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(57) ABSTRACT 

A method and system for detecting a failure or performance 
degradation in a dynamic system having sensors for mea- 
suring state variables and providing corresponding output 
signals in response to one or more system input signals are 
provided. The method includes calculating estimated gains 
of a filter and selecting an appropriate linear model for 
processing the output signals based on the input signals. The 
step of calculating utilizes one or more models of the 
dynamic system to obtain estimated signals. The method 
further includes calculating output error residuals based on 
the output signals and the estimated signals. The method 
also includes detecting one or more hypothesized failures or 
performance degradations of a component or subsystem of 
the dynamic system based on the error residuals. The step of 
calculating the estimated values is performed optimally with 
respect to one or more of  noise, uncertainty of parameters 
of the models and un-modeled dynamics of the dynamic 
system which may be a flight vehicle or financial market or 
modeled financial system. 

38 Claims, 3 Drawing Sheets 
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METHOD AND SYSTEM FOR DETECTING A 
FAILURE OR PERFORMANCE 

DEGRADATION IN A DYNAMIC SYSTEM 
SUCH AS A FLIGHT VEHICLE 

CROSS-REFERENCE TO RELATED 
APPLI CAT1 ON 

This application claims the benefit of U.S. provisional 
application Serial No. 601280,081, filed Mar. 30, 2001. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with government support under 
NASA Grant No. NGT4-52404. The government has certain 
rights in the invention. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to methods and systems for detect- 

ing failures or performance degradation in dynamic systems 
such as flight vehicles. 

2. Background Art 
FIG. 1 is a representation of the prior art, which depicts 

failure detection and isolation (i.e., FDI) of flight vehicle 
icing. Generally, the method of this prior art teaches detec- 
tion and isolation of failures in flight vehicles that result in 
a loss of control effectiveness. Detection and isolation of 
failures is accomplished via a linear state estimator or 
observer that continuously calculates an estimate 2 of the 
state vector x of the flight vehicle dynamic system in 
question. The flight vehicle dynamic system is assumed to 
have sensors available for measuring some or all of the state 
variables. The measured values y are normally present as 
part of the dynamic system. 

The state estimator calculates estimated values 9 of the 
sensor outputs and is designed such that for no system 
failures the estimated values 9 agree with measured sensor 
values y. Whenever system failures (as described above) 
occur, there is a non-zero error e difference between y and 
9: 

e=y-jl. 

Each state estimator is designed to detect and isolate a 
particular hypothesized failure mode f .  

The feedback gains for the state estimator are chosen such 
that the error residuals for a given hypothesized failure are 
in a unique direction in output space. Isolation of the failure 
from other possible failures is done via the directionality of 
the error residuals. 

The state estimator is a linear Luenberger-type observer 
which represents a dynamic system that has dynamics 
typically given by nonlinear mathematical models. The 
dynamics are typically a linearized model of a nonlinear 
system. In this case, the models can be obtained from 
empirical measurement of dynamic system performance 
through instrumented flight test or through mathematical 
modeling of the system. The nonlinear models may be 
obtained from the above data by any of a number of standard 
regression techniques as is known in the art. 

The state estimator is an observer of the form: 

P=AP+Bu+L b-9) 

jl=CP+Du, 

where A and B are the state transition and input matrices, 
respectively, of the nominal reference model for the system 

2 
dynamics, and D is the estimator gain matrix that is chosen 
such that the output error residual e=y+ is one dimensional. 
The design of the estimator gain is explained in section 2.1 
of Appendix A hereto. The nominal matrices A and B are 

5 obtained by linearizing the system nonlinear models at an 
operating point and are approximately valid representations 
of the dynamic system in a neighborhood of that operating 
point. Other sets of matrices are required to characterize 
flight vehicle dynamics over the entire flight envelope. 

It was previously recognized by the inventors that some 
procedure could be found for selecting operating points and 
associated neighborhoods, and representing the dynamic 
system within that neighborhood based on certain operating 
parameters for the dynamic system (e.g., flap setting angles 
for flight vehicles). This procedure is called “gain schedul- 
ing” in the prior art papers authored by the inventors. 

However, it was not known or shown in the prior art how 
to select operating points or how large the neighborhoods 
could be to achieve acceptable error levels for the FDI. 

It was also recognized in the prior art papers authored by 
20 the inventors and noted herein below that detection and 

isolation of hypothesized failures could be accomplished by 
examining the magnitude of error residuals along the direc- 
tion of the output of the FDI for the hypothesized failure. 

U.S. Pat. Nos. 5,615,119; 5,819,188; and 6,085,127 to Vos 
zs disclose fault tolerant automatic control systems utilizing 

analytic redundancy. The systems are used for controlling a 
dynamic device, preferably a flight vehicle. The systems 
include a processing structure which controls the operation 
of the systems. In operation, the processing structure trans- 

30 forms sensed dynamic device control criteria into a linear 
time invariant coordinate system, determines an expected 
response for the device according to the transformed control 
criteria, compares the expected response with a measured 
response of the device and reconfigures the control means 

U.S. Pat. No. 4,355,358 to Clelford et al. discloses an 
adaptive flight vehicle actuator fault detection system. The 
system, utilizing sensors to determine the position of various 
operating devices within a flight vehicle, compares the 

40 positions with expected positions provided by an operating 
model of the flight vehicle. Thereafter, the system provides 
fault warnings, based upon the actual device operating 
conditions and the expected operating conditions obtained 
from the model. 

U.S. Pat. No. 5,919,267 to Urnes et al. discloses a neural 
network fault diagnostics system and method for monitoring 
the condition of a host system, preferably a flight vehicle 
including a plurality of subsystems. The system includes a 
neural network means for modeling the performance of each 

SO subsystem in a normal operating mode and a plurality of 
different failure modes. The system also includes a com- 
parator means for comparing the actual performance of each 
subsystem with the modeled performance in each of the 
normal and possible failure modes. Finally, the system 

ss includes a processor for determining, based on the compari- 
sons of the comparator, the operating condition of the host 
system. 

U.S. Pat. No. 5,070,458 to Gilmore et al. discloses a 
method of analyzing and predicting both airplane and engine 

60 performance characteristics. In operation, the system moni- 
tors the operation of a flight vehicle during flight and stores 
the monitored parameters and flight circumstances in a 
memory. Thereafter, during subsequent flights, the system 
determines and/or predicts how the flight vehicle should be 

U.S. Pat. No. 4,312,041 to DeJonge discloses a flight 
performance data computer system. In operation, the system 

10 

35 based on the comparison. 

45 

65 operating. 
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monitors the operation of various operating characteristics 
of a flight vehicle during flight and provides an indication of 
the characteristics to the flight vehicle operator. The infor- 
mation provided by the system assists the operator during 
the flight. 

U.S. Pat. Nos. 5,195,046; 5,838,261; and 6,052,056 dis- 
close various systems for monitoring the performance of 
dynamic flight vehicle subsystems and providing an indica- 
tion of the performance to the flight vehicle operator. 

U.S. Pat. No. 3,603,948 discloses fault identification, 
isolation, and display device for testing a flight vehicle 
control system. The device senses malfunctions in selected 
portions of the system and provides a visual display which 
instantaneously identifies and isolates the malfunctioning 
section and memorizes the fault status of the section until the 
device is manually or automatically reset. 

U.S. Pat. No. 3,678,256 discloses a performance and 
failure assessment monitor which assesses overall perfor- 
mance of the operation of the automatic landing mode of a 
flight control system for a flight vehicle. The monitor is 
connected to various sensors throughout the flight vehicle so 
that it can compare what the flight control system of the 
flight vehicle is accomplishing during a landing maneuver 
against an independent model generated within the monitor 
of what the flight control system should be accomplishing. 
The resultant comparison is displayed to the pilot as a 
measure of relative confidence that the landing will be 
accomplished properly. The monitor also includes failure 
verification and failure reversion control for making imme- 
diate and accurate assessments of the consequence of a 
failure of any component in the flight vehicle which in any 
way affects the ability of the flight control and flight guid- 
ance instrument systems to operate properly, for correcting 
the failure when possible and for displaying only the critical 
failure information to the pilot of the flight vehicle. 

U.S. Pat. No. 5,760,711 discloses a modulated light 
source (31) which transmits light pulses via a prism (27) 
through a monofilament optical fiber light channel (20) to an 
optical sensor (10) remotely located and flush mounted to an 
aerodynamic surface (14) of the flight vehicle most likely to 
accrete ice. In the absence of ice, little to no light is reflected 
inward via the light channel. When water, ice, or de-icing 
fluid covers the light sensor, an increased amount of light 
pulses are reflected inward through the single fiber optic 
light channel and prism assembly where they are detected by 
a light detector (34) which generates an electrical output 
signal indicative of the type, amount, and rate of ice accre- 
tion. The output signal is visually displayed (37) and the 
pilot may be audibly warned. In an alternate embodiment, 
the remote light sensor (70) is fuselage mounted (72) with an 
airfoil shaped probe (71) having a clear lucite leading edge 
(73) to which is secured a pair of fiber optic light pipes 
(75,76), one for outbound (76) and the other for inbound 
(75) light pulses. This mode requires no prism assembly. All 
electronics are housed in the computerized controlidisplay 
unit (30) other than the fiber optic cable and remote mounted 
light sensor. 

U.S. Pat. No. 5,301,905 discloses a flight vehicle icing 
detection system which detects accumulation of ice on an 
upper surface (12) of a wing (10) of a flight vehicle. The 
system includes an air pump (18) that delivers air through 
first and second conduits (24,26). The first conduit delivers 
air through a first air knife (32) to openings (34) in the upper 
surface of the wing. The second conduit delivers air through 
a lower wing surface (14) through openings in a second air 
knife (42). When ice accumulates on the upper surface, flow 
from the first air knife is restricted. A differential pressure 

sensor (46) senses a pressure difference between the con- 
duits and warns the pilot of possible ice accumulation by 
illuminating a warning light (50). 

The reference IFAC World Congress, “Parameter Identi- 
5 fication for Inflight Detection of Aircraft Icing”, July 1999, 

discloses the use of signal processing to detect icing using 
online parameter estimation. The reference identifies a new 
model and compares it to a baseline model, rather than 
looking only for a change in the baseline model. 

