L
View metadata, citation and similar papers at core.ac.uk brought to you by:: CORE

provided by NASA Technical Reports Server

US006697818B2
a» United States Patent (o) Patent No.. US 6,697,818 B2
Li et al. 5) Date of Patent: Feb. 24, 2004
(54) METHODS AND APPARATUS FOR 6,377,953 Bl * 4/2002 Gawlick et al. 707/102
CONSTRUCTING AND IMPLEMENTING A 6,418,448 Bl * 7/2002 Sarkar 707/104.1
UNIVERSAL EXTENSION MODULE FOR 6,446,256 B1 * 9/2002 Hyman et al. 717/143
PROCESSING OBJECTS IN A DATABASE OTHER PUBLICATIONS
(75) Inventors: Chung-Sheng Li, Ossining, NY (US); U.S. patent application Ser. No. 09/360,366, Bergman et al.,
John R. Smith, New Hyde Park, NY filed Jul. 23, 1999, “Multidimensional Indexing Structure
(US); Yuan-Chi Chang, Ossining, NY for Use with Linear Optimization Queries.”
(US); Anant D. Jhingran, San Jose, U.S. patent application Ser. No. 09/237,646, V. Castelli et
CA (US); Sriram K. Padmanabhan, al., filed Jan. 26, 1999, “Method and Apparatus for Simi-
Briarcliff Manor, NY (US); Hui-I larity Retrieval from Iterative Refinement.”
Hsiao, Saratoga, CA (US); David U.S. patent application Ser. No. 09/237,734, L.D. Bergman
Mun-Hien Choy, Los Altos, CA (US); et al., filed Jan. 26, 1999, “System and Method for Sequen-
Jy-Jine James Lin, Cupertino, CA tial Processing for Content—Based Retrieval of Composite
(US); Gene Y. C. Fuh, San Jose, CA Objects.”
(US); Robin Williams, San Jose, CA . .
(US); Lawrence D. Bergman, Mount cited by examiner
Kisco, NY (US) Primary Examiner—Diane D. Mizrahi
. . . . Assistant Examiner—Yicun Wu
(73) Assignee: International Business Machines (74) Attorney, Agent, or Firm—Thu Ann Dang; Ryan,
Corporation, Armonk, NY (US) Mason & Lewis, LLP
(*) Notice: Subject to any disclaimer, the term of this 67 ABSTRACT
patent is extended or adjusted under 35 L o .
U.S.C. 154(b) by 144 days. Methods and apparatus for prov1d1ng a multi-tier ob]ect-
relational database architecture are disclosed. In one illus-
) trative embodiment of the present invention, a multi-tier
(21) Appl. No.: 09/881,265 database architecture comprises an object-relational data-
(22) Filed: Jun. 14, 2001 base engine as a top tier, one or more domain-specific
. L. extension modules as a bottom tier, and one or more
(65) Prior Publication Data universal extension modules as a middle tier. The individual
US 2002/0198891 Al Dec. 26, 2002 extension modules of the bottom tier operationally connect
with the one or more universal extension modules which,
(51) Int. Cl.7 .. G06F 17/30 themselves, Operationauy connect Wlth the database engine.
(52) US.ClL oot 707/103 R; 707/102 The domain-specific extension modules preferably provide
(58) Field of Searchc.cccoccoceenennce 707/1, 2, 3, 4, such functions as search, index, and retrieval services of
707/5,6,7,8,9, 10, 101, 102, 103 R, images, video, audio, time series, web pages, text, XML,
104, 513; 717/143, 115 spatial data, etc. The domain-specific extension modules
may include one or more IBM DB2 extenders, Oracle data
(56) References Cited cartridges and/or Informix datablades, although other

U.S. PATENT DOCUMENTS

6,122,628 A 9/2000 Castelli et al.

domain-specific extension modules may be used.

19 Claims, 37 Drawing Sheets

701—"| QUERY / BROWSE 702"} G++API
TOOL
/ ° SQL\
704
GLOBAL GARLIC SCHEMA
703—"]
OBJECT—ORIENTIIED MIDDLEWARE METADATA
705" WRAPPER SCHEMA | 0~ WRAPPERSCHEMA| 55, WRAPPER SCHEMA
- IMAGE RELATIONAL DOCUMENT e
WRAPPER WRAPPER WRAPPER
IMAGE STORE RELATION
06— 08— ONALDBMS | | DOCUMENT STORE

https://core.ac.uk/display/10541341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US 6,697,818 B2

Sheet 1 of 37

Feb. 24, 2004

U.S. Patent

Y

WIALSAS
INSWIOVYNVYA
3svavivad

N-LO}

AN

NILSAS
JNINIOYNVYIN
3Svaviva

L-10t

€0l

1N312
JSvaviva

(Al

[OI4d

US 6,697,818 B2

Sheet 2 of 37

Feb. 24, 2004

U.S. Patent

NOLLYINWIS QINSI3S SOLOHd S3I1y¥3S
T1300N L0 FOVIAL JNILL
JIVAID 16N O34aIA 31M131vs olanvy
JNIL+AE ae INIL+a2 az ai SNODAI0d S3NN
< < < < < < =
922 {44 (444 0ee gLe gie vie
oLe 802 —~__|
AX3l ElelINA4] SH0.LOIA
133HSAYIIdS
TNLH TNX VL IVNOILVYIZY
| o0z #0Z—_| 20Z
a3a-8NLONYLS Q3dNLONYLS
-IN3s “NON Q3¥NLONYLS
002
viva

¢ Old

US 6,697,818 B2

SSIODV NIVHO INIZ SS3DIV NIVHD ASHVYOD
~ll
~ l N, /]
2 N A
2)i R
e N A /
N . Z
P magaoms]
- SL03rgo / SAN3DS SLNIWDFS 7 SNOIDIY SANYHA
%
- £0¢ 20¢
s Lot
=
=)
=

& Old

U.S. Patent

US 6,697,818 B2

Sheet 4 of 37

Feb. 24, 2004

U.S. Patent

ONIOYYING HLIM
SAIDNIOD AZZN4 ONINLHOIYE | 2661 IONIS SLINIAT 1I1dS MO01S zmﬁwm_m,__m__mo —"80p
JHIHM SNOIOTY DNINTLHOIHE .
HIAI THL 40 394039 3NV NOYd ST W NOLLISOWOD | g0y
1S3M THL OLVIHY IUNLINDINOY| 0F NIHLIM VISV JHNLINDINOY IVILVAS
NIQOOM~IHNLXAL ; NOILISOdWOD O
ANV AZZN4 NIFUO~H0T10D 001 <30V ANV J1dVA = 153404 TIID0] —
NIFHO.~HON10D ANVNING . i i
" GHOMATM.~LXL FHTHM mmmm_.”_%_%m hﬂm_.mp mﬂwﬁ,q H.”_Vwrmw NIOP l_—zop
19 OWINEL LXLINOYS » 10313 »
AZZN4 3S1038d
/ /
AR oLy

¥ "OId

U.S. Patent Feb. 24, 2004 Sheet 5 of 37 US 6,697,818 B2

_/

SHALE
SILTSTONE

<10FT

ADJACENT

FIG. 5

\

ANOLSLNS B € 370H3¥08 2 I10H3U08 L 370H3HOS

.1

US 6,697,818 B2

c05-" | ' 1404 >
3807 /) anoLsaNYS —— | +
vL13a 3 " / “\\\..l/
\\ = : . A H /_. I\\
- TIVHS SR ——
& 2k
< F 10S
el
\& .
~Nd
=5
2 ¥09 \ VAVHLS 30 NOILONHLSNOD
= 509 i
W

- .
=
o
3 HLd3Q
o
S OLOHd

3400

L | 907 113M
ATIVLIOIN i /N
Q3NNVOS ATTYLIOIG 109 —- \/ 209
F10H3IJ08 WO 4 XN14 AvH YWAVO

S3TdWYS 3H0D
el

9 OId

U.S. Patent

US 6,697,818 B2

Sheet 7 of 37

Feb. 24, 2004

U.S. Patent

¥0L

1L
oL2
aMoLS IN3WNooa =
Y3ddVHM
ININND0a
YINZHOS H3ddvam —40¢

/

ViVQ-VL3IW

2L
60.
SWEA IWNOIYTaY [
YIddVEM
TWNOLLY13Y
YINIHOS H3ddvem —904

bi

—

FHYMITAAIW A3LINIIHO-LO3rd0

VWIHOS JINHvo Tvao1o

[dV++D

| _—€0L

80/
3yols3ovml [
HIddYHM .
IOV -
VINIHOS H3ddvum — 504
1001
ASMONE/ ANAND | 102

L "Ol4

US 6,697,818 B2

SNOILYOIddY $31¥3IN0D SANVINWOD
HANOLSND 108 NOILVHLSININGY
|
« oww mmm 08
sidY s4an mmmw_ﬂmmhz_
. aNeN o (S)43AYIS YIANALX
: A A) .
s €08
=]
Z 1 Y Y
IV IdV
3
S
- o

=
M IN3ID 8an 108 —— YIAYIS 9an
= _—208

8 Old

U.S. Patent

US 6,697,818 B2

Sheet 9 of 37

Feb. 24, 2004

U.S. Patent

X3ANI 3Lvadn NANTO0J 1X31 318YN3
AdIH3IAXL

SNLVLS X3ANI L1383y 3Svavivd J3189vYN3
3OVdLXL

Lino A19vL 1X31 318vSIa
dO1SXL

Q4NI 1X31 139 S3T14 1X3L 31a9vSId
SNIVLSXL

NOILYHNOIINOD LX31 139 NWNT0D 1X31 3719vSIa
1UvISXL

SNLYLS 139 JSvavivad 318vsIid
TF1dNVSXL

SNLVLS X3ANI 139 SIN3A3 X3ONI 3137130
dOYANXL

ONLLLIS X3ANI 139 LO3INNOD
AOIHONXL

NOLLYHNOIANOD
ININWNOQYIANZ 139 1X3L IONVHO AAavNX1l
J189VL 1X31 319VYN3 ONLLLISS X3aNI 3ONVHD dO¥AIXL
SIH LX3L TN é 1HIIXL

