by task A because task D also
cent modular entity. There is no dedicated memory depends on task B. Similarly, the final task 148, labelled
Bssociated with the ‘‘Eastern” port of this particular “E”, depends on tasks D and C. Tasks B and C are to be
modular IOC since, as shown in FIG. 1, it is used in an 35 performed by processors P2 and P3, respectively, with
application in which the adjacent modular processing processor P1 handling the rest. The overall task prece-
element 16 already has a dedicated memory 90. dence can be represented by one graph for all of the

FIG. 2 illustrates a three-dimensional lattice architec- tasks to be completed by all the processors in a given
ture using several three-dimensional modular process- time frame. Thus, at the end of executing the task E
ing elements UO, 122,124,126 and a three-dimensional 40 shown in FIG. 3, a step 150 will be executed in which an
modular IOC l28. The four modular entities 120, 124, exit is made. In the normal course of events, the step 140
126,128 can be pictured as lying in the same plane while would be reentered at some point, at which time all of
the modular entity 122 can be pictured as lying in an- the tasks A, B, C, D, and E would be re-executed. This
other plane, parallel to and behind the front plane. process could go on ad in f~ tum. It will be understood
Other modular entities can be imagined lying in the 45 that the broadest claims of the present invention are not
same plane with entity 122 but are not shown for the restricted to a task executive for a multiprocessor sys-
sake of simplicity. Each of the modular entities in the tem. Thus, for the single processor case, the tasks of
three-dimensional lattice is connected to one or more FIG. 3 would not be split between three processors but
adjacent modular entities via dual port RAMS (DPRs). would be executed, according to the present invention,
These are shown as cubes in FIG. 2 and are intercon- 50 using a task executive operating with one processor.
nected between modular entities with dedicated ad- In any multiprocessor architecture, such as are illus-
dress, data and control lines. Each of the entities is trated in FIGS. 1 and 2, there will normally be various
illustrated as being surrounded by a “ribbon” bus for types of interrupts which must be handled. Such inter-
address, data and control lines. It will be observed that rupts might include a macrosync (MS) type of interrupt
the IOC 128 has its data, address and control “ribbon” 5 5 which indicates the beginning (or end) of a repetitive
lines broken at one point to permit communication with time frame for purposes of synchronization, a real-time
the outside world via lines 130 which would be similar (RT) type of interrupt, as well as interprocessor inter-
in function to lines 70, 72 the two dimensional case rupts for indicating an end of task or a request to start a
shown in of FIG. 1. The three-dimensional lattice archi- task if prerequisites have been met.
tecture of FIG. 2 is also similar to that of FIG. 1 except 60 A typical task identifier (ID) is shown in FIG. 6 and
for the added dimension. Of course, it will be realized such an identification signal would be transmitted over
that the lattice architecture may be extended to any the data lines to a processor in conjunction with an
number of dimensions which will not be pictured here interrupt. First, the processor number, i.e., the proces-
because of the difficulty of pictorially showing more sor designated for performing the task would be identi-
than three dimensions. 65 fied as indicated in a block 160 which may be any num-
As mentioned above, the architectures illustrated in ber of bits wide (parallel) or long (serial). Each task may

FIGS. 1 and 2 are presented not by way of limitation be assigned a unique alphanumeric identifier as indi-
but merely as an aid to the reader in understanding the cated in a block 162. A task queue number will also be

4,980,824
11 12

assigned in a case where there is more than one queue. queues will be greater than or equal to the number of
e.g., for either different task rates or dflerent queues different task rates. The reason for any additional
within a rate. This is indicated by a block 164 in FIG. 6. queues within a given task rate is that in many cases, one
The task type will also be indicated in a block 166 in set of tasks, e.g., the pitch axis computations for an
which the type of task to be accomplished is identified. 5 avionic application, will be considered more time criti-
The task types may include a pass-through for a data cal and, therefore, their overall transport delay must be
block, a request to start a task (if prerequisites are met), minimized. The additional task queues will, therefore,
or an end of task signal. be provided for parallel execution.

FIG. 4 illustrates a dependency table 152 generated FIG. 8 illustrates the execution sequence for the pre-
from the precedence graph of FIG. 3. Entries in the IO cedence graph of FIG. 3 in relation to the times for
table contain the sets of task IDS, such as shown in FIG. executing each task. As shown, tasks 143 (B) and 144
6, pertaining to those tasks that depend on a given task. (C) are performed in processors P2 and P3 and the
The table is organized in such a way that the ID of a remaining tasks are performed in processor PI. The
task points to the beginning of the set of dependent shaded areas indicate time unused or used by other
tasks. It can be seen that the completion of task A de- 15 processor tasks. Notice that if task 144 (C) takes too
noted by “A” at the left of the table leads to dependency long, a8 shown by a dashed end of task interrupt line
table task ID entries for tasks B, C, and D at 154,135, 200, task 148 (E) would be sigdkantly delayed, as
158. Similar task ID entries are made for the other tasks shown by dashed lines 203, as would the earlier end of
in the precedence graph. task inkrrupt 202.