The following papers authored by the inventors of this 
application are relevant and are hereby incorporated in their 
entirety herein: 

William Ribbens and Robert H. Miller, “Detection of Icing 
and Related Loss of Control Effectiveness in Regional 
and Corporate Aircraft”, AVIATION CONFERENCE, 
SAE, 1999; 

Robert H. Miller and William B. Ribbens, “Detection of the 
Loss of Elevator Effectiveness Due to Icing”, Number 
99-0637,37TH AEROSPACE SCIENCES, AIAA, Janu- 
ary 1999; and 

Robert H. Miller and William B. Ribbens, “The Effects of 
Icing on the Longitudinal Dynamics of an Icing Research 
Aircraft”, Number 99-0636, 37TH AEROSPACE 

1s 

2o 

2s SCIENCES, AIAA, January 1999. 

Fault detection theory and other background material can 
be found in Appendix A hereto. 

SUMMARY OF THE INVENTION 
An object of the present invention is to provide an 

improved method and system for detecting a failure or 
performance degradation in a dynamic system such as a 
flight vehicle. 

In general, performance degradation means a very small 
but statistically significant change in a parameter or group of 
parameters in a mathematical model of the system. 

In carrying out the above object and other objects of the 
present invention, a method for detecting a failure or per- 

4o formance degradation in a dynamic system having sensors 
for measuring state variables of the system and providing 
corresponding output signals in response to at least one 
system input signal is provided. The method includes cal- 
culating estimated gains of a filter and selecting an appro- 

4s priate linear model for processing the output signals based 
on at least one system input signal. The step of calculating 
utilizes at least one model of the dynamic system to obtain 
estimated signals. The method also includes calculating 
output error residuals based on the output signals and the 

so estimated signals. The method further includes detecting at 
least one hypothesized failure or performance degradation of 
a component or subsystem of the dynamic system based on 
the error residuals. The step of calculating the estimated 
gains is performed optimally with respect to one or more of  

ss noise, uncertainty of parameters of the at least one model 
and un-modeled dynamics of the dynamic system. 

The step of calculating estimated gains may be performed 
continually. 

The dynamic system may be a closed-loop dynamic 

The method may further include generating a signal for 
each hypothesized failure or performance degradation and 
storing each signal in a database for subsequent retrieval. 

The method may further include generating a signal for 
65 each hypothesized failure or performance degradation and 

processing each signal to diagnose the at least one hypoth- 
esized failure or performance degradation. 

30 

3s 

60 system. 
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The method may further include generating a signal for 
each hypothesized failure or performance degradation and 
processing each signal to obtain a reconfiguration signal. 

The dynamic system may have a controller wherein the 
method may further include reconfiguring the controller 
based on the reconfiguration signal to compensate for the at 
least one hypothesized failure or performance degradation. 

At least one hypothesized failure or performance degra- 
dation may be a failure or degradation of one of the sensors. 

The reconfiguration signal may insert an estimated or 
compensated value of the output signal of the failed or 
degraded sensor into the controller. 

The dynamic system may have a controller and at least 
one actuator wherein the method may further include recon- 
figuring the controller based on the reconfiguration signal to 
compensate for a change of the at least one actuator. 

The dynamic system may be a flight vehicle and the 
sensors may include flight control sensors. The dynamic 
system may also be a financial market or a modeled financial 
system. 

The dynamic system may be a physical system charac- 
terized by a nonlinear dynamic model having parameters. 
The changes in the dynamic system may be manifest by 
parameter changes in the nonlinear dynamic model. 

The error residuals may be propagated in a unique direc- 
tion in output detection space for a given hypothesized 
failure or performance degradation. 

The step of calculating estimated gains may include the 
step of controllably selecting parameters of the at least one 
model. 

The step of detecting may detect intermittent faults and 
may be based on magnitude and direction of the error 
residuals in the detection space. 

At least one model may include non-dimensional vari- 
ables wherein the step of detecting may include the step of 
converting from the non-dimensional variables to dimen- 
sional variables to obtain re-scaled error residuals and 
wherein the step of detecting is also based on the re-scaled 
error residuals. 

A plurality of mathematical models may be utilized to 
model the dynamic system wherein the step of calculating 
estimated gains may include the step of selecting one of the 
plurality of mathematical models. 

Further in carrying out the above object and other objects 
of the present invention, a detection system for detecting a 
failure or performance degradation in a dynamic system 
having sensors for measuring state variables of the dynamic 
system and providing corresponding output signals in 
response to at least one system input signal is provided. The 
detection system includes means for calculating estimated 
gains of a filter and choosing an appropriate linear model for 
processing the output signals based on the at least one input 
signal. The means for calculating utilizes at least one model 
of the dynamic system to obtain estimated signals. The 
system further includes means for calculating output error 
residuals based on the output signals and the estimated 
signals. The system also includes means for detecting at 
least one hypothesized failure or performance degradation of 
a component or subsystem of the dynamic system based on 
the error residuals. The means for calculating the estimated 
gains calculates optimally with respect to one or more of  
noise, uncertainty of parameters of the at least one model 
and un-modeled dynamics of the dynamic system. 

The estimated gains may be calculated continually. 
The dynamic system may be a closed-loop dynamic 

system. 

6 
The detection system may further include means for 

generating a signal for each hypothesized failure or perfor- 
mance degradation and a database for storing each signal for 
subsequent retrieval. 

The detection system may further include means for 
generating a signal for each hypothesized failure or perfor- 
mance degradation and means for processing each signal to 
diagnose the at least one hypothesized failure or perfor- 
mance degradation. 

The detection system may further include means for 
generating a signal for each hypothesized failure or perfor- 
mance degradation and means for processing each signal to 
obtain a reconfiguration signal. 

The dynamic system may have a controller and the 
detection system may further include means for reconfigur- 
ing the controller based on the reconfiguration signal to 
compensate for the at least one hypothesized failure or 
performance degradation. 

At least one hypothesized failure or performance degra- 
dation may be a failure or degradation of one of the sensors. 

The reconfiguration signal may insert an estimated or 
compensated value of the output signal of the failed or 
degraded sensor into the controller. 

The dynamic system may have a controller and at least 
one actuator and the detection system may further include 
means for reconfiguring the controller based on the recon- 
figuration signal to compensate for a change of the at least 
one actuator. 

The dynamic system may be a flight vehicle and the 
sensors may include flight control sensors. The dynamic 
system may also be a financial market or modeled financial 
system. 

The dynamic system may be a physical system charac- 
terized by a nonlinear dynamic model having parameters 
and the changes in the dynamic system may be manifest by 
parameter changes in the nonlinear dynamic model. 

The error residuals may be propagated in a unique direc- 
40 tion in output detection space for a given hypothesized 

failure or performance degradation. 
The means for calculating estimated gains may include 

means for controllably selecting parameters of the at least 
one model. 

The means for detecting may detect intermittent faults. 
The means for detecting may detect based on magnitude 

and direction of the error residuals in the detection space. 
At least one model may include non-dimensional vari- 

ables and the means for detecting may include means for 
converting from the non-dimensional variables to dimen- 
sional variables to obtain re-scaled error residuals and the 
means for detecting may detect based on the re-scaled error 
residuals. 

A plurality of mathematical models may be utilized to 
model the dynamic system and the means for calculating 
estimated gains may include means for selecting one of the 
plurality of mathematical models. 

In general, the method of designing or calculating the 
60 filter gains is based upon a optimization problem solving 

linear matrix inequality optimization problem with a subset 
of the eigenstructure specified. The optimization metric can 
be based upon minimizing the variance, the maximum 
deviation, the infinity norm, or any quadratic or linear cost 

The above object and other objects, features, and advan- 
tages of the present invention are readily apparent from the 

5 
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following detailed description of the best mode for carrying 
out the invention when taken in connection with the accom- 
panying drawings. comparison of amplitude). 

product operations, resealing calculations and two-step 
detection logic (as compared to prior art simple threshold 

The block diagram of FIG. 4 depicts separate blocks for 
5 functions that are not anticipated in the prior art, including 

control reconfiguration and diagnostic fault tree analysis that 
is applicable, for example, to detecting and isolating inter- 
mittent faults. The diagnostic function has been considered 

10 deteriorationidegradation of performances of a component 
or subsystem. The potential for detecting intermittent faults 
is not found in the prior art. 

As shown in FIG. 2, the present invention operates by 
generating output error residuals whenever there is a change 
in the dynamic system from the nominal system. Changes in 
the dynamic system are manifest by parameter changes in 
the non-linear dynamic model that characterizes its perfor- 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG, 1 is a block diagram of a prior art dynamic system 
and system for detecting and isolating failures in the 
dynamic system; 

gain-scheduled FDI constructed in accordance with the 
present invention to obtain error residuals; 

FIG. 3 is a block diagram of a decision logic subsystem 
which utilizes the error residuals obtained in FIG. 2 to 
generate a binary failure signal and a warning signal; 

FIG. 4 is a block diagram of a subsystem which utilizes 
the binary failure signal obtained in FIG. 3 to generate a 

FIG, 2 is a block diagram of a dynamic system and a in the prior art, but Only in the Of a gradual 

Signal which can be utilized by the tW0 COIItrOllerS Of FIG. 
2, to store the failure signal in a failure or degradation log 

mance, The gain scheduled FDI block responds to these 
changes by generating an output (error residual) that, in a 

and to provide a diagnosis of the failure or degradation; and 20 real sense, is a “signature>> for the hypothesized failure 
FIG. 5 is a block diagram flow chart illustrating an 

algorithm for designing a filter of the present invention as 
explained in detail in Appendix B. 

event. 