IN3IID H3IAHTS

do OId Vo Old

US 6,697,818 B2

Sheet 10 of 37

Feb. 24, 2004

U.S. Patent

1INS3Y HOYV3S

ELNEERS]

ANVY

SIHOLVIN 40 ON

SIN3IWND0Q 40 ON

OVNONY1

FIANVH LX3L LINI

1S I1ANVYH

J1ANVH

LYIWIOA

ENIE

SNIVLNOD

aisdd

4an

doT "Old

vivallg

HO4 (91)YVHOUVA diSinH41x312aa
viva 118

HOH (91 HVYHOHVA d1SINHLX312ad
viva 118

HO4 (01 2)dVHOHVA H41X31290
Vviva 1ig

HO4 (09)4YHOUVA H1X31280

IdAL YLva 304N0OS an

VOl OId

US 6,697,818 B2

Sheet 11 of 37

Feb. 24, 2004

U.S. Patent

NOISS3ISISMOH81LIVISS3A

INIWNDOANIJ0S3A

F18VLLIINSIHHOHYAS 149530

S3IHOLVINL3OS83d

O4NIZISMO¥YL39830

O4NIISMOYEIH4S3A

NOISS3ISISMOYEANISAU

IN3WNDO0A3SOT0S3A

[1OId

US 6,697,818 B2

Sheet 12 of 37

Feb. 24, 2004

U.S. Patent

ONIMO3IHO3N
CANANVH X g3.Ldv 2o0d
'Sl
JANANYH X d3WOLSNO 10040
J1ANVH
ANIWANOD LNIWNOO aiood
rAVA%
ONINOIHDITY
d3aldv Z200d
Bl
¥3IN0LSNI 1004
INIWWOD anodad
L0ZL

¢l Old

US 6,697,818 B2

Sheet 13 of 37

Feb. 24, 2004

U.S. Patent

C0EL T~

X3ANI

Locl

3178v.L O01
S3N1ANYH
1X3al 1X3L vivd viva viva Viva
I1ANVH
INFWWOOD | INIWWOD 31va 103rans HOHLNY aivoa
1X3l vivd vivad vivad viva
INIWWNOD a1va 103rans HOHLNY aoa

&1 Old

US 6,697,818 B2

Sheet 14 of 37

Feb. 24, 2004

U.S. Patent

0 < STHOLYIN THIHM
378V.LdWIL WOYA
» 1037138
(31dNvSX.128a WOY4
(, .SSIHYANOD. ‘ATANVHLINIWWOD)STHOLYW 4O ON'X1e8a
193rans '31va 103138) Y
(STHOLYN ‘LO3rdNS ‘FLVA)FNEYLINIL HLIM

L=(, .SSAYANOD. , ‘TIANVHLNIWWNOD) SNIVLNOD X1280 FHIHM
I1dWVS Y1290 WOX4
103rdNs '31va 193138

S

> eovl

Loyl

y1Old

US 6,697,818 B2

Sheet 15 of 37

Feb. 24, 2004

U.S. Patent

Z 31ANVH
| ITANVH
SANVEJ0NNN LHOIZH HLAIM 31aNVH
o5, ——" S3ALNEGIYLLY 3NDINN
Z I1ANVH
L INANVH
| ¥31vadn HILHONI 31aNVH
cogl——" S3LNAINLLY NOWINOD
206, ———" $318VL LHOddNS IAILVYLSININGY
2 J1ANVH
L 31ANVH
3OV AWYN al
LogL——" 31gvL ¥3sn

Gl Old

U.S. Patent Feb. 24, 2004 Sheet 16 of 37 US 6,697,818 B2

F]{G, 16A uDT SOURCE DATA

TYPE
DB2IMAGE | VARCHAR(250)

DB2AUDIO | VARCHAR(250)

DB2VIDEO | VARCHAR(250)

FIG. 16B |avenvawue IMPORTTIME

ASPECTRATIO MAXBYTESPERSEC
BITSPERSAMPLE | NUMAUDIOTRACKS
BYTESPERSEC NUMCHANNELS

COMMENT NUMCOLORS
COMPRESSTYPE | NUMFRAMES

CONTENT NUMVIDEOTRACKS
DB2AUDIO QBSCOREFROMNAME
DB2IMAGE QBSCOREFROMSTRING
DB2VIDEO QBSCORETBFROMNAME
DURATION QBSCORETBFROMSTR
FILENAME REPLACE

FINDINSTRUMENT | SAMPLINGRATE
FINDTRACKNAME | SIZE

FORMAT THUMBNAIL
FRAMERATE TICKSPERQNOTE
GETINSTRUMENTS TICKSPERSEC
GETTRACKNAME | UPDATER
HEIGHT UPDATETIME
IMPORTER WIDTH

US 6,697,818 B2

Sheet 17 of 37

Feb. 24, 2004

U.S. Patent

(s11ns3y
INNOD%
.><mm<_m.w =204}
'SLINSTUXVYI
JHNLOId,
L A3A0TdNS,
‘FIANVHOD
JHOHYASAYINDED=0Y
ISNYMNLI¥ANINOXYWIGDISLINSTY 11NsS3HE0
‘JNANYHD FTANVHAHINDED
_ ANNOD ¥3IODHIUINIIOS
'SNYNLIYAEINOXYNISD=SLINSIUXVIN HIOIALINIOS
ISNHNLIHAYINDXYNISNSHNLIY 11NS3HgO Lo/L
. {(3D4¥NOSONIT
LSSY103UNLYIJNVHOOLSIHYO1024aD.
‘TIONVHD

WIVQIUN1IYI41LISAHINDE0=0Y

. x..u_@...._.<2m0u_.w4_m._.zm_.._o.mom NOSOWNALOULS
(L AO DN L. FWYNT IS TSN IO TOUNOSONWIALONLS
-FNU4UININDO FDHNOSHO=AdALIOHNOSONI

-30HNOSONI 3DUNOSIDOVANILGD

. JI1ANVHD 3T1ANVYHAYINDED
TINVYNIUNLYIIXVNISOIINVYNIENLYIS dYHO

LT Ol

US 6,697,818 B2

Sheet 18 of 37

Feb. 24, 2004

U.S. Patent

‘0L WYTINIS ‘001 dOL

" OdWEIAY 92O 'NOILOVYLXE FdNLv3d

" ‘SLOHS ‘SAN30S
'SININOIS ‘SNOIOIY 'SIHNLYIH 'SNINOL LXAL

T '03AIA 'FOVINE 1X3L

-.w.m .

—.O.m .

IINAON NOISNILXA TVSHIAINN
SQOH.LIN
88300V Y08l
SAQOHL3INW cosL
NOLLYWHOASNYYL _

(VW3HDS WX NI daNI43a)

J3Q0N Yiva |_-2081

3dAL V1lva | _-108L

0081 \1

81 Old

US 6,697,818 B2

Sheet 19 of 37

Feb. 24, 2004

U.S. Patent

IWIHOS
NOLLdIYOSH0A
AV
L-93dW

/

0161 6061 8061
SSY10 SSY1D SSY1D
¥3AN3LX3 03AIA ¥IANILX3 IOVINI HIANIALX3 1X3L
IN wm%_ou_mm wwmw,_ - ._<ww,_ﬁmmm - SSV10
33N
avean | IDONVLSIA /NOLLY3HD NOLLOYYLX3
IONINYYA ﬁ /ONINODS ﬁ X3AN) ﬁ ERIVEE]
’ 106l 9061 G061 vO61
]
]
T ! [
SSY10 HIANILXT 3SYE IdALViVA

€061 \
0061

(

1061

Nom_.\

ol DI

US 6,697,818 B2

Sheet 20 of 37

Feb. 24, 2004

U.S. Patent

NOILOVYLX3
EXINEE
WIg-ILINN

S002

NOILLOVYH.LX3
JANlv3ad
S31¥3S INIL

NOILOVYLXI
JHN1v3d
WNASIA-OIaNY

IWIHOS
NOILJIYOS3A
AY
LO3dW

NOLLOV¥.1X3
NIV
1X3L

¥00Z

£00¢

!