Additional interrupts 204, 206 signify to adjacent
there illustrated. For each executable task listed in a processors the end of task “A” while another interrupt
column of executable tasks designated by a capital letter 208 signifies the end of task B to processor P1.
at the left of the table, the prerequisite table contains an The operation of the task executive can be described
entry for both a prerequisite list 162 and a current status as “event” or “intempt” driven. Only the following
list 164. The list of prerequisites for each executable task 25 three basic types of events need to be considered:
contain all of the other tasks which must be completed (1) End of task interrupts,
before the task in question can be initiated. This list may (2) Pass through interrupts, and
be generated at compile time and is bascd on the prece- (3) Start request interrupts.
dence graph of FIG. 3. A rule may be made that it When a processor receives an end of task interrupt, it
cannot be changed during execution. Thus, for example, 30 uses the task ID as shown in FIG. 6 to locate the set of
task D requires that tasks A and B must be completed dependent tasks in the dependency table as shown in
first. The current status list is used to keep abreast of the FIG. 4. Each dependent task ID and its associated
status of prerequisites for any given task. In the illustra- prerequisite criteria is then used to update the current
tion of R G . 5, the current status list indicates that task status of prerequisites in the prerequisite table as shown
A is completed, as indicated by entries 166, 168, 170 35 in FIG. 5. If all prerequisites for a task are met, the task
corresponding to tasks B, C and D, which depend on is placed on the appropriate execution queue using its
task A and for which task A is a prerequisite. Thus, this task queue number block in the task ID. The set of all
list represents those prerequisites which have been met dependent tasks are processed by the executive in this
in the current task frame associated with the task. This manner before exiting from this overhead work. For the
list is reinitialized using the list of prerequisites in the 40 example of FIGS. 3,4,5, and 8, the end of task interrupt
prerequisite, but that task B is not yet completed as 202 issued by procespor P3 to processor P1 at the com-
indicated by the entry 170 list at the task rate. pletion of task 144 (C) would result in the updating of

There may be a number of task rates associated with the prerequisite table’s current status list for task E. If
a multi-tasking executive. Thus, a task which must be some task were directly dependent upon the completion
completed within a relatively short period of time, e.g., 45 of task C, and only task C, then the end of task interrupt
12.5 ~ o n d s . will be repeated at an 80 Hertz rate. issued by task C would result in the scheduling of that
Tasks which do not have to be completed so quickly, task in the appropriate processor‘s execution queue.
e.g., at a 40 Hertz rate will be repeated every 25 milli- There will be CBSCS where an interrupt will have to
seconds. As shown in FIG. 7, for a multi-tasking execu- crm more than one processor boundary. For example,
tive in which five different rates are going on at the 50 a task in processor P3 could be a prerequisite for a task
same time there will be, in addition, for example, a 20 in processor P2. In that event, the interrupt from P3
Hertz rate in which tasks assoCiated with that rate are would have to ‘‘pass through” P1. A pas6 through inter-
accomplished repetitively every 50 milliseconds as rupt and updated data is provided to Pl for relay to P2.
shown in FIG. 7(c). Similarily, at a 10 Hertz rate tasks P1 would respond to this interrupt and data by using the
are repeated every 100 milkconds as shown in FIG. 55 Bssociated task ID to determine the source and destina-
7(4. For a 5 Hertz rate, as shown in FIG. 7(e), there tion of the data block. The end of task interrupt and data
will be a spacing of 200 miuiseco nds between repetition would then be provided to P2 for execution. The depen-
of those tasks. For each of the rates there will be at least dency table may or may not include an entry of the pass
one execution queue. through task(s). The dependency tables shown in FIG.