(e.g., flight vehicle), sensors, actuators, and a controller. The 
The dynamic system depicted in FIG, 2 includes a 

dynamic system as depicted in FIG. 2 is in the form of an 
25 electronically-controlled plant having feedback of plant 

variables via the sensors to the controller. A dynamic system 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

FIG. 2 is a block diagram of an embodiment of the present having this structure is often referred to as a closed-loop 
invention. Implicit in this block diagram is the generaliza- system, whereas the plant by itself (which is a dynamic 
tion of the prior art method to all major components of a system) is often termed an open loop dynamic system. The 
flight vehicle control system, including the control surfaces 30 present invention is equally applicable for detecting and 
(part of the dynamic system block), actuators, sensors and isolating failures in open loop or closed-loop dynamic 
the electronic control system itself. Furthermore, this block systems. 
diagram depicts a general dynamic system (not just a flight A change in a component or subsystem of a given 
vehicle) that can be any system characterized by nonlinear 35 dynamic system (constituting a failure or partial failure or 
dynamic models such as a financial system modeled using degradation) yields a change in the output of one or more 
the principles of econometrics and mathematics (e.& a sensors from its nominal condition. The state estimator 
model of the stock market). matrices (A, B, C, D, L) calculate the state of the nominal 

The present invention is similar to the prior art in that it system and, using the nominal sensor models, generates the 
employs a gain-scheduled state estimator to detect failures in 4o outputs 9 that the dynamic system sensors should have in the 
a dynamic system (for which a flight vehicle is a special absence of a failure. The difference between actual y and 
case) and that the state estimator gains are designed to nominal 9 constitutes the error residuals, e, associated with 
propagate error residuals in a unique direction in output a given hypothesized failure. 
space for a given hypothesized failure. In the prior art, The state estimator matrices (A, B, C, D, L) are supplied 
detection and isolation of flight vehicle pitch control is done 45 by the FDF controller block (e.g., via table look-up) to the 
with a simple amplitude comparison of the error residual state estimator based upon the nominal operating point of 
magnitude along the hypothesized failure. While the prior the dynamic system. The nominal operating point is char- 
art teaches detection and isolation of sensor failures, the acterized by system configuration and average values of 
prior art is only applicable to systems characterized by linear certain variables. In the example of a transport category 
dynamic models. In particular, the method of the present flight vehicle, the nominal operating point might include 
invention would not be applicable to flight vehicle control trailing edge, leading edge, flap settings, landing gear 
sensors since the relevant models have substantial nonlin- position, trim settings for control surfaces, thrust levels and 
earities. Errors associated with a linear FDI would not yield approximate speed setting. The process of setting state 
acceptable performance for finding errors in flight vehicle estimator matrices as a function of nominal operating point 
control sensors. 

Significant advances over the prior art are made in the The possibility of gain scheduling is only mentioned 
present invention as embodied in FIG. 2. In this Figure, the briefly in one of the above-noted papers authored by the 
specific components and/or subsystems of the present sys- inventors. Only with the description of the present invention 
tem of detecting and isolating failures are shown. Also in the present application is gain scheduling employed for 
depicted in FIG. 2 is an FDF controller that is responsible for 60 setting the state estimator matrices in great detail. 
setting the state estimator parameters including the state According to the prior art, a sub-optimal state estimator 
transition matrix A, the input matrix B, and the gain matrix can be designed by assigning the poles of its closed-loop 
L. transfer function by well known prior art methods summa- 

The block diagram of FIG. 3 shows a set of components rized in section 2.1 of Appendix A. The state estimator 
incorporated in a decision logic block specifically showing 65 eigenstructure associated with the detection space is 
advances over the prior art. These advances include optimal uniquely specified by the directionality requirement of the 
signal processing in the form of an optimal filter and vector output error residuals. In the prior art, the remaining poles 

55 is known as gain scheduling. 
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associated with the so-called completion space can be 
assigned arbitrarily in the left-half of the complex plane. 

The method of the present invention uses linear matrix 
inequalities (LMI) to assign the poles and unspecified eigen- 
structure of the estimator closed-loop transfer function, 
thereby yielding the desired feedback gain L. (See, Appen- 
dix B entitled “Optimal Failure Detection Filters.”). The 
design method based upon LMI for design of a state esti- 
mator is not found in the prior art. 

One of the important issues in the design of any FDI is its 
robustness to noise, model parameter uncertainty and 
unmodeled dynamics. The LMI method of designing an FDI 
as illustrated in FIG. 5 and as used in the present method and 
system has improved robustness over prior art methods of 
design. As noted in Section 5.2 of Appendix B, the norm of 
the sensitivity function S is less than or equal to 1: 

Another advance of the present method of detecting and 
isolating failures in a dynamic system is in the post-FDI 
detection process. A basis for this multi-step process comes 
from the basic nature of the system dynamic models. It is 
well known to one of ordinary skill in the art that it is 
common practice in aerospace applications to write the 
system dynamic equations (i.e., the model) in terms of 
non-dimensional variables. It is also possible to express, the 
system model in dimensional variables. Either modeling 
method yields equivalent results except that there are 
numerical benefits in choosing one method over another. In 
the present invention, the use of both modeling methods 
provides the opportunity to optimize signalinoise at the 
detection stage. The method of using both dimensional and 
non-dimensional modeling can substantially reduce error 
rates of detection and isolation relative to prior art methods. 
The method of converting from non-dimensional to dimen- 
sional variables is referred to herein as “resealing,” as shown 
in FIG. 3. 

Moreover, the present method is an advancement over the 
prior art by its combined use of error magnitude and 
direction in output space. The present method obtains a 
scalar metric $e of the output error residual vector (in an n 
dimensional vector space): 

where: 
e=output error residual from the state estimator; 
C=output matric (sensor model); 
Df=detection space 
IICDfll=norm of the detection space (hypothesized 

Ilell=norm of the error residual. 
The FDI of the present invention declares that the hypoth- 

esized failure of the dynamic system has occurred when both 
the angle and magnitude of the error residuals satisfy the 
desired criteria. These criteria are specific to a given 
dynamic system and the associated process and measure- 
ment noise. 

In addition to the improvements in the design of the FDI 
and post-FDI signal processing and detection methods of the 
present invention over the prior art, the present invention 
anticipates numerous applications not heretofore found in 
the prior art. The present invention can be utilized in the 
diagnosis of dynamic system problems that have not previ- 

failure); and 
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10 
ously been tractable. For example, the diagnosis of inter- 
mittent faults has long proven to be a challenge to mainte- 
nance technicians. Problems of this nature are well known to 
automobile owners in the form of problems that occur on the 
road but refuse to be present in the repair shop. 

The present invention can be used to diagnose these 
intermittent faults. A suitably designed FDI operating con- 
tinuously when the dynamic system is operating will detect 
the hypothesized failure whenever it occurs. In the present 
invention, the decision logic subsystem of FIG. 3 has a 
binary-valued failure output signal or signature F, that is 
false (e.g., zero) whenever the system has no failure and is 
true (i.e., one) whenever the failure is present. 

This binary failure signature is sent to a database with a 
log or “failure log” as shown in FIG. 4 which consist of a 
non-destructive memory and an internal real-time clock. The 
time of occurrence, duration and nature of the failure are 
stored in memory for later examination by maintenance 
technicians. The implementation of the failure log itself is 
well known to one of ordinary skill in the art. A separate 
failure binary signal F is provided for each hypothesized 
failure. 

The block diagram of FIG. 4 depicts a sub-block labeled 
“diagnostic fault tree and logic.” The output of this block is 
connected to the failure log sub-block via a multi-bit digital 
link H. The diagnostic fault tree sub-block has the capability 
for some real-time diagnosis of failures. This latter block can 
be brought into play whenever multiple failure signatures 
(i.e., F) have occurred. It is well known to one of ordinary 
skill in the art (of dynamic system design or of maintenance) 
that multiple failures are often symptoms of a larger system 
failure (e.g., power supply). A systematic diagnosis proce- 
dure (often called a “fault tree” and well known to mainte- 
nance technicians) can be used to diagnose such a system 
failure. 

Another advance of the present invention over the prior 
art is depicted in the sub-block of FIG. 4 labeled “recon- 
figuration logic and computation.” In certain cases, it is 
possible to compensate for a given failure by a reconfigu- 
ration of the dynamic system controller. For example, the 
failure of one sensor (in a multi-sensor control 
configuration) often has compensation in the form of data 
from the other sensors. It is often possible to estimate the 
output of the failed sensor via the state estimator. Acceptable 
(though suboptimal) dynamic system performance is often 
achievable by substituting the estimated sensor value for the 
failed sensor signal in the control system, as shown at signal 
G in FIG. 2. 

In addition, if is often possible to compensate (at least 
partially) for an actuator calibration change. The desired 
input to the plant can often be achieved by varying the 
electrical signal to the actuator to achieve the desired plant 
input (e.g., elevator or rudder actuator for a flight vehicle). 
Although control reconfiguration is known in a limited sense 
in the prior art, the use of an optimal FDI for determining the 
magnitude of the failure and for yielding the relevant 
compensation is new in the present invention. 

As previously noted, the dynamic system could be a 
model of a financial system such as the stock market. The 
above-described filter would monitor the financial system 
and alert the user(s) (i.e., owner(s), seller(s), buyer(s), etc.) 
of options, futures or any other kind of financial instrument 
whose value is based upon the inputs, outputs, and/or system 
parameters of a change. The system would alert the user to 
the change and in what part of the mathematical model the 
change occurred. 

For the convenience of the reader, appendices A and B, 
provided herein below, review and summarize the theory of 
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FDI and the design of failure detection filters as well as 
provide background material for understanding the theoreti- 
cal concepts involved in the present invention. This theory 
provides support for and proof of many assertions made in 
the main body of the specification. 

On the other hand, it should not be necessary to follow all 
of the discussion in these appendices to understand the 
invention itself or its applicability in practice. 

Appendix A 

Fault Detection Theory and Background Material 

This Appendix contains definitions and results used 
throughout the application. The treatment of this material is 
not exhaustive. 
2.1 Failure Detection and Isolation Theory 

The original theoretical development of detection filters 
was done by Beard and Jones in the late 1960s and early 
1970s. Since then, some major researchers have studied the 
problem: 

Chow and Willsky studied robustness issues in detection 

White and Speyer reformulated the system as an eigen- 

Massoumnia reformulated Beard's and Jones's work in a 

Min and Ribbens solved the sensor failure isolation 

Park and Rizzoni reformulated the problem as a 

Analytic redundancy management algorithms are devel- 
oped by forming and processing failure residuals. These 
residuals are essentially zero if no failure has occurred and 
are non-zero if a failure is present. FDI filters constitute one 
form of an analytic redundancy management algorithm. FDI 
filters are linear filters with directional characteristics that 
can be readily associated with some known failure mode. 
Like all linear filters, FDI filters are model-based. Consider 
the open loop system model free of sensor failures, 

filters. 

system assignment problem. 

geometric context. 

problem. 

decoupled observer problem. 

k=Ax+Bu, (2.1) 

y=Cx+Du (2.2) 

where x is a n x l  state vector, u is a p x l  input vector, and y 
is a mxl  measurement vector. Assuming the system is 
detectable, the detection filter then has the form of linear 
filter 

k=A?+Bu+L 0.-,'), (2.3) 

,'=C?+Du, (2.4) 

where 2 is the state estimate and L is the detection gain. If 
the state error is defined as ~ 6 x - 2 ,  then L can be chosen such 
that the output error F=y-y, has certain directional properties 
in the presence of a failure. When there are no failures, the 
closed-loop system becomes 

€=(A-LC)t. (2.5) 

The occurrence of a plant, actuator, or sensor failure can 
usually be modeled by a single term added to (2.1) to 
produce 

k=Ax+Bu+f$,, (2.6) 

y=Cx+Du, (2.7) 
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12 
where fi is the nxl  failure direction associated with the ith 
failure. ni is generally a time-varying scalar function of x(t) 
or u(t). For instance, a reduction in the control authority of 
an actuator could easily be modeled as a -Abu(t) term. 
Another common failure is a trim change in nonlinear 
systems where a linearized model is being used. In this case, 
the failure would be B(u(t)-uCrim). A priori knowledge of ni 
is not required, and ni is generally assumed to be an arbitrary 
function of time. Sometimes the magnitude of ni is estimated 
to gauge the severity of the failure or to attempt to distin- 
guish between two failures that are not output separable; 
output separable will be defined later. Bear stated the fol- 
lowing definition. 