2002

€00¢

SSV10 3Svd
NOLLOVYLX3
FHNLv3d

1002

0¢ Ol

US 6,697,818 B2

Sheet 21 of 37

Feb. 24, 2004

U.S. Patent

¥oLe

€012 | SO MNIT JILNYWIS-OILLOVINAS | ¢0ic

SA JILOVLINAS

otz —~— SO TIAONW *ﬂ.@.i........:...
Sa JILNVYW3S
901z~ SAAHVAWNS = 1o 0 _.o+
L0127 SOO4NIFVIIW [
~ail}
80L2™ 9@ O4NIVIGIN L0 SA VNSIA 0IanY
Lot

[¢ OId

US 6,697,818 B2

Sheet 22 of 37

Feb. 24, 2004

U.S. Patent

1444 £0¢¢ coee
SA HdVEO NOILY13H NOIO3Y / LNIWO3S SA NOIO3Y SA IN3INOIFS
+ 0 « 0 0
S 34NLONYLS OLLOVLINAS
10¢e

GG Old

US 6,697,818 B2

Sheet 23 of 37

Feb. 24, 2004

U.S. Patent

90€2 S0¢2 pOgZ
SO NOLLYWHO43a $Q NOLLOW $Q WNLXAL/ ¥OT0D
\.oMm L0 * 0 » Lo » SMN
SAOANFVIIW = = SO AHLINOIO a2
8052 2082
SUOANIVIGIW [~ P EL

+ 0
_II.' SA NOIO3N

x

Loge

&¢ Ol

US 6,697,818 B2

Sheet 24 of 37

Feb. 24, 2004

U.S. Patent

mo¢NN

JAVN

vove N

3dAL

NOLLY 134

L

L0vZ 80ve
NOI©3Y OL IONIH3 43 INIWOIS O1 JONTHI4IH
«0
NOILV13Y ALLLNG

10v2

T

SA HdVYYO NOLLY13Y NOIOIW/LNINDIS

cove

cove

V¢ Old

US 6,697,818 B2

Sheet 25 of 37

Feb. 24, 2004

U.S. Patent

062

(

S Hdvd9 NOLLYT3Y LO3rg0 / LN3A3

» 0

£05¢

N

Sa 103rg0

A

« 0

¢06¢

SA IN3Ad

A

» 0

SA HNLONYLS DILNVIAES

L0GC

G Old

US 6,697,818 B2

Sheet 26 of 37

Feb. 24, 2004

U.S. Patent

SA O1 30N3H343Y SA OL 3ON3H343Y
P09~ _| | ___—£09¢
S13OUVL AN A0HNOS MNIN
b 3
___—12092
AN
0

Sa XMNIT JILNVINTGS-DILLOVLINAS

/

1092

9¢ OId

US 6,697,818 B2

Sheet 27 of 37

Feb. 24, 2004

U.S. Patent

POLE—~__

S NOILVIOT ANV NOLLYOIILNZAI SA IHUYMQUVH VIG3W

| —¢042

» b

___——20.2
SQ F11404d VIA3IN

b

SAa NOLLYINJO4NI VIO=W

x

10L¢

L¢ Ol

US 6,697,818 B2

Sheet 28 of 37

Feb. 24, 2004

U.S. Patent

518Z~_ - 2182~
0282 S0 S3LNEINLLY TVOISAHd ‘\...1_ 4312 SAM-9 | (ST SILNGIYLLY TYIISAHd
)) . ~ -
5a FON3IaNV/SHISN| [SA NOLLYDIISSYIO| [SA VLS ILSILYY [~
g 8z I a2 oA oL8e + 0! |sa NOLLAINOS3A NOLLY3N)D
/ .
ee od
sas1sod|[sanowaaf| s sd Ewm,qw SO NOILYZINVOHO |- S0 M3LOVHYHO
- " L4182 10 .0
o) Y so0e oy
SAa NOISSING SA 44VLS TYOINHOIL
$Q INOONI ~obh) clgz +0 * SQ LN3A3
F..o* , 6192 v +
SATVIONYNIA | | SaNoIvonand| |siHor | | sa3sodund NOILY3YO | [suig3ud| |sa INILINOD
. \ . \ . \ . \ . N . \
V0% o8z +08 gogz |} o’ 5082 v i 082 170 + cosz VOB 208z
L 1
1082~ SA NOILYWHOANIFVLIN WN ©~ @

US 6,697,818 B2

Sheet 29 of 37

Feb. 24, 2004

U.S. Patent

9062 mo\mw EMN SMWN SMWN
ONIX3ANI 374 QYO 3341-Y 3341-9 e
YIHLO
" L .
V062 ™~_ 1 S NOIVIHO X3aNI

o¢ Old

US 6,697,818 B2

Sheet 30 of 37

Feb. 24, 2004

U.S. Patent

S00¢€

L00€ 200¢
Nv3QiToN3
Q31HOIEIM NV3QinoN3

ONIWNYH

Sx.om I 8\8 I

200¢

x

FHVYNOS-IHD A

b1

o

SSV10 3Svd DId13N

L00E—~—_| 3ONVLSIO? ONIMODS

0¢ Old

US 6,697,818 B2

Sheet 31 of 37

Feb. 24, 2004

U.S. Patent

SAOHL3AN

oLt

SYIddViIM
40N
EINE)

=

S0i¢

SHIddViM
NIWaV
JLv3™O

=

€0}e
1300W VLVQ
CTENRE
s31avL
NINQY X
=N

[& Ol

US 6,697,818 B2

Sheet 32 of 37

Feb. 24, 2004

U.S. Patent

0128 ——

ANIONTI HOUV3S

(

»02E
(s4an) | __coze 2026 (sLav)
VW3HOS ™1 VWIHOS
10Z€
H3ddVHMENTO,
Q3ZISFHLNAS JLLYWOLNY

A

'

Sidv

002€ ™~

gan

¢e Ol

US 6,697,818 B2

Sheet 33 of 37

Feb. 24, 2004

U.S. Patent

HIANTAXT | --eee HIANILX3 MIANILX3
d-vOEe Z-b0ee 1-POEE
goee 20EE 9068 VSHIAINN
NETENEREILN N-coee Z-20ge
HIANILXT |- | ¥IANILXT m,w%mzmm\ﬁuw
Idv W-€08€ 1-€0EE 1-Z0EE
- — INIONI gan
IN3IND 8an x
x LOSE
G0EE

Vee Oid

US 6,697,818 B2

Sheet 34 of 37

Feb. 24, 2004

U.S. Patent

0cee

82EE ™

92ee

ZAX RN

[AA% Naan N

FTNAOW NOISNILXZ TVSHIAINN

HIANIBNOD
S1INS3YH AY3AND

o]

HOLVIOANI
Ad3aNO-9NS

-

H3ZINILKO
AY3NoD

HOIVHINTO
NV1d AY3ND

ol

H38Uvd
Ad3no

\\

ocee

dee "Old

US 6,697,818 B2

Sheet 35 of 37

Feb. 24, 2004

U.S. Patent

A-NEA

LALLY

al rao

V=LdllVY)l rg0 IHIHM

8=2¥1lvZ rao

1378vL '(001'L4371'IHNLXIL ‘2 180 "HO10D ‘L ra0)3n WoHA4

» 103138

> L0bE

cove

Pe Old

US 6,697,818 B2

Sheet 36 of 37

Feb. 24, 2004

U.S. Patent

20s¢ 10SE
A3ANILX3 JIANELX3
S3I3S JNIL JOVINI
d3ANILX3 TVHIAINN
£05€ —~— J0YdS
MOv4d TIvO 94N H1IM
aan
¥0SE —~—

Ge Ol

US 6,697,818 B2

Sheet 37 of 37

Feb. 24, 2004

U.S. Patent

909¢

S30IA3Q O/l

Samn —

09€

AHOWIN

209e

[|

d0SsS300Ud

9¢ OId

US 6,697,818 B2

1

METHODS AND APPARATUS FOR
CONSTRUCTING AND IMPLEMENTING A
UNIVERSAL EXTENSION MODULE FOR
PROCESSING OBJECTS IN A DATABASE

This invention was made with U.S. Government support
under contract no. NCC5-305 awarded by the National
Aecronautic and Space Administration (NASA). The U.S.
Government may have certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to database management
systems and, more particularly, to methods and apparatus for
extending relational and object-relational database manage-
ment systems.

BACKGROUND OF THE INVENTION

A database system usually comprises database clients
connecting through a network (e.g., Internet, Intranet, etc.)
to one or more database servers managed by database
management systems (DBMSs). Such an arrangement is
shown in FIG. 1. As shown, a database client (computer
system) 102 is connected to one or more DBMSs (computer
systems) 101-1 through 101-N (each DBMS including one
or more database servers) via a communications network
103. It is known that virtually all of the business data
handled by database systems, such as data generated by
retail sales, falls into the category of structured data. Struc-
tured data is data that is present in a structured format, such
as data tables in a relational database or spreadsheet. As
non-structured data (such as text, time series, images, audio,
and video) and semi-structured data (such as HyperText
Markup Language (HTML), Extensible Markup Language
(XML), and other tagged documents) begin to become
prevalent, a database management system has to substan-
tially change its access and search capabilities in order to
efficiently manage these types of data.

A taxonomy of different data types and examples is
illustrated in FIG. 2. As shown in FIG. 2, data 200 can be
categorized as structured 202, non-structured 204 and semi-
structured 206. As mentioned, an example of structured data
is data in a relational table spreadsheet, while examples of
semi-structured data include XML data and HTML data.
Non-structured data can be further categorized as vectors
208, lattice 210 and text 212. Vectors may include lines 214
and polygons 216 used in various Geographic Information
Systems (GIS). Lattice data may include 1-dimensional data
218 (such as audio and time-series data), 2-dimensional data
220 (such as images, photos), 2-dimensional plus time data
222 (such as video), 3-dimensional data 224 (such as mag-
netic resonance image (MRI) data, CT (computer
tomography) data, seismic data) and 3-dimensional plus
time data 226 (such as climate model simulation output
data).

To facilitate accessing and managing both non-structured
and semi-structured data, database vendors have begun to
use an object-relational approach to enhance and enrich the
data types that can be handled and managed. An object-
relational data model allows the attributes of a relational
table to be an abstract data type, which can include both
complex data structures and access methods to these struc-
tures. This methodology allows the application builder to
store data based on new data types and access methods into
a relational table. Modules comprising predefined data types
and methods have also been developed to facilitate the
access of those data types taxonomized in FIG. 2. Currently,

10

15

20

25

30

35

40

45

50

55

60

65

2

all of the commercially-available major object-relational
databases have provided a two-tier architecture: (1) a rela-
tional database engine; and (2) extension modules.
Examples of extension modules include extenders used in
IBM Corporation’s DB2 database, data cartridges used by
the Oracle database, and datablades used by the Informix
database. These extension modules take advantage of both
user-defined data types (and abstract data types in some of
the newer versions of the databases) and user-defined func-
tions (UDFs) enabled by the database engine to extend the
capability of the relational database engine. Most of the
extension modules (extenders, datablades, and data
cartridges) are in the area of non-structured and semi-
structured data management such as images, video, spatial
data, text, and the recently emerging XML data.

