@ https://ntrs.nasa.gov/search.jsp?R=20080006954 2019-08-30T03:12:34+00:00Z

R I
T US005724433A

United States Patent [(111 Patent Number: 5,724,433
Engebretson et al. 451 Date of Patent: Mar. 3, 1998
[54] ADAPTIVE GAIN AND FILTERING CIRCUIT FOREIGN PATENT DOCUMENTS
FOR A SO RODUCTION SYSTEM WO 8908353 2/1988 WIPOcovvercrnrcennrecseens HO4B 1/64
[75] Inventors: A. Maynard Engebretson. Ladue, Mo.; WO 91105437 51990 WIPO .
Michael P. O’Connell. Somerville, OTHER PUBLICATIONS
Mass.
Braida et al., “Review of Recent Research on Multiband
[73] Assignee: K/S HIMPP, Vaerloese, Denmark Amplitude Compression for the Hearing Impaired”, 1982
pp. 133-140.
[(21] Appl. No.: 477,621 Yanick. Jr.. “Improvement in Speech Discrimination with
. Compression vs. Linear Amplification”, Journal of Auditory
[22] Filed: Jun. 7, 1995 Research, No. 13. 1973, pp. 333-338.
L Villchur. “Signal Processing to Improve Speech Intelligibil-
Related U.S. Application Data ity in Perceptive Deafness”. The Journal of The Acoustical
. Society of America, vol. 53, No. 6. 1973. pp. 1646—-1657.
[62] Division of Ser. No. 44,246, Apr. 7, 1993. Braida et al., “Hearing Aids—A Review of Past Research on
[51] Int. CL® HO4R 75/00 Linear Amplification. Amplitude Compression, and Fre-
[52] US.CL 381/106; 381/108 quency Lowering”. Asha Monographs, No. 19, Apr. 1979,
[58] Field of Search ... 381/68.4, 68, 68.2, Pp- vii-115.
381/106. 94; 333/14 (List continued on next page.)
[56] References Cited Primary Examiner—Sinh Tran
Attorney, Agent, or Firm—Senniger. Powers, Leavitt &
U.S. PATENT DOCUMENTS Roedel
3,803,357 4/1974 Sacks 179/1 P
3,818,149 6/1974 Steams et al.cevenreenn 1797107 FD [57] ABSTRACT
4,118,604 10/1978 Yamick 179107 FD Adaptive compressive gain and level dependent spectral
4135590 1/1979 Gauldercceremmrevesrereonsans 179/1 P . - . A .
4185168 1/1980 Graupe et al 1791 P shaping circuitry for a hearing aid include a microphone to
S1STAL3 271980 MoSer wmrmemmnns 17971107 Fp ~ Produce an input signal and a plurality of channels con-
4,227,046 10/1980 Nakajima et al. .vveeeceneeconeeenn 179/1 SD nected to a common circuit output. Each channel has a preset
4,38‘;,2;? 5/1983 i(/hd]ey etal .. 340/347 DA frequency response. Each channel includes a filter with a
4,405,8 9/1983 Michelsoncvvemmreemrermecennens 17971 P : : t si
4425481 1/1984 Mansgold et al.cveeee. 179/107 FD prz‘sjet ﬁqufnczdm?po:lse tohr ecculrc ﬂlcﬁljlilpu signal an dﬂ:o
4433435 2/1984 David agims Produce a filtered signal. a channel amplifier to amplify the
4,451,820 5/1984 Kapral ...eerveceeceresscsseceen 340347 DA filtered signal to produce a channel output signal. a threshold
4,508,940 4/1985 Steeger register to establish a channel threshold level, and a gain
4513279 4/1985 Kapralceiemiiinerccciinnn 3401347 DA circuit. The gain circuit increases the gain of the channel
:’ggg’ggé lgﬁggg ﬁyuﬁm 381/68.4 amplifier when the channel output signal falls below the
4731850 3/1988 LeVitt €t al. oo 381632 channel threshold level and decreases the gain of the channel
4,792,977 12/1988 Anderson et al.cvereeiriane 381/68.4 amplifier when the channel output signal rises above the
:,339,593 5/1989 Hara 375/34¢5 channel threshold level. A transducer produces sound in
891,605 1/1990 Tirkel 331/94 : FR—
4,988,900 1/1991 FEDSCH momrsrreriessrsrmmemeces 37494 ToSPOmSetothe signal passed by the common circuit output.
5,010,575 4/1991 Marutake et al. 381/68
5,083312 1/1992 NEWIOR .ccocmrevermrirormrmsscensanscan 381/68.4 27 Claims, 6 Drawing Sheets