Definition 2.1.1 (Detection Gain) 

The fault associated with fi in the system described by 
(2.7) is detectable if there exists a nxm matrix, L, referred 
to as a detection gain for fi which satisfies the following two 
conditions: 

1. C E  maintains a fixed direction in the output space. 
2. All eigenvalues of (A-LC) can be arbitrarily specified, 

This means the output direction is maintained during the 
transient and steady-state phase of the response due to the 
system failure. 

up to conjugate symmetry. 

Lemma 2.1.1 (Unidirectional Error Output) 

Condition 1 of Definition 2.1.1, is satisfied if and only i f  

rank[Cf,,(A-LC)f,, . . . , (A-LC)+'f,]=l. (2.8) 

From this it is clear that E lies in the controllable subspace 
of fi, Wf; 

Wf,=R([f,,(A-LC)f,, . . . ,(A-LCY-'f,D (2.9) 

Lemma 2.1.2 (Output Separability) 

If 

CF=A[Cfl,CfZ,. . . , Cf,b (2.10) 

is rank r, then the failures are output separable. If cajfi=O for 
j=O,l, . . . , 6-1, then the rank of CF will be er, but if 
CA*fi#O, then all rank of CF equals r assumptions and 
procedures can still be used if f ,  is replaced everywhere by 
A*fi. Furthermore, the dynamics of the system may still 
allow for the detection of the failures if the output separa- 
bility assumption is not satisfied because two failure direc- 
tions have identical output directions. One or both of the 
original directions can be replaced by Ajfi for some j>O such 
that rank requirement is satisfied. 

The next important concept is that of the detection 
generator, g,. It is a vector that is associated with f, and is 
important in the design of detection filters. It is defined in the 
following lemma. 

Lemma 2.1.3 (Detection Space Vector) 

If 

1. (A, C) is an observable pair 
2. rank CWfi=l 

where Wfi is defined by (2.9), then there exists an n-vector, 
gi, in the controllable space of fi (with respect to (A-LC)) 
such that 
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(2.11) 

and 

CAk-'g, # 0. (2.12) 

(2.12) guarantees that the invariant space generated by gi 
is of dimension k. Thus, the set of vectors gi,Agi, . . . ,Ak-'gi 
form a basis for the controllable space of f,. These facts 
yield 

[g,(A-LC)g,, . . . ,(A-LC)*~'g,l=[g,Pg,, . . . ,A*-'g,l. (2.13) 

Thus, fi can be expressed as: 

f,=cr,g,+crfig,+ . . . +a/p*-'g, (2.14) 

for some set of scalars a l ,  . . . , ak A convenient choice for 
gi is such that the term with the highest power of A has a 
coefficient of 1. In general, if for some non-negative integer 
P, 

CAJf,=O for j=O,  . . . , p-1 (2.15) 

CA@f,#O (2.16) 

then 

cik-'*-/=0 for j=O,  . . . , p-1 (2.17) 

Or,,#O (2.18) 

and let gi be taken so that ak-,=l. The fact that (A, C) is 
observable guarantees that (2.15) and (2.16) are true for 
some pSk-1. Thus, 

f,=cr,g,+crfig,+ . . . +crk-lA*-zg,+A*-'g, if Cf,#O 

or 

(2.19) 

f , = ~ ~ , g , + ~ ~ 4 g , +  . . . + " * ~ @ ~ l A * ~ @ ~ z g ~ + A * ~ @ ~ ' g ~  (2.20) 

Definition 2.1.2 (Detection Generator) 

A vector giE R-l, satisfying (2.11), (2.12) and either 
(2.19) or (2.20) is defined to be the kth order detection 
generator for fi. 

Lemma 2.1.3 shows that there always exists a detection 
generator associated with a detection gain. As an example, 
take the following system: 

The detection space has dimension 1 and the detection 
generator is: 

/ = [ A ]  (2.22) 

When a detection generator exists, then it will be shown that 
it is possible to write a solvable equation for L, the estimator 
gain. Furthermore, it allows the arbitrary specification of k 
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14 
eigenvalues of (A-LC), where k is the order of the detection 
generator. Computing the detection generator will be dis- 
cussed later. 

Lemma 2.1.4 (Detection Gain) 

If the conditions of Lemma 2.1.3 are satisfied, and the k 
eigenvalues of (A-LC) associated with the controllable 
space fi are given by the roots of  

$+PIS*-'+. . . +pzs+pl=o (2.23) 

where pi are scalars and s is a complex variable, then L must 
be a solution of  

LC A*-'g,=p,g,+pfig,+ . . . +p/p*-'g,+A*g, (2.24) 

where gi is the kth order detection generator for fi. 
Conversely, if there exists a kth order detection generator, gi, 
then any solution of (2.24) is a detector gain for fi, and the 
k eigenvalues of (A-LC) will be given by the roots of (2.23). 

Pre-multiplying (2.19) by C yields: 

CA*-'g=Cf, (2.25) 

which results in 

LCf,=Pig,+Pfig,+ . . . +P/p*~'g,+A*g, (2.26) 

as the equation for a detector gain when C fhd i#O. If Cfi#O, 
then pre-multiplying by CAP yields: 

CA*-'g,=CA@f, (2.27) 

which results in 

LC.A@f,=p,g,+pfig,+ . . . +p/p*-'g,+A*g, (2.28) 

for the detection gain. It can be seen that the case of Cfi#O 
is a special case with p=O. For the following results, if 
Cfi=O, just replace Cfi by CAPfi, and the results will hold. 
The following lemma then allows one to solve for the 
detection gain, L, given a detection generator, gi. 

Lemma 2.1.5 (Detection Gain Solution) 

If D, S, and Q are matrices of dimension nxm, mxr, and 
nxr, respectively, where n 2 m 2 r  and rankS=r, then the 
general solution of DS=Q, is given by: 

D=QS++E[I-SS+] (2.29) 

where E is an arbitrarynxn matrix and S+=(STS)-'ST. E[I- 
SS'] represents the freedom left in D after satisfying DS=Q. 

Then, a general solution for L is: 

Then for a given L 

=A '-L 8C (2.32) 

where 

and 

C'=(I-(Cf,)((Cf3'cf,)~'(Cf,)')C (2.34) 

The (A'-L'C') in (2.32) has satisfied condition 1 for the 
detectability off,.  To completely satisfy both conditions for 
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the detectability of f,, there must be enough freedom in L' 
left to specify the remaining n-k eigenvalues of (A'-L'C'). 

Lemma 2.1.6 (Eigenvalue Placement) 
If A', C', and L' are real matrices of dimension nxn, mxn, 

and nxm, respectively, the number of eigenvalues of [A'- 
L'C'] which can be arbitrarily specified by the choice of L' 
is equal to q', where 

(2.35) 

Moreover, for any L', the remaining (n-q') eigenvalues of 
[A'-L'C'] are equal to the corresponding eigenvalues of A'. 

Then, the total number of eigenvalues that can be placed 
with the detector gain L is k+q'. Condition 2 of definition 
2.1.1, the detectability of f,, will only be satisfied if k+q'=n. 
Since A' depends on g,, it would follow that q' and M must 
depend on the generator g,. The following lemman shows 
this is not the case. 

Lemma 2.1.7 (Detection Gain Eigenvalue 
Placement) 

If L is constrained to be a detector gain for f,, then the 
number of eigenvalues of A=LC which can be arbitrarily 
specified, in addition to those given by (2.23), is equal to 

(2.36) 

where C' is defined in (2.34) and 

K'~-AP,((CP,)~Cf,)~ ' (Cf~)~C.  (2.37) 

K' and C' do not depend on g, or k. The amount of freedom 
left in L to place the remaining eigenvalues is always the 
same regardless of the choice of the detection generator. The 
amount of freedom depends only on (A, C). Thus, if a 
detection generator of order n-q' can be found, then the 
requirements for the detectability of f,  will be satisfied. 

Definition 2.1.3 (Detection Space) 
The null space of M is defined to be the detection space 

of f,, D,. 
Definition 2.1.4 (Completion Space 

The completion space, nf,, is the range space of M. 

Definition 2.1.5 (Detection Order) 
The dimension of the detection space for f, is defined to 

be the detection order off, .  

Definition of 2.1.6 (Detection Space Generator) 
A detection generator for f,  whose order is equal to the 

detection order o f f ,  is defined to be the maximal detection 
generator for f,. 

The reference Beard proved the following theorem. 

Theorem 2.1.1 (Detection Space Generator 
Existence) 

If (A, C) is an observable pair, then every n-vector f,  has 
a maximal detection generator and it is unique. 

16 
Another view of the detectability of f,  as previously 

defined is the ability to assign f,  as an eigenvector of the 
error dynamics. 

5 (A-LC)f,=V, (2.38) 

LCf,=Af,-V, (2.39) 

Using Lemma 2.1.5 and equation (2.39) a solution 
10 for L is: 

where 

(2.45) 

(2.46) 

30 This allows a more direct definition of the detection space 
based on just A, C, and f,. 

Lemma 2.1.8 (Detection Space Collinear Vectors) 

3s Let w be an eigenvector of A,. If Cw is collinear with C f ,  
then w is in the detection space. 