This approach, however, has the following drawbacks:

(1) Query optimization involving UDFs: Query optimi-
zation involving UDFs from extenders/datablades/data
cartridges is difficult and sometimes impossible due to
the wide varying possibilities for estimating the cost
function. In general, sub-queries with high selectivity
and low computation cost are prioritized over sub-
queries with low selectivity and high computation cost
during query optimization. This methodology is appli-
cable to precise constraints (including precise range
queries). However, this optimization methodology has
difficulties in dealing with fuzzy constraints and, in
general, can not deal with similarity queries where all
the objects in the database are candidates. In particular,
query optimizers within any of the existing object-
relational databases can not handle queries involving
fuzzy Cartesian operators.

(2) Developing new extenders from existing search
engines: Currently, each of the object-relational data-
bases has relatively rigid APIs (application program-
ming interfaces), and it is a tremendous effort to
develop necessary “glues” for transforming an existing
search engine into an extender/datablade/data car-
tridge. It is to be understood that the term glue, as well
as the term “wrappers,” refer to the software code
necessary to transform a set of APIs to another set of
APIs. A standard search engine has its own APIs which
might not observe the programming models used in a
database. As a result, software wrappers or glue are
needed to transform the API from the search engine to
the software environment needed by a database.

In the following discussion, we further elaborate on the
first problem (query optimization). FIG. 3 illustrates an
example of querying non-structured data such as images.
The coarsest level of retrieval (coarse grain access) is the
entire non-structured document, such as the whole image as
shown in block 301. It is also possible to retrieve a sub-
region of an image (e.g., facial region) as shown in block
302. Many emerging applications require retrieving at the
object (e.g., tree, car, person) level (fine grain access) as
shown in block 303. As the size of the document becomes
increasingly large, object-level retrieval will also become
increasingly important. Retrieval of the document, sub-
document, or object based on meta-data other than a con-
ventional data type requires the use of user-defined data
types and user-defined functions. Both IBM and Informix
have extenders and datablades, respectively, for performing
this kind of access. However, the access of non-structured
data is usually based on similarity measures such as Euclid-
ean distance. This implies that all the entries within a
database can be considered as candidates, and a very dif-
ferent set of criteria (as opposed to those used in a relational

US 6,697,818 B2

3

database) need to be adopted to prune search results.
Currently, all existing object-relational databases have to go
through the following process to combine query results from
SQL (Standard Query Language) and from extension mod-
ules:

(1) request a pre-determined number of results (say the
top 1000) from those extension modules (extenders,
data cartridges, or datablades) which access non-
structured data;

(2) rank the returned results based on a similarity measure
(such as the Euclidean distance between the query and
the retrieved result); and

(3) combine the returned results with other sub-queries
that are processed through SQL.

However, this strategy may not yield the correct results
when results from multiple extenders need to be combined
(because of premature pruning by each extension module).
Furthermore, the process of joining results from relational
operations with those from extension modules encounters
similar difficulties in producing the correct results.

FIG. 4 provides a taxonomy of different queries which
challenge existing relational query paradigms. Four types of
queries are listed here: “Join (denoted as 402),” “Logical
Composition (denoted as 404),” “Spatial Composition
(denoted as 406)” and “Temporal Composition (denoted as
408).” Existing relational mechanisms based on standard
SQL queries can already handle the precise queries 410 in
the tables. The fuzzy queries 412 in the table, however,
require extensions which are mostly absent from existing
relational engines.

An example of a spatial composition query is further
illustrated in FIGS. § and 6. This query is searching for
“objects” that are similar to “delta lobe” which comprises
three “sub-objects”: shale 501; sandstone 502; and siltstone
503. Each of these sub-objects in this query is defined by the
image texture. Additional constraints specify that shale has
to be adjacent to sandstone, and sandstone has to be within
10 feet from siltstone. This query is actually a sub-query in
a much larger context, as shown in FIG. 6, where informa-
tion existing in multiple modalities needs to be combined. In
this case, the data relating to the borehole of an oil/gas well
601 includes:

(1) well log 602, which is a single-dimensional series
capturing parameters such as Gamma ray, proton
density, neutron density, etc.;

(2) core photos 603, which are digitized images of the
cores extracted from the well (these core photos are
taken both under visible light as well as ultraviolet);

(3) FMI 604, which is the 2-dimensional sensor reading of
the resistivity/conductivity of the well; and

(4) reservoir model 605, which provides a global view of
the wells in an area, and how strata goes from one well
to another.

Previously, IBM Corporation’s Garlic project proposed to
use wrappers to integrate heterogeneous data sources. This
approach is illustrated in FIG. 7. The wrapper provides the
necessary schema translation from heterogeneous data
sources such as:

(1) image wrapper 705, to access image archive 711

through image store 708;

(2) relational wrapper 706, to access relational tables 712
through relational DBMS 709; and

(3) document wrapper 707, to access document archives
713 through document store 710.

The global Garlic schema is integrated by the object-

oriented middleware 703, which has the responsibility of

10

15

20

25

30

35

40

45

50

55

60

65

4

optimizing the query from either the query/browse tool 701
or C++ API 702 against the global schema stored in a
meta-data store 704. “O0” SQL refers to Object-Oriented
SQL. This paradigm is fairly limited by its capability to be
extended to accommodate hybrid fuzzy and precise queries.
Each new query capability involves the revision of an
optimization module for the global schema.

As opposed to extending query capability through Garlic-
like structures, which integrates individual database man-
agement systems with an integrating database management
system, the current object-relational approach extends the
query capability through extension modules such as IBM
DB2 extenders, Oracle data cartridges, or Informix dat-
ablades.

SUMMARY OF THE INVENTION

The present invention is directed toward techniques for
providing a multi-tier object-relational database architec-
ture. In one illustrative embodiment of the present invention,
a multi-tier database architecture comprises an object-
relational database engine as a top tier, one or more domain-
specific extension modules as a bottom tier, and one or more
universal extension modules as a middle tier. The individual
extension modules of the bottom tier operationally connect
with the one or more universal extension modules which,
themselves, operationally connect with the database engine.
The domain-specific extension modules may preferably pro-
vide such functions as search, index, and retrieval services
of images, video, audio, time series, web pages, text, XML,
spatial data, etc. The domain-specific extension modules
may include one or more IBM DB2 extenders, Oracle data
cartridges and/or Informix datablades, although other
domain-specific extension modules may be used.

The one or more universal extension modules of the
present invention may each perform the following functions:

(1) Query parsing: Those sub-queries that need to be
handled by a universal extension module are embedded
within user-defined functions and passed to a universal
extension module. These sub-queries are then parsed
by a query parser of a universal extension module. The
result is then passed onto a query optimizer of a
universal extension module.

(2) Query optimization: A query optimizer within a uni-
versal extension module performs a query optimiza-
tion. As will be explained herein, the query optimizer of
the invention is better able to perform query optimiza-
tion than is otherwise possible with conventional
extenders due to a better understanding on the part of
the universal extension module of a data model of
underlying data types. In particular, an object-oriented
approach is applied to processing multimedia objects.
In addition, the cost of processing sub-queries at the
extension module can be sent back to a universal
database optimizer, through a feedback mechanism, for
further enhancing global query optimization, if neces-
sary.

(3) Dispatch sub-queries to domain-specific extension
modules. The sub-queries that are optimized by the
query optimizer are dispatched to those domain-
specific extension modules which have been registered
with a universal extension module.

(4) Combine query results from those domain-specific
extension modules connecting to a universal extension
module, and return the query results to the database
engine or another universal extension module that
invoked the current extension module.

US 6,697,818 B2

5

The hierarchical decomposition of the query optimization
functions allows universal extension modules to perform
more comprehensive query optimization regarding queries
related to multimedia objects, without having to revise the
object-relational query engine.

In one embodiment, an application programming inter-
face (API) of a universal extension module according to the
present invention may be a “plug-and-play” interface and
may be implemented through a “self-describing” mecha-
nism based on XML. The software code (e.g., glue) between
a universal extension module and domain-specific extension
modules which handles specific data types is synthesized
automatically, thus greatly simplifying the task of adapting
an existing search engine to a given object-relational data-
base.

Plug-and-play capability for the universal extension mod-
ule of the invention is similar to the concept of plug-and-
play in the context of a personal computer. In the case of a
personal computer, plug-and-play involves: (1) identifying
the device that is connected (e.g., printer, CDROM, modem,
etc.) and the port or slot it is connected to; (2) based on the
information, determining and allocating the necessary
resource (e.g., interrupt, I/O, memory, etc.); and (3) if this is
a first use, then locating appropriate drivers from the driver
library, then installing the required drivers. Plug-and-play
for the universal extension module of the invention is
similar. Whenever there is a new search engine that needs to
be plugged in to the database as an extender, the search
engine is identified, necessary resources (e.g., memory) are
allocated, and then the interface is registered so that the
search engine is known and can be invoked within the
database.

It is to be appreciated that in order for an extension
module to be plug-and-play, the extension module should
describe the query language or API that the module accepts,
the location of the index, if any, and the structure of the
return results.

The term “self-describing,” as used above, refers to the
concept that there exists meta-data which describes the
nature of the data. The meta-data may include the schema
and semantics of the database.