The five different task rates of FIG. 7 are each shown 60 4 do not include such an entry because it is directly and
being synchronized by macrosync pulses 172 which are most rapidly handled by the interrupt service routine
transmitted througbout the multiprocessor architecture itself.
to establish synchronism. For the five rates shown in In case of data blocks which may be used locally, as
FIG. 7, there will be sixteen repetitions of a 12.5 ms well as passed through to another processor, two possi-
macrosync before the entire 5-rate task is completed 65 ble approaches need to be traded off. The first involves
once. not classifying the task as a pass-through, but as an end

A task is entered into an execution queue when it of task signal and operating as described above. The
completes it prerequisites. The number of execution alternate involves performing the pass-through task as

Referring now to FIG. 5, a prerequisite table 160 is 20

499
13

described above and then setting an event flag so that
the data block can be used locally using the dependency
and prerequisite tables. The latter approach may be
preferred since the requesting processor cannot always
determine whether or not a data block is only being

A start request interrupt may be used to request a
processor to start a task, specified by the task ID, re-
gardless of its prerequisites. This interrupt may be used
to initiate tasks that have no prerequisites, e.g., real time
and macrosync (MS) interrupts. These interrupts can be
handled as end of task interrupts as well. However, a
mechanism is sometimes needed to start a task in an-
other processor regardless of what it was doing.

Referring now to FIG. 11, a simplified flow chart
illustration shows a series of logical steps which may be
implemented in carrying out the tasks illustrated in
FIGS. 3, 4, 5 and 8.

After entering at a step 210, a decision step 212 is next
executed in which a determination is made as to
whether an internal end of task signal has been gener-
ated. If so, a decision step 214 is next executed in which
a determination is made as to whether or not there are
any external dependencies depending on the completion
of the indicated task. If so, a step 216 is next executed in
which data relating to the completion of the task is
transferred to any and all other processors dependent
on completion of the task. An end of task interrupt
signal may then be provided, as indicated in a step 218,
to any and all other processors dependent on comple-
tion of the task. Tasks 218 and 216 could be inter-
changed but the transfer of data first is the preferred
technique since coherency can be ensured if the end of
task interrupt is sent only after data transfer is complete.
Such an approach would be based on not permitting the
destination processor to access data until it has received
the end of task interrupt.

If it had been determined in step 212 that there had
been no internal end of task signal generated, then a step
220 would next have been executed in which a determi-
nation is made as to whether or not an end of task inter-
rupt signal has been received from another processor. If
so, a step 222 is next executed in which a determination
is made as to whether or not the end of task signal repre-
sents a pass-through of data intended for another pro-
cessor. If it is a pass-through, then a step 224 is next
executed in which the pass-through data is received and
forwarded to the target processor. This of course may
be by way of a “chain” of processors and memory stor-
age areas, much like a “bucket brigade.”

Of course, the end of task interrupt must also be trans-
mitted to the target processor or to the intermediary
processor, as indicated in a step 226.

At the conclusion of step 226 or, if it had been deter-
mined in step 222 that there had been no request for a
pass-through, then a step 228 is next executed in which
updated data from another processor is received and
stored.

After step 228 is completed or, after step 218 is com-
pleted or, if it had been determined in step 214 that there
were no external dependencies, then a step 230 is next
executed in which a dependency table is consulted to
determine those internal tasks which depend upon com-
pletion of the completed task as represented by the just
received end of task interrupt signal. The current status
list of prerequisites completed is then updated for each
such task. The current status list is then compared to the
prerequisite list for each such task, as indicated in a step

passed through.

80,824
14

232. Those tasks for which all prerequisites are met are
then queued for execution, in a selected order, as indi-
cated in a step 234.

After completion of step 234 or, if it had been deter-
5 mined in step 220 that there had been no end of task

interrupt signal received from another processor, then
an exit is made as indicated in a step 236.

Another example of a precedence graph for a task
executive is shown in FIG. 9. This example is slightly

10 more complex than the example shown in FIG. 3. The
tasks in FIG. 9 are distributed among four processors,
P3, P1, P2, P4. The tasks are illustrated, as in FIG. 3, as
being vertically partitioned between the four proces-
sors. This method of pictorial representation has no
special significance other than to indicate a separation
of processors into separate and distinct signal process-
ing elements. Dependency and prerequisite tables 211a
2llb corresponding to the graph of FIG. 9 are shown in
FIG. 10.

As with FIG. 3, when a processor receives an end of
task interrupt it uses the task ID to locate the set of
dependent tasks in the dependency table. Each depen-
dent task ID and its associated prerequisite criteria is

25 used to update the current status list of prerequisites in
the prerequisite table. If all prerequisites are met, the
task is placed on the appropriate execution queue giving
its task ID. The set of all dependent tasks are processed
in this manner before exiting from this task. For the

3o example of FIGS. 9 and 10, the dependency and
prerequisite tables indicate that the end of task interrupt
issued by task C would result in the scheduling of task
F and G in the appropriate processor execution queues
and the updating of the prerequisite status of task H.