Lemma 2.1.9 (Detection Space Unobservable 
Vectors) 

40 
For (A,, C,), which has vl unobservable eigenvalues, let 

ul, u2, . . . , u,, be the vi eigenvectors of A, associated with 
the observable eigenvalues. Then, Cui is collinear with Cf,. 

4s Detection Filter Design Example 

The design of a FDI for a 3x3 system with a fault vector 
with a one-dimensional detection space is considered to 
demonstrate the concepts introduced so far. This design 

so example is the same that Beard and White used. Consider the 
following system, 

The detection space is: 

60 -0.816 

D,, = 0.408 

I-0.408 I (2.48) 

6s Choosing a closed-loop pole of -8 for the detection space 
and using the formulas in (2.44), (2.45), and (2.46) with f 
replaced by g results in: 
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Lemma 2.2.1 (Invariant Subspace Basis) 
-8.5 8.5 (2.49) 

Let X be an invariant subspace of A, and let the columns 
of X form a basis for X. Then, there is a unique matrix L 

2.5 -2.5 . 1 such that -5.5 5.5 

(2.14) states that f can be replaced by g without any loss AX=XL. (2.60) 

of generality. The remaining eigenvalues can be adjusted 
using the place function in MATLAB and A, and ci for the 

returned by the place command, L,, can be added to the first 
gain, Li, to achieve the desired closed-loop properties. The 

The matrix L is the representation of A on X with respect 
system matrices. By choosing two additional poles, the gain 10 to the, basis x. In particular, (v,h) is an eigenpair Of if and 

Only lf (xv,h) is an eigenpair Of A. 

Lemma 2.2.2 (Left Invariant Subspace) final gain then becomes, 

L = L,C + L,C,, 

which results in the following closed-loop system: 

with the following eigenvectors, 

1 1.91 1.73 0.816 I 0 0 0.408 

V = 0.383 0.433 -0.408 

and eigenvalues 

-4 0 
d =  0 -5  0 . 

I o  0 -:I 
2.2 Linear Algebra Results 

Definition 2.2.1 (Ranges Spaced) 

The range space of AEC""" is, 

R(A)={Ax:xtX}. 

The subspace X is a left invariant subspace of A if 
(2.50) IS 

XACX. (2.61) (2.51) 

Furthermore, if the columns of X are linearly independent 
and the columns of Y space RL(X), the R(X) is an invariant 

20 subspace of A if and only if 

YHAX=O. (2.62) 

In this case R(Y) is a left invariant subspace of A. (2.52) 

25 
Definition 2.2.4 (Moore-Penrose Generalized 

Inverse) 

Let AEC""". If A is nonsingular, then there is a unique 
3o matrix X such that 

(2.53) 

AX=XA=I. (2.63) 

It is necessary to generalize the idea of an inverse to the 
case where A is singular or even fails to be square. The 
following four conditions are known as the Penrose 
conditions, 

35 

1. AXA=A, 
2. x A x = x ,  

(2.54) 

40 3. ( A x ) H = A x ,  
4. ( x A ) H = x A .  
A matrix X which satisfies all four conditions is denoted 

A', and is called the Moore-Penrose Generalized Inverse. 

Theorem 2.2.1 (Projection Theorem) 
45 

(2.55) For any matrix A, 
The  R(A)  i s  the  span  of  the co lumns  of  A .  

The range of AHEC""" is 

R ( A ~ ) = { A ~ x : x ~ x } ,  

1. PA=AA' is the orthogonal projector onto R(A), 
2. P,H=A'A is the orthogonal projector onto R(AH), 
3. PAL=I-PA is the orthogonal project onto N(A), 

SO 

(2,56) 
where A'is the Moore-Penrose pseudo-inverse. 

and is also referred to as the row space of AH. 
Theorem 2.2.2 (AXB=Y) 

Definition 2.2.2 (Null Spaces) 55 

The null space of AEC""" is, Let Abe a nlxn2 matrix, X be a n2xn3 matrix, B be a n3xn4 
matrix, and Y be a nlxn4 matrix. Then the following 

1. The equation 
N(A)={x:Ax=O} . (2.57) statements are equivalent: 

The null space of AHEC""" is, 
60 

N ( A ~ ) = { x : A ~ x = o } ,  (2.58) 
AxB=Y 

and is also referred to as the left null space of A. 
has a solution X. 
2. A, B, and Y satisfy Definition 2.2.3 (Invariant Subspace) 

65 The subspace X is an invariant subspace of A if 
P,YP,H=E 

AXCX. (2.59) 

(2.64) 

(2.65) 
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3. A, B and Y satisfy 

P,LY=O, (2.66) 

and 

Y P&=O. (2.67) 

In this case, all solution are of the form 

x=A~YB~+z-P,~zP~, (2.68) 

where A’ is the Moore-Penrose pseudo-inverse and Z is an 
arbitrary n2xn3 matrix. 
2.3 Linear Matrix Inequalities 

Definition 2.3.1 (Linear Matrix Inequality) 

A linear matrix inequality (LMI) has the form 

where xERfl is the variable and the symmetric matrices 
F ~ = F ~ ~ E R ~ ~ ~ ,  i=O, . . . , m, are given. 

The inequality symbol in definition 2.3.1 means that F(x) 
is positive definite and the LMI is a strict LMI, but if F(x)ZO 
implying that F(x) is positive semidefinite then the LMI is a 
non-strict LMI. Certain nonlinear inequalities can be con- 
verted to a LMI form using Schur Complement. 

Theorem 2.3.1 (Schur Complement) 

(2.69) 

where Q(x)=QT(x), R(x)=RT(x), and S(x) depend affinely on 
x, is equivalent to 

R(x)>’J, Q(x)>’J, Q(x)-S(x)R-’(x)S‘(x) (2.70) 

As an example, the (maximum singular value) matrix 
norm constraint IlZ(x)lIcl, where Z(x)ERpx4 and depends 
affinely on x, can be represented as the following LMI, 

(2.70) 

A standard optimization problem that is encountered is: 

minimize c‘x subject to F(x)>O 

Appendix B 

Optimal Failure Detection Filters 

Current FDI filter design methods are suboptimal with 
respect to noise. One would like FDI filter design to benefit 
from the almost 40 years of Linear Quadratic (LQ) optimal 
design. It has been extensively studied as a design method- 
ology. The reason for such an intense study of the LQ design 
methodology is its ease of design and guaranteed properties 
such as sensitivity reduction, gain and phase margins, and 
transient responses. Present FDI filter design methods suffer 
from the lack of the many benefits that LQ design offers. It 
is then of great interest to see if FDI filter design can be cast 
as an LQ design problem and then gain the aforementioned 
benefits. 

20 
Using the multivariable Linear Quadratic Regulator 

(LQR) design methodology to obtain desired performance 
metrics has been extensively studied. Harvey and Stein, 
Stein, Kouvaritakis, and Champetier studied the asymptotic 

5 eigenstructure properties of the LQ regulator, and developed 
algorithms to choose the weights to obtain a desired asymp- 
totic eigenstructure. Researchers, including Anderson and 
Moore, Medanic, Tharp, and Perkins, Kawasaki and 
Shimemura, Chilali and Gahinet, and Shieh, et al., have 
examined the problem of constraining the closed-loop eigen- 
values to a subset of the left-hand plane. 

Many properties of the LQ Estimator (LQE) follow 
directly because it is the dual of the LQR. The body of 
research dealing with the LQ estimation eigenstructure 

1~ problem is surprisingly sparse. Stein looked at the asymp- 
totic left eigenvector eigenstructure of the LQ estimation 
problem as the dual of the LQR problem of right eigenvector 
assignment, and developed an algorithm for specifying the 
asymptotic left eigenstructure in the LQE problem. The LQ 

2o estimation eigenstructure problem deals with assigning right 
eigenvectors in the LQ estimation problem and its dual, 
assignment of left eigenvectors in LQR. Stengel mentions 
that by adjusting the noise covariance matrices, one can 
achieve different eigenstructures. But he cites Stein’s paper, 

25 in which only left eigenvectors can be specified, while the 
optimal Fault Detection and Isolation (FDI) problem usually 
requires that the right eigenstructure be specified. Douglas 
and Speyer have developed a left eigenvector approach to 
FDI filter design, but it is not clear that the methods 

30 developed herein can be combined with that particular 
design methodology because they require the eigenvalues 
associated with the left eigenvectors to be specified. 

The LQ FDI problem is a specialized version of the 
general LQE problem. For the FDI problem, some subset of 

35 the closed-loop eigenstructure needs to be specified in order 
to achieve failure isolation via direction of the error residual 
vector in the error output space. Park attempted to solve the 
LQ FDI problem. He set up the problem as a minimization 
problem with the trace of the state covariance as the cost 

40 function, and used Lagrange multipliers to attempt to 
enforce the eigenstructure constraint. He obtained two 
coupled Riccati equations that are “virtually intractable.” 
However, when there was just one failure to detect and the 
detection space was small (one- or two-dimensional), he was 

45 able to obtain a solution by iterating back and forth between 
the coupled equations. Unfortunately, an examination of 
Park’s solution indicates that the robustness properties of the 
LQ Estimator are not necessarily preserved and thus in some 
situations may not be very robust to uncertainty. 