Thus, as will be explained in detail herein, the present
invention provides an extensible structure for software mod-
ules that can be used to construct an object-oriented exten-
sion of a relational database. Further, the invention provides
a method for automatic synthesis of extender wrappers from
existing software modules. Still further, the inventive hier-
archical architecture for constructing extension modules
provides advanced non-relational query processing capabili-
ties.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a database client
connecting to one or more database management systems
through a network;

FIG. 2 is a taxonomy of different data types that may need
to be managed (search and retrieval) by a database manage-
ment system;

FIG. 3 illustrates access granularity for different sce-
narios;

FIG. 4 illustrates both precise and fuzzy queries for join,
logical composition, spatial composition, and temporal com-
position;

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 5 illustrates a scenario which requires spatial com-
position of multiple regions, each of which is defined in
terms of image features;

FIG. 6 illustrates a case where multiple modalities of data
(core images, FMI data, well log data) need to be searched
and fused to construct a reservoir model;

FIG. 7 illustrates the IBM Corporation Garlic approach
for accessing heterogeneous data sources through wrappers;

FIG. 8 illustrates the client server structure for the IBM
Corporation DB2/UDB;

FIGS. 9A and 9B show the DB2 text extender commands
for server and clients, respectively;

FIGS. 10A and 10B show the DB2 text extender user-
defined datatypes and user-defined functions, respectively;

FIG. 11 shows the DB2 text extender programming API;

FIG. 12 shows the tables before and after a column has
been enabled for a text extender;

FIG. 13 shows the text column enabling process;

FIG. 14 shows the code example for using a text extender;

FIG. 15 shows the administrative tables for enabling a
user table with an image extender;

FIGS. 16A and 16B show user-defined datatypes and
user-defined functions for an image extender;

FIG. 17 shows the code examples of using image extend-
ers;

FIG. 18 illustrates a framework for a universal extension
module according to one embodiment of the present inven-
tion;

FIG. 19 shows the class hierarchy for subclassing a base
extender class into various extenders;

FIG. 20 shows the process of extending the base feature
extraction class with the MPEG-7 description scheme into
an audio-visual feature extraction class;

FIG. 21 shows the MPEG-7 audio-visual description
scheme;

FIG. 22 shows the MPEG-7 syntactic structure descrip-
tion scheme;

FIG. 23 shows the MPEG-7 region description scheme;

FIG. 24 shows the MPEG-7 segment/region relation
graph description scheme;

FIG. 25 shows the MPEG-7 semantic structure descrip-
tion scheme;

FIG. 26 shows the MPEG-7 syntactic-semantic link
description scheme;

FIG. 27 shows the MPEG-7 media information descrip-
tion scheme;

FIG. 28 shows the MPEG-7 meta-information description
scheme;

FIG. 29 shows a process of subclassing an index creation
and retrieval base class into various indexing classes;

FIG. 30 shows a process of subclassing a scoring and
distance metric base class into various distance functions;

FIG. 31 shows a process of synthesizing wrappers for
search engines to be plugged into the DB2 as an extension
module;

FIG. 32 shows a structure of a search engine as an
extension module with an automatically synthesized wrap-
per;

FIG. 33A shows a hierarchical decomposition of universal
extension modules to handle new operators and search
capabilities according to the present invention;

FIG. 33B illustrates a block diagram of functional com-
ponents associated with a universal extension module
according to an embodiment of the present invention;

US 6,697,818 B2

7

FIG. 34 shows a code sample of invoking a universal
extension module as a table function;

FIG. 35 shows a structure of an SPROC universal exten-
sion module which invokes additional extenders; and

FIG. 36 is a block diagram illustrating a generalized
hardware architecture of a computer system suitable for
implementing various aspects of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

As will be explained in detail below, the present invention
provides the following: (1) an extensible structure for soft-
ware modules that can be used to construct an object-
oriented extension of a relational database; (2) a method for
automatic synthesis of extender wrappers from existing
software modules; and (3) a hierarchical architecture for
constructing extension modules to provide advanced non-
relational query processing capabilities.

It is to be appreciated that in the following detailed
description, a preferred embodiment will be presented using
the IBM Corporation database DB2 as an example.
Although the DB2 extender structure, which is illustrated in
FIG. 8, is used in this invention, it is to be understood that
the principles of the present invention can be applied to any
other object-relational databases such as those from Oracle
and Informix, to name a few.

FIGS. 8-17 illustrate architecture and coding examples
associated with using DB2 extenders. As illustrated in FIG.
8, the server side comprises a Universal Database (UDB)
server computer system 801 connecting through an API to
one or more extender servers 803. The client side comprises
a UDB client computer system 802, which can interface with
a human being or application programs through the follow-
ing three approaches:

(1) Command line interpreter 804, which accepts admin-

istration commands;

(2) UDFs 805, which accept SQL queries with UDF

extensions; and

(3) Application Programming Interfaces—APIs 806,

which can be invoked by customer applications.

Using the DB2 extender as an example, DB2 V7.1 is
currently providing text, multimedia, spatial, and XML
extenders.

For the text extender case, all of the available commands
for both the DB2 text extender server and the text extender
client that can be interpreted by the command line inter-
preter (804 in FIG. 8) are listed in FIGS. 9A (server) and 9B
(client). The client side commands include functions such as
“connect to extender server” (connect), “enable text table”
(enable text table), and “enable text column” (enable text
column). The server side commands include functions such
as “create a text extender instance” (TXICRT), “add text
extender server” (TXNADD), and “start the text extender
services” (TXSTART). The user-defined data types (UDTs)
and user-defined functions (UDFs) (described in 805 in FIG.
8) are shown in FIGS. 10A (UDTs) and 10B (UDFs). UDTs
defined for the text extender include DB2TEXTH,
DB2TEXTFH, DB2TEXTHLISTP, and
DB2TEXTFHLISTP. UDFs include CONTAINS, FILE,
FORMAT, NO__ OF DOCUMENTS, etc. These UDTs and
UDFs can be used in a SQL query (an example is shown and
explained in FIG. 14). The programming API that can be
directly embedded in a C or C++ program as subroutine calls
is shown in FIG. 11.

An example of extending a pure relational table with the
use of the text extender UDT is shown in FIG. 12. The

10

15

20

25

30

35

40

45

50

55

60

8

original table 1201 contains attributes such as document
identifier (DOCID) and Comment. The enhanced table 1202
with the use of a DB2 text extender adds one more attribute,
Comment Handle, which contains: (1) a document ID; (2)
the name and location of the associated index; and (3) the
document information: coded character set ID (CCSID),
format, and language.

This enhanced table is created using the command
“ENABLE TEXT COLUMN.” In addition to the additional
comment handle column, two additional tables are created
(as shown in FIG. 13): (1) Index 1301: an index for the text
column is created when ENABLE TEXT COLUMN is
invoked; and (2) Log table 1302: the log table is used to
record changes to the text column, that is, inserts, updates
and deletions. Insert, update, and delete triggers are defined
for the text column to keep the log table up to date
automatically.

Two code samples using text extenders are shown in FIG.
14. The first part 1401 prints out a list of dates and subjects
of documents containing the comment “compress.” Note
that DB2TX.CONTAINS is a UDF call. The second part
1402 generates an intermediate result, TEMPTABLE, which
comprises three attributes, DATE, SUBJECT, and
MATCHES. The first sub-query builds the temporary table
so that each row contains the following attributes from a
document: date, subject, and number of times that “com-
press” appears in the document. The second sub-query
selects those rows where MATCHES are greater than zero.
The UDF used in the second query is DB2X.NO_OF__
MATCHES. These two queries will generate identical
results.

FIG. 15 illustrates the process of extending a regular table
with an image extender. In this case, the user table 1501
originally contains ID and NAME as attributes. When a
column is created for storing images based on the image
extender UDT, the image is not stored in the user table.
Instead, a handle (which is actually a character string) is
created and stored in the user table (Handle 1, Handle 2).
The extender stores the object in administrative support
tables 1502, or stores a file identifier in the administrative
support tables 1502, if the content of the object is in a file.
The extender also stores the object’s attributes and handle in
the administrative support tables 1502. In this way, the
extender can link the handle stored in a user table with the
object information stored in the administrative support
tables. Within the administrative tables, common attributes
(independent of media type) such as importer and updater
are stored in a first administrative support table 1503, while
the other media-specific attributes such as width, height,
number of bands are stored in a second administrative
support table 1504.

A list of UDTs and UDFs for multimedia extenders
(image, video, and audio) are shown in FIGS. 16A and 16B,
respectively. Code samples of using these user-defined func-
tions are illustrated in FIG. 17. The first example 1701
illustrates the process of specifying the data source (“/tmp/
img.gif” in this case) for a color histogram feature. The
second example 1702 illustrates the process of a search
through a source defined by an “employee,” and on the
images defined by “qHandle.”

FIG. 18 illustrates a framework for a universal extension
module according to one embodiment of the present inven-
tion. In general, the universal extension module framework
1800 comprises four components:

(1) Data type 1801: This can be, for example, text, image,

video, XML, geo-spatial data, etc.;

(2) Data model 1802: This is the description of the

aggregation of, for example, text tokens, features,
regions, segments, scenes, shots, etc.;

US 6,697,818 B2

9

(3) Transformation methods 1803: These methods are
used to perform feature extraction from data, trans-
forming from one format to the other, such as, for
example, from JPEG (Joint Photographic Expert
Group) to GIF (Graphic Interchange Format), or from
AVI (Audio Video Interleave) to MPEG (Moving Pic-
ture Expert Group—MPEG-1, MPEG-2 and MPEG-4);
and

(4) Access methods 1804: Access methods are used for
accessing the data, such as, for example, “top K results
that are similar to . . . 7, etc.