As before, with regard to interrupts and/or data
which must cross processor boundaries, a pass-through
interrupt is provided. Again, a processor will respond to
this interrupt by using the associated task ID to deter-
mine the source and destination of the data block. The
task is performed within an interrupt service routine in
order to achieve the highest throughput rate for pass

For a more detailed example of a pass-through than
given before, as seen in the precedence graph of FIG. 9,

45 the completion of task E in processor P4 requires a
pass-through interrupt to processor P2 in order to com-
plete the prerequisites of task J in processor P1. The
task completion interrupt and updated data is provided
to P2 by P4 and results in the scheduling of the pass

50 though task. P2 interrupts processor P1 and transfers
the necessary data to P1. Processor P1 uses this inter-
rupt from PZ to update the prerequisite table’s current
status list for task J. Again, note that the dependency
table does not include an entry of the pass-through

55 task@) because these tasks are more eficiently handled
in the interrupts via a look-up table, not shown.

Again, the comments with respect to data blocks
which may be used locally, as well as passed through to
another processor, as made previously with respect to

The disclosure made previously with respect to FIG.
3 concerning start request interrupts is also applicable
with regard to FIG. 9.

Although the invention has been shown and de-
65 scribed with respect to a best mode embodiment

thereof, it should be understood by those skilled in the
art that the foregoing and various other changes, omis-
sions, and additions in the form and detail thereof may

*’

35

through tasks.

60 FIG. 3, apply here as well.

4,980,824
15 16

be made therein without departing from the spirit and
scope of the invention.

establishing in each given one of said signal proces-
sors, a stored table of task identifiers indicative, for
each task dependent on any of said other tasks to be
executed in said given signal processor, of the iden-
tity of said dependent task and the specific one of
said signal processors within which said dependent
task is to be executed; ' ' g the order in which said tasks may be

z w so that any one of said tasks dependent on said end of task si@ comprising an end of task inter-
rupt signal issued from said given signal processor data to be provided by any other ones of said tasks
and received by said specific signal processor; and

ones ofsaid tasks, a dependency in response to an end of task interrupt signal relating
to any one of said other tasks in said given signal table indicative, for each of said other tasks, of any processor, transferring, from said given signal pro- one of said tasks dependent on such other tasks, and cessor to said specific signal processor, the data establishing a stored prerequisite table including a resulting from completion of such one of said other prerequisite list indicative, for any one of said tasks, tasks in said given signal processor related to said
dependent task. of any of said other tasks on which said one task is

dependent and a Current status list 3. A method according to claim 2 for controlling the

tasks in said prerequisite list has been completed, 2o at least three

at least one of said given signal processors, an indi- said other ones of said tasks having an immediate
cation of the fact that one of said tasks, to be exe- enter status associated therewith in said depen-

dency table and in both lists of said prerequisite cuted in a certain one of said specific signal proces-
table; sors other than said given signal processor, is a data

executing, first, any of said tasks which is not depen- block pass-through task, execution of which will
dent on any of said other ones of said tasks, as pass a block of data from said given signal proces-
indicated by said immediate enter status, and to sor through said certain specific signal processor to
said dependency table a corresponding completion a third one of said signal processors;
of execution of each such task. issuing an end of 30 establishing, in one of said tables of task identifiers in
task ai@; said certain specific signal processor, an indication

in response to each of said end of task signals, deter- that a task related to said data block pass-through
mining from said dependency table each of said task is to be executed in said third signal processor;
tasks dewdent on the task issuing said end oftask queuing said data block pass-through task for execu-
signal and, for each dependent task so detemim4 35 tion in said certain specific signal processor in re-
entering into the corresponding portion of said sponse to receipt by said certain specific signal
current status list, as determined by said processor of said end of task interrupt related to
prerequisite list, an indication that the task issuing said data block pass-through task from said given
said end of task signal has been completed, and signal processor; and

queuing, for execution in a selected order, each task 40 issuing from said certain specific signal processor an
for which said status iist indicated completion of end of task interrupt signal to said third signal pro-
every corresponding task in said prerequisite list. cessor in response to completion of said data block

2. A method according to claim 1 for controlling the pass-through task in said certain specific signal
execution of a plurality of data-independent tasks in a processor.

W e claim:
1. A method of controlling the execution of a plural-

ity of &&-interdependent tasks in at 1-t one signal 5
processor, comprising:

de

be after completion of said other 10

15

Of whether Or not each Of said Other execution of a plurality of data-interdependent tasks in
processors, comprising:

Of said tasks which is not On Of establishing, in one of said tables of task identifiers in

25

* * * * * plurality of signal processors, comprising: 45

50

55

60

65