The general problem of eigenstructure assignment LQE 
problems is analyzed herein. The dual problem of assigning 
eigenstructure in the LQR problem is not covered herein. A 
new algorithm is developed which formulates the LQE 
problem as an LMI optimization problem with an eigen- 

ss structure constraint. One of the advantages of this formula- 
tion is achieving the desired eigenstructure tolerance not 
asymptotically, but with reasonable weighting matrices that 
correspond to an acceptable value for the feedback gain. 
This new algorithm is then applied to the FDI filter design 

60 problem, resulting in FDI filters with the desired LQ robust- 
ness properties. The LMI formulation can be solved by any 
of a number of LMI solver packages available. 
5.1 Linear Quadratic Methods, the Riccati Equation, and 
LMI’s 

In order to embed the eigenstructure constraint in the LQ 
optimization problem, it is necessary to cast the LQ problem 
as an LMI optimization problem, to do this, it is first 

SO 

65 
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necessary to understand the relationship between the “stan- 

(ARE), and the LQ problem cast as an LMI optimization. 
Once this relationship is understood, it is necessary to 
parameterize the feedback gain so as to ensure the desired s 
closed-loop eigenstructure is obtained, or to add another 
constraint which enforces the desired eigenstructure align- 
ment. Then, using some results from the inverse LQ 
problem, this constrained gain structure is embedded in the 
LMI optimization problem to guarantee the desired closed- 10 with x = h + B u .  For quadratic functions of the form, 
loop eigenstructure. 

dard” LQ problem, involving the Algebraic Ricatti Equation (10) 
[ w ( x ,  u ) d r +  v(x,) v(x0) 

for all t iz to  and X and 
differential form, (10) becomes 

satisfying (9) and x(ti)=xi. In 

V,V(X)(X)2-W(X,U) (11) 

The relationship between the “standard” LQ problem and 
the LMI optimization problem was first presented to the 

(12) 
w ( x , u ) = [ x T u T l [ ~  ;][I] 

controls community by Willems. The power of LMIs is only 
now beginning to be noticed by the controls community. IS 
Doyle said about the usefulness of LMIs that “LMIs play the 
same central role in the post-modern (control) theory as 
Lyapunov function and Riccati equations played in the 
modern, and in turn, various graphical techniques such as 
Bode, Nyquist and Nichols plots played in the classical.” In 20 function xTPx with P>O satisfies 
his seminal 1971 paper, Willems analyzes linear quadratic 

duals have been included for completeness), 
1. The Algebraic Riccati Equation (ARE): 

and R=RT>O and Q=QT20, the DIE is equivalent to the QMI 
and, using Schur’s complement from Theorem 2.3.1 of 
Appendix A, to the LMI. One can obtain a lower bound on 
the cost, V, in (7) utilizing LMIs. Suppose the quadratic 

regulator problem and relates the following equations (the d (13) z(xTPx) t - (xTQx+uTRu)  

ARE:I‘(P)=ATP+PA+Q-PBR-’BTc 

=AP+PA ‘+ W-PCTV-’Cp, (2) 

(1) 2s for all t2O and for all x and u satisfying the dynamical 
constraint (9). Integrating both sides from 0 to T, one gets: 

xiPxo 5 l T x ~ p  + U T R U  dr, (14) 2. The Quadratic Matrix Inequality (QMI): 
30 

A T ~ + ~ ~ + ~ - ~ ~ ~ - l ~  T~ 2 0, 

AP+PA T+ W-PC~V-~CP 2 0,  

(3) 

(4) 
which is a lower bound for Voptimal. Using Schur’s comple- 
ment from Theorem 2.3.1 of Appendix A, another way to 
write (13) is as the LMI: 3. The Linear Matrix Inequality (LMI): 

3s 

AP+  PA^ + w pcT (6) 
CP V ] t o ,  40 Using these facts and expanding on Willem’s analysis, 

Molinari showed that the maximal and minimal solutions to 
the ARE, P, and P-, are also the maximal and minimal 
so~utions to the LMI, thus allowing the solution of the LQR 
problem to be cast as the following LMI optimization 

Molinari expanded Willem’s detailed analysis and clari- 
fied some additional aspects. An important relationship for 
the work in this dissertation is the relationship between the 45 problem, 
solutions of the LMI and the ARE equations. 

A ~ P +  PA + Q PB (16) To review this relationship consider the LQR problem, 
max xiPx0 subject to P > 0, I 

BTP R ] t o ,  
(7) ~ ( x , )  = inf l m w ( x ,  u)dr, t-tm limx(r) = 0, so 

e+ 
UEL2 

for which fast and numerically stable algorithms have been 
developed in the past 15 years. The optimization variable is 
the symmetric matrix P. Using duality, one can also obtain 

(8 )  ss a least upper bound on the optimal cost, Voptimal. Consider 
the system (9) with a constant, linear state feedback u=Kx 
that stabilizes the system: 

i = Ax+ Bu, (9) k=(A+BK)x, x(O)=x,, (17) 

x(0) = x‘,. 

where 

L Z ~ + = f : [ O , m ) ~ ~ ~ ~ f ( t ) W Z ( b T ) ,  T2O 

and x and u are subject to the dynamical constraint 

6o with A+BK stable. Then, the cost function reduces to 

V ( x o )  = inf l m x T ( Q  + KTRK)xdr.  (18) 
The analysis of this optimization problem leads to the USL2et 

series of matrix relations and frequency domain inequalities 
that were previously defined. Furthermore, consider the 
class of functions V: K+R which satisfy the dissipation 

6s From standard results, V can be evaluated as 

inequality (DIE) TrZ(Q+KTRK), 
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where Z satisfies 

(A+BK)Z+Z(A+BK)~+X,+,'~: 

ing to align the closed-loop eigenstructure in a specified 
manner. The return difference equation for the LQ estimator 

(20) is 

T(s)I.T~(-s)=v+c(sI=A)-~GwG~(-sI-A~)-~c~. (28) 
with A+BK stable. Thus, the least upper bound on Voptimal, 
using state-feedback control, can be computed as the solu- 
tion to the optimization problem with the optimization 
variables Z and K 

5 

Eigenvectors of this equation are the c ~ o s e ~ - ~ o o p  eigen- 
vectors of the system. Thus, the choice of G, W, and V 
determine the closed-loop eigenstructure. Perfect eigen- 
structure alignment is not necessary in the real world. A 
simple bound on the error in the eigenstructure alignment 
would be sufficient for any realistic application. Given a 
desired set of eigenvectors (or detection space), Xcl,  and 
their unknown (will be determined later) associated 

The dual ofthe LQR Problem is the LQE Problem. Consider 1s eigenvalues, h, a least square representation of this align- 
the system ment constraint is: 

min T~Z(Q+K~RIQ 

subject to 

Z>O,(A+BK)Z+Z(A+BK)~+X+-,~SO, (21) 

k=Ax+Bu+Gy 

y=Cx+y 

20 where W(t) is white noise with intensity w ,  v(t) is white 
noise with intensity V, and w(t) and v(t) are uncorrelated. 
The LQ estimator has the associated Algebraic Riccati 
Equation: 

The bound E is a free parameter chosen by the designer. 
It can be viewed as a weight on how tight the actual 
eigenstructure alignment has to be which is determined by 
the post-processing performance requirements. A very small 

2s E essentially aligns the eigenstructure exactly. The con- 
straint can be turned into an LMI using Schur's complement 
and has the form: 

AP+PA~+GWG~-PC~V~CP=O. (24) 

The optimal observer is: 

i=A?+Bu+Lb-C?), 

where 

L=PCTV-l. 

The value of E needed to obtain a prescribed level of 

3s ciated with the desired closed-loou eigenvectors. This is 

The ARE associated with the LQ estimator problem can be alignment is dependent on the closed-loop eigenvalues asso- turned into the following LMI: 

because the closed-loop eigenvalues scale the misalignment 
error. If the choice of E results in an alignment that does not 
meet the required alignment tolerance, a lower value can 
always be chosen and the outimization uroblem rerun. 

(27) 

The benefits of formulating the LQ problem as an LMI, 
which were pointed out in Appendix A, could not be realized 
until relatively recently. Within the last 5 to 10 years, the 
efficient numerical algorithms for solving LMIs developed 
in the early to mid-1980s were coded and released to the 
general research audience. Research into LMI solvers and 
improvements to the LMI solver codes will continue to 
make this formulation even more attractive in the future. The 
three main advantages to casting the LQ problems as LMI 
optimizations are, 

1. The optimization problem can be solved in polynomial- 

2. The optimization problem can be solved in practice 
time, 

very efficiently, and 
3. Feasible linear constraints and feasible nonlinear con- ss 

straints of a special form (using Schur's complement) 
can easily be added to the optimization problem. 

5.2 Least Squares LMI LQE Eigenstructure Assignment 
The goal is to develop an algorithm using LMIs to obtain 

a solution that is optimal for some P, GWGT, and V thus 60 
preserving the attractive robustness properties of the LQ 
estimator and at the same time align the eigenstructure in 
some desired manner. Additionally, we would like to achieve 
this with the closed-loop poles in a "reasonable" region of 

An analysis of the observer return difference equation 
helps to understand the constraints associated with attempt- 

the left-hand plane. 65 

Because V-l appears in (30), t i e  choice of $ is fixed. Also, 
G appears quadratically, so it is fixed. However, W is still 
free and if there is sufficient freedom in the choice of W, then 
the desired eigenvectors can be assigned. 

In addition to the eigenstructure alignment, it is important 
that the estimator does not have poles that are too fast and 
track the noise inherent in any physical system. Additionally, 
this constraint will be a primary factor in determining the 
Butterworth pattern that the non-finite closed-loop modes 
take. This constraint draws on a result from Chilali and 
Gahinet. 

Definition 5.2.1 D-Stable System 

Asystem x=Ax is called D-Stable if all its poles line in D. 

Definition 5.2.2 LMI Regions 

A subset D of the complex plane is called an LMI region 
if there exists a symmetric matrix aERmxm and a matrix 
flERmX" such that 

D={Z€C :fo<O}, 
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Theorem 5.2.1. D-Stable LMI Constraint 

The matrix A is D-stable if and only if there exists a 
symmetric matrices P, a, and fl such that 

M,(A,P):=a@ P+@ (AP)+fiT@ (Ap)T, (33) 

M,(A, P) <O,P>O. (34) 

To illustrate the implications of this property, consider the 
vertical strip defined by: 

D=(o+j+jw€b: :-h<o<O) (35) 

ATP+PA+2hP>0 (36) 

Applying this condition and using Schur’s complement 
results in the following LMI: 

AP+ PAT + 2hP PCT 

1 j 2 v  

(37) 

This LMI constraint allows the engineer to specify a bound 
on the fast poles of the closed-loop system. 

The variables, V and W in (28) specify the LQ estimator 
closed-loop eigenstructure. From (30) it is clear that to 
preserve the problem as a linear optimization problem, V 
and G must be fixed. Fortunately, W can still be matrix 
variable and preserve the problem as a linear optimization 
problem. Additionally, all the choice of G accomplishes is to 
determine the null space of the GWGT matrix. In the 
estimator problem, the null space of this matrix specifies the 
directions of the finite zeros of the observers. The poles of 
the estimator associated with the range space of GWGT will 
head off in a yet undetermined Butterworth pattern. This 
Butterworth pattern will be determined by the matrix vari- 
able W which is found by the solution of the optimization 
problem. 