In a first aspect, the present invention comprises a frame-
work and method comprising a class hierarchy so that
maximal infrastructure and modules can be shared among
different extension modules. The class hierarchy 1900 (in
the object-oriented programming sense) of the universal
extension module framework is illustrated in FIG. 19. Many
extenders for providing accessing capabilities of various
data modalities (as shown in FIG. 2) could potentially share
many infrastructures such as feature extraction, index gen-
eration and measure of similarity (distance metric for results
evaluation). However, all of the existing extenders, data
cartridges or datablades are constructed independently of
each other, and thus have very little sharing of infrastructure.
Consequently, establishing a class hierarchy common to all
extenders and search engines allows the components in the
domain-specific extenders to be more sharable. In other
words, the universal extension module framework, based on
the class hierarchy, provides the foundation for building
other extenders.

Identifying key components for building this class
hierarchy, however, is not straightforward. The challenges
include a deeper understanding regarding the decomposition
of the functionality of the extenders. From the basic extender
class 1901, key components of the extender class that
involve search and retrieval of one data modality (as defined
in FIG. 2) include: (1) feature extraction class 1904; (2)
index creation/retrieval class 1905; (3) scoring/distance met-
ric class 1906; and (4) learning/iterative refinement class
1907, etc.

These classes are also interrelated, and will be further
explained in the context of the next few figures. Additional
information such as the data types 1902 and the data models
1903 (such as those defined by MPEG-7 AV (audio-visual)
description scheme) can then be used in conjunction with
these basic classes to construct a text extender class 1908, an
image extender class 1909, a video extender class 1910, etc.

FIGS. 20-28 give a detailed illustration of the process of
constructing a audio-visual feature extraction module
according to an embodiment of the present invention. Start-
ing from the feature extraction base class 2001, as shown in
FIG. 20, feature extraction classes for text data 2002,
audio-visual data 2003, time-series data 2004, and multi-
dimensional data 2005 can be included in the feature extrac-
tion module of the universal extension module.

The following description goes through the process of
defining the audio-visual feature extraction module from the
feature extraction base class using data models (such as
those defined by the MPEG-7 Audiovisual description
scheme 2006). Assuming that S represents the data, and M
represents the data model of the features that are being
extracted, the base class for the feature extraction can be
defined as: F=Extract(S,M): this class extracts the features F
based on the data model M from the data set S. Note that this
class can be defined recursively, so that features can be
extracted from features.

The data (as defined in FIG. 2) can be one-dimensional
(such as time-series or audio), two-dimensional (images),

10

20

25

30

35

40

45

50

55

60

65

10

two-dimensional plus time (video, image sequence), or
three-dimensional (seismic, MRI, CT). The features can
include low level features (such as texture, color histogram,
or shape for images; slope for one-dimensional signals) or
high level features (such as the semantic description of the
data).

Based on the data modality, data-specific feature extrac-
tions can then be defined, such as time-series feature
extraction, audio feature extraction, image feature
extraction, video feature extraction, medical image feature
extraction, and seismic data feature extraction. For audio-
visual feature extraction, the MPEG-7 specification can be
used for defining the data models.

The MPEG-7 Audio-Visual Description scheme is
described in FIG. 21, which is the data model for defining
the meta-data that describes the syntax, semantics, and
features inside audio, images and video. Basic components
of the MPEG-7 Audio-Visual Description scheme 2101
include syntactic description scheme 2102 (FIG. 22), seman-
tic description scheme 2103 (FIG. 25), syntactic-semantic
link description scheme 2104 (FIG. 26), model description
scheme 2105, summary description scheme 2106, meta-
information description scheme 2107 (FIG. 27), and media
information description scheme 2108 (FIG. 28). It is to be
appreciated that the 0, 1 and * in FIGS. 21-28 reflect the fact
that some of the entities can be related to zero or one of the
other entities. Using FIG. 21 as an example, syntactic DS
(description scheme) is optional. When it is present, there is
no more than one instance. So, it is expressed as 0, 1. The
same scenario is applied to the rest of the DS. FIG. 22
indicates a slightly different scenario, in which segment DS
is optional, and can have as many instances as needed. In
FIG. 24, Entity relation is not optional, and can have one or
more instances. On the other hand, relation is required and
only one instance is allowed.

FIG. 22 shows the syntactic structure description scheme
2201, which contains a segment description scheme 2202, a
region description scheme 2203 (FIG. 23), and a segment/
region relation graph description scheme 2204 (FIG. 24)
within an image or video sequence. Note that the term
“segment” in MPEG-7 is an “abstract” class, which may be
used to denote any arbitrary spatial or temporal regions or
intervals.

The region description scheme, as shown in FIG. 23 as
block 2301, includes a time description scheme 2302, a
two-dimensional geometry description scheme 2303, a
color/texture description scheme 2304, a motion description
scheme 2305 (for video), a deformation description scheme
2306, meta-information description scheme 2307 (further
detailed in FIG. 28), and media information description
scheme 2308 (further detailed in FIG. 27).

FIG. 24 shows the segment/region relation graph descrip-
tion scheme 2401, which includes an entity relation block
2402. The entity relation block includes a relation block
2403, a reference to segment block 2406, and a reference to
region block 2407. As shown, each relation 2403 is defined
by a type 2404 and a name 2405.

FIG. 25 describes the semantic description scheme 2501,
which comprises an event description scheme 2502, an
object description scheme 2503, and an event/object rela-
tionship graph description scheme 2504.

The structure for linking the semantics and the syntax of
audio-visual data is defined in FIG. 26. As shown, the
syntactic-semantic link description scheme 2601 includes
links 2602 which include link sources 2603 and link targets
2604.

The media information description scheme 2701, as
shown in FIG. 27, includes one or more media profile

US 6,697,818 B2

11

description schemes 2702, which each include a media
hardware description scheme 2703 and an identification/
location description scheme 2704.

The meta-information description scheme 2801, as shown

in FIG. 28, includes parametric data that is commonly 5

associated with each image or video, including a content
description scheme 2802, a credits description scheme 2803,
a creation purpose description scheme 2804, a rights
description scheme 2805, a publication description scheme
2806, and a financial information description scheme 2807.
The content description scheme 2802 includes an event
description scheme 2808 and a character description scheme
2809 which includes a physical attributes description
scheme 2810. The credits description scheme 2803 includes
a creation description scheme 2811 which includes a 6-W
description scheme 2812, a technical staff description
scheme 2813, and an artistic staff description scheme 2814
which includes a physical attributes description scheme
2815. The creation purpose description scheme 2804
includes a target description scheme 2817 and a classifica-
tion description scheme 2818. The publication description
scheme 2806 includes an emission description scheme 2819,
a users/audience description scheme 2820 and an edition
description scheme 2821. The financial description scheme
2807 includes a costs description scheme 2822 and an
income description scheme 2823.

Based on the MPEG-7 description schemes described
from FIGS. 21-28, it is then possible to synthesize the
feature extraction module which will extract features from
the media data (audio or visual) based on the feature data
model described in FIGS. 21-28.

Referring now to FIG. 29, the index creation and retrieval
class 2901 (shown as 1905 in FIG. 19) can be subclassed
into text index 2902, B-tree 2903, R-tree 2904, grid file
2905, and other indexing schemes 2906. Some examples of
other indexing schemes may include, but are not limited to,
indexing structures which facilitate linear optimization que-
ries as disclosed in the U.S. patent application identified by
Ser. No. 09/360,366 (attorney docket no.
YOR919990226US1) filed on Jul. 23, 1999 and entitled
“Multidimensional Indexing Structure for Use with Linear
Optimization Queries,” the disclosure of which is incorpo-
rated by reference herein; and/or a hybrid clustering and
R-tree indexing scheme as disclosed in the U.S. Pat. No.
6,122,628 (attorney docket no. YOR919970170US1) issued
on Sep. 19, 2000 and entitled “Multidimensional Data
Clustering and Dimension Reduction for Indexing and
Searching,” the disclosure of which is incorporated by
reference herein.

In this case, the attributes in the base class include:

(1) Query q: the query q is used as the key to the search

index;

(2) Constraint predicate C: which can be a range predicate
for precise queries, such as a; =q,=a,, b;=q,=b, if
q=(q;,9,), or the top K candidates for similarity que-
ries; and

(3) Distance metric D: which allows the same set of keys
to be evaluated differently (the distance metric will be
described in more detail below).

As an example of a similarity-based query, Q(q, K, L,)
will retrieve the top K candidates from the database which
are similar to the query q using the L, distance metric.
Alternatively, a constraint-based query Q(q, C) will retrieve
those results that satisfy the constraint predicate C. The
methods that are required for the base class, in general,
include:

(1) Query: Q(q, C, D) retrieves the candidates that satisfy

the constraint predicate C;

10

15

20

25

30

35

40

45

50

55

60

65

12

(2) Insert(q): insert the node which contains the key q into
the index, and may involve splitting and balancing the
tree; and

(3) Delete(q): deleting the node which contains the key g
from the index, and may involve merging and balanc-
ing the tree.

Using these base classes, including the data structure and

methods, various indexing classes can then be implemented.

Most of the extension modules for accessing various

modalities require the use of some form of distance metric
for computing the similarity between the candidates in the
database and the target. The distance metric D(X,y) between
two feature vectors x=[x;, . . . , 5,15 y=[ys, - - -, V.J°
includes the following possibilities:

n
(1) Ly: computes the distance using Z lx; — wil;
i=1

[n
(2) Lp: computes the distance using | 3 (x; —y;)?;
i=1

n 1/p
(3) L,: computes the distance using [Z (x; —y;)p] 3
i=1

(4) Ly: compute the distance using rr_1nalx|x; — yil; and
p

(5) Generalized quadratic distance (x-y)"M(x-y) where
the matrix M allows weights to be assigned to different
components of the vector.

Consequently, it is possible to define a base class distance
metric between x and y, which includes the definitions of
vectors X and y. As shown in FIG. 30, the scoring and
distance metric base class 3001 (1906 as shown in FIG. 19)
can then be subclassed into L1 distance 3002, 1.2 distance
3003, chi-square 3004, hamming 3005, etc. The 1.2 distance
3003 can be further subclassed into basic Euclidean 3006
and weighted Euclidean 3007. This structure allows maxi-
mum sharing of distance metrics when search engines for
text, image, and video are constructed.