This does bring to light a shortcoming of the proposed 
algorithm. The constraints must be given as strict, not 
non-strict, inequalities. By specifying G, the rank of GWGT 
is predetermined. The LMI solver algorithms all work with 
strict inequality, because finding the rank of a matrix is not 
a well defined problem. If this were not the case, then a new 
matrix variable Q=GWGT could be introduced and the 
optimization algorithm could determine the optimal range of 
Q. When computing the solutions, the strict inequalities are 
essentially the same as non-strict ones to machine precision, 
but many of the theoretical results rely on (the greater than 
or equal) inequality instead of the strict inequality. The LMI 
solvers will view a matrix with an eigenvalue of hi-W1’ as 
>O, but for all practical purposes the matrix is 20. In order 
to do this, W can be allowed to be a free variable, but G must 
be chosen. The choice of G determines the range of GWGT 
since W is constrained to be full rank. The resulting LMI is: 

“ 1  t 0 ,  
A P +   PA^ + G W G ~  

V 

where the variables are now P, W, and the h in (29) is the 
pole associated with the desired eigenspace. This is now a 
FDI filter design problem and the desired eigenspace, Xcl,  is 
the detection space. 

26 
Theorem 5.2.2. Least Squares Optimal Detection 

Filter 

Given the system: 

5 k=Aw+Bu+Gw, (39) 

y=cx+y  (40) 

x(O)=x,. 

10 and assuming (A,G) stabilizable and (A$) detectable, then 
the maximal solution to the LMI optimization problem in the 
variables P=PT>O, W=WT>O, and -h<h<O, is: 

subject to 

A P +   PA^ + G W G ~  p c T  
20 V ] t o ,  

AP + PAT + 2hP PCT 

2s 1 j 2 v  

(43) 

E/ ( ( A /  - A + PCTV-lC)X,l)T (44) 
/ ] > O .  

30 I ( A / - A + P C T V I C ) X , l  

A solution with all the standard robustness properties to the 
asymptotically stable time-invariant Linear Quadratic Esti- 

35 mator problem with eigenvector alignment within E of the 
desired eigenvectors X,, and poles at most h distance into the 
left-half plane. 

Proof 

From (13) it is clear that solutions to (41) are defined by 
(42). The dual of (42) is (15). Now assume v=ETP&, where 
P, satisfies (15). Using the relations (10) through (14) it 
follows that: 

40 

Now define so 
K. =R-’BTe 

A.=A-BK., 

then using (2) and (5) and the identity 
5s 

60 one obtains 

(46) 

(47) 

(49) 0 = inf sbllLllz + llR1/2v112 dr, for all x(a), 
u[a,bl a 

65 
where r(P,)=LTL and the feedback law is v=K,x+u. This is 
the standard nonsingular LQR problem, and it achieves its 
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infimum over the space of continuous functions. Immedi- 
ately vo=O and Lxo=O. Since this is true for all x(a), then 
LEO. Thus, the solution to the optimization problem (41) is 
also a solution to: 

5.3 Direct Optimal Detection Filter Design 
Stein developed an LQ filter design algorithm for closed- 

loop asymptotic eigenstructure alignment. It required the 
designer to specify left eigenvectors and eigenvalues for the 

s closed-loop estimator. Unfortunately, this is not the design 
problem that needs to be solved for detection filters. Return- m : r ( p ) = o .  

ARE:I'(P)=AP+PAT+GWGT-PCTITICP=O. (51) i o  associated eigenvalues, and the free gain matrix, E. 
By specifying the closed-loop eigenvalues, though, the 

Furthermore, the solution to (41) as solutions to the ARE designer is not use of all the flexibility offered by 
also have all the attractive robustness Properties of the multivariable feedback. However, the desired eigenvector 
nominal LQE. However, the solutions of (41) also satisfy the alignment does impose structural constraints on the feed- 
other constraints, (43) and (4% ensuring that the desired is back gain. One can look at the structural constraints placed 
eigenstructure is aligned to within E and all the closed-loop on the estimator feedback gain when attempting to specify 
poles are at most h into the left-half plane. some part of the closed-loop eigenstructure. Consider a 

The detectability requirement ensures that the closed-loop 
subspace, X,,€W, that a designer would like to specify as system is asymptotically stable. If an unstable mode does not 

show up in the cost of the optimization problem, there is no 2o part Of the closed-loop eigenstructure. To be even more 
guarantee of stability, In certain cases, such as when the strict, the designer would like any one-dimensional subspace 

system is asymptotically stable to begin with, or with a of Xc,€Rp to be part of the closed-loop eigenstructure. In 
modification to the optimization problem, the detectability the case of an FDI filter design, this would ensure the 
requirement can be dropped. Using duality and the detailed detection spaces are closed-loop eigenvectors. Thus, each of 
analysis given in Zhou and Doyle for what they term the 25 the nxl column vectors in X,, are closed-loop eigenvectors 
"extended LQR' problem explains when these requirements 
can be dropped. Anderson and Moore give a clear explana- 

The robustness properties also follow from the fact that the 

of the system. The set of equations, 

tion of the detectability requirement as applied to the ARE. 

LMI solutions are solutions to the ARE. Starting with the 30 

LN=M, 

M '4X,rxciJ,i, 
N 4CX,,  

ARE 

AP+PA~-LVL~+GWG~=O. (52) S,,=diug(A,, A,, . . . , A,). (61) 

Then add and subtract SP to both sides to get describe the constraints on the estimator feedback gain. 
35 Specifically, in the FDI filter problem, X,, is the desired 

detection space. The solution of (58) for the state estimator - (SI-A)P-P(-SI-A 3-LVL '+G WGT=O . (53) 

Then multiply from the left by c(sI-A)-~ and from the right 
by (-sI-AT)-'CT to get 

gain L willbe referred to as the State Estimator Gain (SEG) 
problem. The SEG structural constraints arise due to Theo- 
rem 2.2.2 of Appendix A. The solution to the SEG equation 

(54) 40 is: 
-CP(-s/ - AT)-'CT - C(s/ - A)-'PCT - 

C(s/ - A)-'LVLT(-s/ - AT)-'CT + L=MN++zP~~ .  

C(s/ - A)-'GWGT(-s/ - AT)-'CT = 0.  (2.67) in Appendix A requires that 

4s  M(I-nri?i)=O, 

VLT(-s/ - AT)-'CT + C(s/ - A)-'LV - ( 5 5 )  I-N+N=O, (65) 

C(s/ - A)-'LVLT(-s/ - AT)-'CT + thus (2.67) in Appendix A is easily satisfied, since N?N=I. 
(2.65) in Appendix A imposes the last constraint C(s/ - A)-'GWGT(-s/ - AT)-'CT - 0.  

Completing the square results in 
MNIN=M 

MI=M, 
55 

V +  C ( s / - A ) ~ ' G W G T ( - s / - A T ) ~ ' C T  = (56 )  and is easily satisfied. An advantage of the new parameter- 
ization is that S,, can potentially take another form. If the 
sub-partitions of S,, take the form, ( I  - C(s/ - A)-'L)V(/  - LT(-s/ - AT)-'CT),  

thus 1 60 Real@) -/mag@) 

&I = [/mag@) Real@) ' 

( I - c ( s I - A ) - ~ L ) v ( I - L ~ ( - s I - A ~ - ~ c ~ ~ I .  (57) 

The ability to preserver the robustness properties then the subset of the subspace X,, associated with that 
al~S('jw)I~S 1, of the LQ Estimator is an important aspect of 65 particular sub=partition of S,, is a pair of complex conjugate 
the new design method. For the first time, it allows the eigenvalues. An advantage of this is that in some cases the 
design of detection filters with guaranteed robust properties. restriction that eigenvalues associated with X,, be real may 

- 
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eliminate an important degree of design freedom. Already 
some degree of design freedom have been eliminated YCLYT YTDI 
because of the eigenvector constraint. In some cases, asso- = ZI D 2 y  S("-m)x("-m) J.., 
ciating a pair of complex conjugate eigenvalues with the 
desired subspace X,, may result in a better design. The SEG 5 
parameterization can then be written as: 

C=Y-l[IO]Z-l, 

L =  AX,l((CX,l)T(CX,l))~'(CX,l)T + (69) 
D 

XdSd (( CXC1lT ( Cxcl))-' (CXd I T  + 10 Z ' L =  [ ,,:I, 
E(! - (Cx~l)((Cx~l)T(Cx~l)'(CX~l)T) 

=Lo + Xc1L~cp +LkCp (70) 

(71) 
L=L~+x,,L,c,,+L~c,,~. (77) 

1s Proof Lo A A X ~ l ( ( C X ~ l ) T ( C X ~ l ) ) ~ l ( C X , l ) T ,  

LJ A &, (72) 

(73) 

Assume that the LQ estimator problem has an optimal 
solutionAfor (A, C, Q). Then there exists a real symmetric 
matrix P such that Lk A E, 

20 
AP+PA-Pc~cP+Q=o, (78) 

this gain parameterization shows that the Lo gain sets up part Reh(A-LC)<O, (79) 

of the closed-loop system, A-LoC, to have the desired L=PCT. (80) 
eigenvectors and eigenvalues of 0. The L, diagonal matrix 
sets the eigenvalues in the desired eigenspace (or the detec- 2s Thus, conditions (1)-(3) are satisfied by P. Conversely, 
tion space, in FDI theory). The Lk matrix determines the should (1)-(3) hold, then clearly P is a real symmetric 
eigenstructure in the remaining unspecified closed-loop sub- solution of the ARE satisfying Reh(A-LC)<O. Of necessity, 

eterization is similar to Park's parameterizations, but is 3o Q. Given (1)-(3), hence an optimal L, then (4) follows from 
derived differently. the fact that CL=CPCT for a symmetric P. Conversely, C 

Given a parameterized gain, can one say anything about admits the representation 
the parameterization of the solution of the LMI? This is a 

C=T1[Io]Z-l, (81) different form of the inverse optimal control question. The 
inverse multivariable optimal control problem, first thor- 3~ where y and z are non-singular, Next, consider the parti- 
oughly analyzed by Anderson and elaborated on by tioned matrix 
Molinari, asks whether, given a stabilizing gain, K, there is 
a non-negative matrix P and an associated family of Q's and 

This is essentially a subset of what we have. We would like 4o 
to know whether, given a parameterized estimator gain L, 
we can obtain a parameterized family of P, W's and V's 
where that parameterized L is a solution to the LQ estima- 

where EER""" is an mxn arbitrary matrix. An analysis of 

space (or the completion space, in FDI theory), This param- this P is  unique, and can be denoted P. Thus, L i s  optimal for 

D (82) 
R's that give that answer as a solution to the LQR problem. Z ' L = [ D : ] ,  

then 

tion problem. D,=YCL. (83) 

an additional set of free parameters. Given this parameter- YCLYT YTDI (84) 
ization of the solution, P, there is an equation that places a 

If one assumes V=I, then the solution P can be param- 4s Thus, for an arbitrary symmetric matrix S("-")"("-"), 
eterized by the set of free parameters in the gain matrix plus 

P = Z [  ~~y S(n-m)x(n-m) J... 
restriction on the choice of W. The following analysis 
borrows heavily from Molinari and the fact that the LQ so 
regulator Problem and the LQ estimator Problems are duals 
as far as stability and eigenvalue placement. 

From this (1) and (2) are satisfied and L is optimal for the 
Q which is the solution to (3). 

(74) 

(75) 

(76) 

Using this theorem, an LMI optimization problem that 
solves the LQ estimator with eigenstructure alignment prob- 

ss lem can now be posed. Th variables are the gain matrices, L, 
and Lk, the arbitrary positive definite symmetric matrix S, 
and positive definite symmetric matrix W. 

Theorem 5.3.1. Inverse LQ Estimator Problem 

Assume that (A, c, is and (A, Q1") 
stabilizable, where Q=GWGT. Then Lis  optimal for Q if and 
only if 

Theorem 5.3.2. Direct Optimal Detection Filter 
1. Reh(A-LC)<O and X,, is part of the set of closed-loop 60 

2. L=PC~=L~+X,,L,C,+L, c,' for some real symmetric 
eigenvectors. Given the system 

k=Aw+Bu+Gw, (85) 

y=Cx+y (86) 

x(O)=xo, (87) 

and assume that (A, C) is detectable and (A, G) stabilizable. 

P 2 0 ,  
3. AP+PA~-L~L+ Q =o, 

65 
4. CL is a symmetric matrix, where P is a function of the 

gain L and an arbitrary matrix SER("-")"("-") and is 
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In,,; PXO, 

subject to 

“ 1  t 0, 
A P ~   PA^ G W G ~  

I 

APc PAT c 2hP PCT ] > o ,  
1/21 

c= Y-’ [I O I Z ’ ,  Z ’ L =  , 1 
P=PT>O,W=WT>O, and S=ST>O. 

Proof 
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structure. The best results are obtained when both optimi- 
zation problems work. This gives some guidance on the 
choice of G and the “reasonable” choice of the fast pole 
constraint value h. Using the LMI solver package written by 

5 E. Ghaoui et al. and the SDPPACK solver, the Twin Otter 
Estimation with eigenstructure alignment was solved. In this 
case, the “least-squares’’ method returned an alignment error 
of 1.3”. The parameterized method exactly assigned the 
desired eigenvector. The different values for the trace of P 

10 differed by only 0.04, and the eigenvalues were also essen- 
tially the same. Finally, the attractive robustness properties 
were preserved in that with both solutions the sensitivity 
functions never exceeded 1. 
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calculating estimated gains of a filter and selecting an 
appropriate linear model for processing the output 
signals based on the at least one system input signal, the 
step of calculating utilizing at least one model of the 
dynamic system to obtain estimated signals; 

calculating output error residuals based on the output 
signals and the estimated signals; and 

detecting at least one hypothesized failure or performance 
degradation of a component or subsystem of the 
dynamic system based on the error residuals, wherein 
the step of calculating the estimated gains is performed 
optimally with respect to one or more of  noise, uncer- 
tainty of parameters of the at least one model and 
un-modeled dynamics of the dynamic system. 

2. The method as claimed in claim 1 wherein the step of 
calculating estimated gains is performed continually. 

3. The method as claimed in claim 1 wherein the dynamic 
system is a closed-loop dynamic system. 

4. The method as claimed in claim 1 further comprising 
generating a signal for each hypothesized failure or perfor- 
mance degradation and storing each signal in a database for 
subsequent retrieval. 

5. The method as claimed in claim 1 further comprising 
generating a signal for each hypothesized failure or perfor- 
mance degradation and processing each signal to diagnose 
the at least one hypothesized failure or performance degra- 
dation. 

6. The method as claimed in claim 1 further comprising 
generating a signal for each hypothesized failure or perfor- 
mance degradation and processing each signal to obtain a 
reconfiguration signal. 

7. The method as claimed in claim 6 wherein the dynamic 
system has a controller and wherein the method further 
comprises reconfiguring the controller based on the recon- 
figuration signal to compensate for the at least one hypoth- 
esized failure or performance degradation. 

8. The method as claimed in claim 7 wherein the at least 
one hypothesized failure or performance degradation is a 
failure or degradation of one of the sensors. 

9. The method as claimed in claim 8 wherein the recon- 
figuration signal inserts an estimated or compensated value 
of the output signal of the failed or degraded sensor into the 
controller. 

10. The method as claimed in claim 6 wherein the 
dynamic system has a controller and at least one actuator and 
wherein the method further comprises reconfiguring the 
controller based on the reconfiguration signal to compensate 
for a change of the at least one actuator. 

11. The method as claimed in claim 1 wherein the 
dynamic system is a flight vehicle and the sensors include 
flight control sensors. 

12. The method as claimed in claim 1 wherein the 
dynamic system is a physical system characterized by a 
nonlinear dynamic model having parameters and wherein 
changes in the dynamic system are manifest by parameter 
changes in the nonlinear dynamic model. 

13. The method as claimed in claim 1 wherein the error 
residuals are propagated in a unique direction in output 
detection space for a given hypothesized failure or perfor- 
mance degradation. 

14. The method as claimed in claim 1 wherein the step of 
calculating estimated gains includes the step of controllably 
selecting parameters of the at least one model. 

15. The method as claimed in claim 1 wherein the step of 
detecting detects intermittent faults. 

16. The method as claimed in claim 13 wherein the step 
of detecting is based on magnitude and direction of the error 
residuals in the detection space. 
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17. The method as claimed in claim 1 wherein the at least 

one model includes non-dimensional variables and wherein 
the step of detecting includes the step of converting from the 
non-dimensional variables to dimensional variables to 
obtain re-scaled error residuals and wherein the step of 
detecting is also based on the re-scaled error residuals. 

18. The method as claimed in claim 1 wherein a plurality 
of mathematical models are utilized to model the dynamic 
system and wherein the step of calculating estimated gains 
includes the step of selecting one of the plurality of math- 
ematical models. 

19. A detection system for detecting a failure or perfor- 
mance degradation in a dynamic system having sensors for 
measuring state variables of the dynamic system and pro- 
viding corresponding output signals in response to at least 
one system input signal, the detection system comprising: 

means for calculating estimated gains of a filter and 
selecting an appropriate linear model for processing the 
output signals based on the at least one system input 
signal, the means for calculating utilizing at least one 
model of the dynamic system to obtain estimated 
signals; 

means for calculating output error residuals based on the 
output signals and the estimated signals; and 

means for detecting at least one hypothesized failure or 
performance degradation of a component or subsystem 
of the dynamic system based on the error residuals, 
wherein the means for calculating the estimated gains 
calculates optimally with respect to one or more of  
noise, uncertainty of parameters of the at least one 
model and un-modeled dynamics of the dynamic sys- 
tem. 

20. The detection system as claimed in claim 19 wherein 
the estimated gains are calculated continually. 

21. The detection system as claimed in claim 19 wherein 
the dynamic system is a closed-loop dynamic system. 

22. The detection system as claimed in claim 19 further 
comprising means for generating a signal for each hypoth- 
esized failure or performance degradation and a database for 
storing each signal for subsequent retrieval. 

23. The detection system as claimed in claim 19 further 
comprising means for generating a signal for each hypoth- 
esized failure or performance degradation and means for 
processing each signal to diagnose the at least one hypoth- 
esized failure or performance degradation. 

24. The detection system as claimed in claim 19 further 
comprising means for generating a signal for each hypoth- 
esized failure or performance degradation and means for 
processing each signal to obtain a reconfiguration signal. 

25. The detection system as claimed in claim 24 wherein 
the dynamic system has a controller and wherein the detec- 
tion system further comprises means for reconfiguring the 
controller based on the reconfiguration signal to compensate 
for the at least one hypothesized failure or performance 
degradation. 

26. The detection system as claimed in claim 25 wherein 
the at least one hypothesized failure or performance degra- 
dation is a failure or degradation of one of the sensors. 

27. The detection system as claimed in claim 26 wherein 
the reconfiguration signal inserts an estimated or compen- 
sated value of the output signal of the failed or degraded 
sensor into the controller. 

28. The detection system as claimed in claim 24 wherein 
the dynamic system has a controller and at least one actuator 
and wherein the detection system further comprises means 
for reconfiguring the controller based on the reconfiguration 
signal to compensate for a change of the at least one actuator. 
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29. The detection system as claimed in claim 19 wherein 35. The detection system as claimed in claim 19 wherein 
the dynamic system is a flight vehicle and the sensors the at least one model includes non-dimensional variables 
include flight control sensors. and wherein the means for detecting includes means for 

30. The detection system as claimed in claim 19 wherein converting from the non-dimensional variables to dimen- 
the dynamic system is a physical system characterized by a s sional variables to obtain re-scaled error residuals and 
nonlinear dynamic model having parameters and wherein wherein the means for detecting detects based on the 
changes in the dynamic system are manifest by parameter re-scaled error residuals. 
changes in the nonlinear dynamic model. 36. The detection system as claimed in claim 19 wherein 

31. The detection system as claimed in claim 19 wherein a plurality of mathematical models are utilized to model the 
the error residuals are propagated in a unique direction in i o  dynamic system and wherein the means for calculating 
output detection space for a given hypothesized failure or 
performance degradation. 

32. The detection system as claimed in claim 19 wherein 
the means for calculating estimated gains includes means for 
controllably selecting parameters of the at least one model. 

33. The detection system as claimed in claim 19 wherein 
the means for detecting detects intermittent faults. 

34. The detection system as claimed in claim 31 wherein 
the means for detecting detects based on magnitude and 
direction of the error residuals in the detection space. 

estimated gains includes means for selecting one of the 
plurality of mathematical models. 

37. The method as claimed in claim 1 wherein the 
dynamic system is a financial market or modeled financial 

38. The detection system as claimed in claim 19 wherein 
the dynamic system is a financial market or modeled finan- 
cial system. 

15 system. 
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