The base class for learning and iterative refinement (1907
as shown in FIG. 19), Dnew Learn(E, Doriginal, Q),
involves the following:

(1) Category example E: which can simply be examples
of relevant and irrelevant answers, or examples for each
categories when the total number of categories are
more than two. In most cases, the example set E is
usually constrained to draw from the query results from
Q;

(2) Dnew: which is the data set that has been transformed
based on the examples and counter examples;

(3) Dorginal: which is the data set that is to be transformed
through learning; and

(4) Q: is the query class for retrieving the top K candidates
for a given query template, as defined above in the
index base class.

Note that this class can be invoked recursively, i.e., each
learning and iterative refinement will generate a new data
set. The same query can then be applied and the classifica-
tion of the query results can then be used for learning again.
The iterative refinement process may take any suitable
number of iterations, as the examples for each of the
categories are only drawn from the query results, which are
usually limited to a small number as compared to the overall
dataset. Based on this class, various learning algorithms can
then be subclassed including those adjusting the weights of

US 6,697,818 B2

13

the distance metric, as well as the algorithm disclosed in the
U.S. patent application identified by Ser. No. 09/237,646
(attorney docket no. YOR919980220US1) filed on Jan. 26,
1999 and entitled “Method and Apparatus for Similarity
Retrieval from Iterative Refinement,” the disclosure of
which is incorporated by reference herein, which applies
nonlinear multi-dimensional scaling to “warp” the feature
space based on the examples and counter examples provided
through the learning process.

In a second aspect, the present invention provides a
methodology for automatically synthesizing extension mod-
ules. By recognizing the fact that the data models and the
methods associated with a search engine can be specified
using interoperable meta-data such as XML schema, which
is being standardized by World Wide Web Consortium, the
methodology of the invention automatically generates the
database-specific administrative tables, administrative
commands, APIs and UDFs through the processing of such
meta-data.

FIG. 31 illustrates such an automatic extension module
synthesis procedure according to an embodiment of the
present invention. In step 3102, administrative tables are
created, such as shown in FIG. 15, based on the XML
schema data model 3101. This is accomplished in accor-
dance with the following steps. The database management
system defines the required administrative tables, such as
one for recording general information (e.g., the location of
files), and one for recording specific information (e.g., the
features extracted from the data). The search engine defines
the exact data model that describes the features and indexing
scheme for the search engine. Examples of such data models
include those audio-visual description schemes defined in
FIGS. 22-28. Based on the specifications from the database
management systems and the search engine, commands such
as CREATE TABLE TABLE_NAME (Attributel,

Attribute2, Attribute3, . . ., AttributeN) are generated. The
definitions of the attributes are derived from the data model
specification.

Then, in step 3103, administrative wrappers are created,
such as those defined in FIG. 9, based on the method
descriptions 3104 defined in the XML schema.

The database management system specifies the types of
functions that will be needed, including extender server
start, server stop, server status, server trace, server verify on
the server side, and enable/change/disable extender client,
inquire extender client status, etc. The search engine speci-
fies the available functions for extracting features, creating
index, performing search, etc. As an example, program
modules such as ENABLE TEXT COLUMN, as shown in
FIG. 9, are created, which invoke a number of classes such
as (1) extract text features; (2) create text index; and (3)
create log file.

Next, in step 3105, UDF wrappers are created, such as
those defined in FIG. 10 and FIG. 16, also based on the
method descriptions. From the specifications of the search
engine functions, the UDF module is created which allows
the proper search functions (defined in FIGS. 10 and 16) to
be created.

FIG. 32 illustrates the structure of a search engine which
is transformed into an extension module 3210 through the
automatic synthesis process of the invention described
above. The wrappers synthesized in FIG. 31 are shown as
automatic synthesized glue/wrapper 3201. In order to syn-
thesize these wrappers, the search engine 3204 needs to
specify its schema 3202 and services (UDFs) 3203 explic-
itly.

In a third aspect, the present invention provides for a
hierarchical decomposition of extension module functions

5

10

15

20

25

30

35

40

45

50

55

60

65

14

so that universal extension modules can be invoked
hierarchically, as shown in FIG. 33A. In this case, a first
universal extension module (referred to as a universal
extender in FIG. 33A) 3302-1 is operatively connected to a
DB2 UDB engine 3301. Additional universal extenders
3302-2 through 3302-N can be attached hierarchically to the
first extension module, as shown. The leaf nodes of the
universal extension modules are the domain-specific exten-
sion modules (e.g., extenders, data cartridges, datablades,
etc.) and are denoted as 3304-1 through 3304-P. The
domain-specific extenders that connect directly to the UDB
engine 3301 are denoted as 3303-1 through 3303-M. The
UDB client 3305, coupled to the UDB engine 3301 via a
network (not shown), may be configured similar to that
shown in FIG. 8, with a command line interpreter 3306,
UDFs 3307 and APIs 3308. The various universal extenders
and domain-specific extenders in FIG. 33A may be imple-
mented on one or more extender server computer systems
and/or on the server computer system implementing the
UDB engine.

One main difference between a universal extension mod-
ule and a domain-specific extension module is that the
universal extension module has the capability of parsing the
query from its parents in the hierarchy (e.g., the UDB or
other universal extenders higher in the hierarchy), and
decomposing the query into one or more sub-queries in
order to pass the sub-queries to other universal extenders or
domain-specific extenders. Consequently, as illustrated in
FIG. 33B, each universal extension module 3320 may have
some or all of the following capabilities:

(1) Query parsing: parsing the queries passed from other
universal extenders or UDB. These queries may not
observe the SQL query syntax that is used for relational
queries. The query parsing function may be imple-
mented in accordance with query parser 3322;

(2) Query plan generation: generate an execution plan
from the queries. The query plan generation function
may be implemented in accordance with query plan
generator 3324;

(3) Query optimization: re-arrange the query plan so that
the execution time can be minimized. The query opti-
mization function may be implemented in accordance
with query optimizer 3326;

(4) Sub-query invocation: passing the sub-queries to other
universal extenders or domain-specific extenders
downstream. The sub-query invocation function may
be implemented in accordance with sub-query invoca-
tor 3328; and

(5) Query results combining: combine (join) the results
from those universal extenders or extenders attached to
a particular universal extender. The query results com-
bining function may be implemented in accordance
with query results combiner 3330.

Note that it is also possible that some of the query plan
execution may involve backtracking of the query plan.
Consequently, steps (4) and (5) above may be invoked
multiple times. In some cases, UDB callback is also neces-
sary as it is possible that some of the SQL queries may have
to be embedded in the universal extender query.

Since a universal extension module has to be able to
return a table, the module can be implemented as a user-
defined table function. Furthermore, since the universal
extension module has its own query parsing mechanism,
there is no restriction on the query language that can be used.

FIG. 34 shows an example of a universal extension
module-invoking sequence using SQL. The user table 3401

US 6,697,818 B2

15

includes obj__id (primary key), attrl, attr2, etc. The univer-
sal extension module, which is implemented as a user-
defined table function 3402, has the form:

UE(obj__1, color, obj_2, texture, left, 100)

which retrieves the top 100 objects which include two
sub-objects, one to the left of the other. Object 1 (obj_1) is
specified in terms of its color, while object 2 (obj_2) is
specified in terms of its texture. Additional parametric
constraints are also specified, i.e., obj_l.attrl =a, obj__
2.attr2=b.

FIG. 35 illustrates an example in which a universal
extension module 3503 based on the SPROC algorithm is
attached to the UDB 3504. The SPROC algorithm is dis-
closed in the U.S. patent application identified by Ser. No.
09/237,734 (attorney docket no. Y0919980274US1) filed
on Jan. 26, 1999 and entitled “System and Method for
Sequential Processing for Content-Based Retrieval of Com-
posite Objects,” the disclosure of which is incorporated by
reference herein. The universal extension module in turn
invokes either an image extender 3501 or a time series
extender 3502.

The above-mentioned SPROC algorithm is designed for
generating query results for bundled search problems. The
bundle search is to simultaneously search multiple items
with possible inter-item relationships. It is one of the most
important enabling mechanisms in multi-modal signal
detection and information fusion. For example, a fuzzy
Cartesian (bundle search) query can be locating a rock strata
structure across borehole images in an image database
storing oil/gas exploration data. In this example, the strata
template consists of three layers of rocks labeled as A, B,
and C. A good match shall preserve the layering order but
not necessarily the amount of separation between adjacent
layers. For example, a strata structure A, B, D, and C may
still be acceptable if the separation between B and C is not
too large. In a borehole image, there can be tens or hundreds
of rock layers with each layer showing different texture or
color. Matching of rock images often involves assigning a
fuzzy score in the range of zero to one to signify the
confidence of the similarity of a region. By fuzzy
characterization, a region can have multiple scores to mul-
tiple templates, such as 0.8 to A and 0.2 to B.

The fuzzy Cartesian problem in strata matching is to
select the top-K structures that have the highest scores as
compared to the template. For any three distinct image
regions, one can calculate the fuzzy score to A of the top
region, the score to B of the middle region, and the score to
C of the bottom region. These scores are combined with the
fuzzy scores weighting the distance between the top and the
middle, as well as that between the middle and the bottom.

Referring now to FIG. 36, a block diagram is shown
illustrating a generalized hardware architecture of a com-
puter system suitable for implementing one or more univer-
sal extension modules according to the invention as
described in detail herein. The computer system may also
implement one or more domain-specific extension modules
and a database engine. Further, the computer system may
implement the entire server side of the database system and
be connected to one or more similar computer systems used
to implement the database clients. Such computer systems
may be coupled via a network (e.g., Internet, Intranet, etc.)

As shown in FIG. 36, the computer system may comprise
a processor 3602, a memory 3604 and I/O devices 3606. It
is to be appreciated that the term “processor” as used herein
is intended to include any processing device, such as, for
example, one that includes a CPU (central processing unit)

10

15

20

25

30

35

40

45

50

55

60

65

16

and/or other processing circuitry. The processor may also
include a digital signal processor, as is well known in the art.
The term “memory” as used herein is intended to include
memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, etc. In addition, the term “input/output devices” or
“I/O devices” as used herein is intended to include, for
example, one or more input devices (e.g., keyboard, mouse,
etc.) for entering data to the processing unit, and/or one or
more output devices (e.g., CRT display, printer, etc.) for
presenting results associated with the processing unit. It is
also to be understood that the term “processor” may refer to
more than one processing device and that various elements
associated with a processing device may be shared by other
processing devices.

Accordingly, software components including instructions
or code for performing the methodologies of the invention,
as described herein, may be stored (e.g., as an article of
manufacture) in one or more of the associated memory
devices (e.g., ROM, fixed or removable memory) and, when
ready to be utilized, loaded in part or in whole (e.g., into
RAM) and executed by a CPU.

Although illustrative embodiments of the present inven-
tion have been described herein with reference to the accom-
panying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various
other changes and modifications may be affected therein by
one skilled in the art without departing from the scope or
spirit of the invention.

What is claimed is:

1. A method of extending a functionality of an object-
relational database engine, wherein one or more domain-
specific extension modules are provided for use in associa-
tion with the object-relational database engine, the one or
more domain-specific extension modules providing one or
more mechanisms for enabling the object-relational data-
base engine to handle domain-specific data types, the
method comprising the step of:

operationally interposing at least one universal extension

module between the object-relational database engine
and at least one of the one or more domain-specific
extension modules, the at least one universal extension
module substantially facilitating one or more opera-
tions associated with the object-relational database
engine and the at least one domain-specific extension
module, the at least one universal extension module
substantially facilitating a subsequent addition of at
least another domain-specific extension module, and
the at least one universal extension module being
operable to perform one or more query processing
functions.

2. The method of claim 1, wherein at least one of the one
or more domain-specific extension modules provides for
handling of semi-structured data.

3. The method of claim 2, wherein the semi-structured
data comprises at least one of extensible markup language
data and hypertext markup language data.

4. The method of claim 1, wherein the at least one
universal extension module comprises a plug-and-play inter-
face for one or more domain-specific extension modules.

5. The method of claim 1, wherein the at least one
universal extension module implemented in accordance with
meta-data comprising at least one of a schema and semantics
of the database.

6. A method of extending a functionality of an object-
relational database engine, wherein one or more domain-

US 6,697,818 B2

17

specific extension modules are provided for use in associa-
tion with the object-relational database engine, the one or
more domain-specific extension modules providing one or
more mechanisms for enabling the object-relational data-
base engine to handle domain-specific data types, the
method comprising the step of:
operationally interposing at least one universal extension
module between the object-relational database engine
and at least one of the one or more domain-specific
extension modules, the at least one universal extension
module substantially facilitating one or more opera-
tions associated with the object-relational database
engine and the at least one domain-specific extension
module, and the at least one universal extension mod-
ule substantially facilitating a subsequent addition of at
least another domain-specific extension module; and

wherein the at least one universal extension module
comprises a plug-and-play interface for one or more
domain-specific extension modules.

7. A method of extending a functionality of an object-
relational database engine, wherein one or more domain-
specific extension modules are provided for use in associa-
tion with the object-relational database engine, the one or
more domain-specific extension modules providing one or
more mechanisms for enabling the object-relational data-
base engine to handle domain-specific data types, the
method comprising the step of:

operationally interposing at least one universal extension

module between the object-relational database engine
and at least one of the one or more domain-specific
extension modules, the at least one universal extension
module substantially facilitating one or more opera-
tions associated with the object-relational database
engine and the at least one domain-specific extension
module, and the at least one universal extension mod-
ule substantially facilitating a subsequent addition of at
least another domain-specific extension module; and
wherein the at least one universal extension module is
implemented in accordance with meta-data comprising
at least one of a schema and semantics of the database.

8. An object-relational database system having a multi-
tier structure, the system comprising:

an object-relational database engine serving as one tier of

the structure;

one or more domain-specific extension modules, serving

as another tier of the structure, for use in association
with the object-relational database engine, the one or
more domain-specific extension modules providing one
or more mechanisms for enabling the object-relational
database engine to handle domain-specific data types;
and

at least one universal extension module, serving as yet

another tier of the structure, operationally interposed
between the object-relational database engine and at
least one of the one or more domain-specific extension
modules, the at least one universal extension module
substantially facilitating one or more operations asso-
ciated with the object-relational database engine and
the at least one domain-specific extension module, and
the at least one universal extension module substan-
tially facilitating a subsequent addition of at least
another domain-specific extension module, and the at
least one universal extension module being operable to
perform one or more query processing functions.

9. The system of claim 8, wherein the system provides an
extensible structure for one or more software modules that
provides an object-oriented extension of a relational data-
base.

10

15

20

25

30

35

40

45

50

55

60

65

18

10. The system of claim 8, wherein the system provides
for automatic synthesis of one or more extender wrappers
from one or more existing software modules.

11. The system of claim 8, wherein the system provides
for constructing one or more extension modules which
provide one or more advanced non-relational query process-
ing capabilities.

12. The system of claim 8, wherein at least one of the one
or more domain-specific extension modules provides for
handling of semi-structured data.

13. The system of claim 12, wherein the semi-structured
data comprises at least one of extensible markup language
data and hypertext markup language data.

14. The system of claim 8, wherein the at least one
universal extension module comprises a plug-and-play inter-
face for one or more domain-specific extension modules.

15. The system of claim 8, wherein the at least one
universal extension module is implemented in accordance
with meta-data comprising at least one of a schema and
semantics of the database.

16. An article of manufacture for use in accordance with
a database system, wherein the database system includes an
object-relational database engine and one or more domain-
specific extension modules for use in association with the
object-relational database engine, the one or more domain-
specific extension modules providing one or more mecha-
nisms for enabling the database engine to handle domain-
specific data types, the article comprising a machine
readable medium containing one or more programs which
when executed implement the step of:

operationally interposing at least one universal extension

module between the object-relational database engine
and at least one of the one or more domain-specific
extension modules, the at least one universal extension
module substantially facilitating one or more opera-
tions associated with the object-relational database
engine and the at least one domain-specific extension
module, the at least one universal extension module
substantially facilitating a subsequent addition of at
least another domain-specific extension module, and
the at least one universal extension module being
operable to perform one or more query Processing
functions.

17. In a client/server-based object-relational database
system, wherein a client computer submits a query to at least
one server computer with which the object-relational data-
base system is associated, the at least one server computer
processing the query in accordance with a multi-tier struc-
ture comprising:

an object-relational database engine;

one or more domain-specific extension modules for use in

association with the object-relational database engine,
the one or more domain-specific extension modules
providing one or more mechanisms for enabling the
object-relational database engine to handle domain-
specific data types; and

at least one universal extension module operationally

interposed between the object-relational database
engine and at least one of the one or more domain-
specific extension modules, the at least one universal
extension module substantially facilitating one or more
operations associated with the object-relational data-
base engine and the at least one domain-specific exten-
sion module, the at least one universal extension mod-
ule substantially facilitating a subsequent addition of at
least another domain-specific extension module, and
the at least one universal extension module being
operable to perform one or more query Processing
functions.

US 6,697,818 B2
19 20

18. An object-relational database system having a multi- an object-relational database engine serving as one tier of
tier structure, the system comprising: the structure;

an object-relational database engine serving as one tier of one or more domain-specific extension modules, serving

the structure;

as another tier of the structure, for use in association

one or more domain-specific extension modules, serving 5 with the object-relational database engine, the one or
as another tier of the structure, for use in association more domain-specific extension modules providing one
with the object-relational database engine, the one or or more mechanisms for enabling the object-relational
more domain-specific extension modules providing one database engine to handle domain-specific data types;
or more mechanisms for enabling the object-relational and
database engine to handle domain-specific data types; 10 1 . 1 . dul .
and at least one universal extension module, serving as at least one umversa extension mo \C, SCIVING as yet
yet another tier of the structure, operationally infer- another tier of the structure, operationally interposed
posed between the object-relational database engine between the object-relational database engine and at
and at least one of the one or more domain-specific least one of the one or more domain-specific extension
extension modules, the at least one universal extension - modules., the at .le.ast. one universal extensm.n module
module substantially facilitating one or more opera- substantially facilitating one or more operations asso-
tions associated with the object-relational database ciated with the object-relational database engine and
engine and the at least one domain-specific extension the at least one domain-specific extension module, and
module, and the at least one universal extension mod- the at least one universal extension module substan-
ule substantially facilitating a subsequent addition of at 2 tially facilitating a subsequent addition of at least
least another domain-specific extension module; another domain-specific extension module;
wherein the at least one universal extension module wherein the at least one universal extension module is
comprises a plug-and-play interface for one or more implemented in accordance with meta-data comprising
domain-specific extension modules. ’s at least one of a schema and semantics of the database.

19. An object-relational database system having a multi-

tier structure, the system comprising:

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,697,818 B2 Page 1 of 1

DATED

: February 24, 2004

INVENTOR(S) :C-S.Lietal

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 17
Line 58, delete “and”.

Column 18
Line 6, delete “advanced”.

Column 19
Line 11, start a new paragraph after “and”.
Line 22, start a new paragraph before “wherein”.

Signed and Sealed this

Eighth Day of June, 2004

o WDl

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