74

X = GAIN : —
f Lomo b '
' Gy et v 20 THRESHOLD
64 ST s | e
-]
ck%gafsyon .
GAIN i .
i REGISTER | coc |
24 — e 9
4

78

a2
] s +—{ i

4 s
@‘:"—4_71- 72

70
s L
| SRS

|80
P R

vel -- 32

5,724,433
Page 2

OTHER PUBLICATIONS

Lim et al., “Enhancement and Bandwidth Compression of
Noisy Speech”, Proceedings of the IEEE, vol. 67, No. 12,
Dec. 1979, pp. 1586-1604.

Lippmann et al.., “Study of Multichannel Amplitude Com-
pression and Linear Amplification for Persons with Senso-
rineural Hearing Loss™. The Journal of The Acoustical
Society of, America, vol. 69, No. 2, Feb. 1981, pp. 524-534.
Walker et al., “Compression in Hearing Aids: An Analysis.
A Review and Some Recommendations”, National Acoustic
Laboratories, Report No. 90. Jun. 1982, pp. 1-41.

Dillon et al.. “Compression-Input or Output Control?”,
Hearing Instruments, vol. 34, No. 9, 1983, pp. 20. 22 & 42.
Laurence et al., “A Comparison of Behind—the—Ear High—
Fidelity Linear Hearing Aids and Two-Channel Compres-
sion Aids. in the Laboratory and in Everyday Life”, British
Journal of Audiology, No. 17, 1983, pp. 3148.

Nabelek, “Performance of Hearing—Impaired Listeners
under Various Types of Ampliude Compression”, The Jour-
nal of The Acoustical Society of America, vol. 74, No. 3, Sep.
1983, pp. 776-791.

Leijon et al., “Preferred Hearing Aid Gain and Bass-Cut in
Relation to Prescriptive Fitting”, Scand Audiol, No. 13,
1984 pp. 157-161.

Walker et al., “The Effects of Multichannel Compression/
Expansion Amplification on the Intelligibility of Nonsense
Syllables in Noise”, The Journal of The Acoustical Society
of America, vol. 76, No. 3. Sep. 1984, pp. 746-757.
Moore et al., “Improvements in Speech Intelligibility in
Quiet and in Noise Produced by Two—Channel Compression
Hearing Aids”, British Journal of Audiology, No. 19, 1985,
pp. 175-187.

Moore et al., “A Comparison of Two—Channel and Sin-
gle~Channel Compression Hearing Aids”, Audiology, No.
25. 1986. pp. 210-226.

De Gennaro et al., “Multichannel Syllabic Compression for
Severely Impaired Listeners”, Journal of Rehabilitation
Research and Development, vol. 23, No. 1. 1986, pp. 17-24.
Revoile et al.. “Some Rehabilitative Considerations for
Future Speech—Processing Hearing Aids”, Journal of Reha-
bilitation Research and Development, vol. 23, No. 1, 1986,
pp. 89-94.

Graupe et al., “A Single~-Microphone-Based Self~Adaptive
Filter of Noise from Speech and its Performance Evalua-
tion”, Journal of Rehabilitation Research and Development,
vol. 24, No. 4, Fall 1987 pp. 119-126.

Villchur, “Multichannel Compression Processing for Pro-
found Deafness”, Journal of Rehabilitation Research and
Development vol. 24. No. 4, Fall 1987, pp. 135-148.
Bustamante et al., “Multiband Compression Limiting for
Hearing-Impaired Listeners”. Jowmnal of Rehabilitation
Research and Development, vol. 24, No. 4, Fall 1987. pp.
149-160.

Yund et al., “Speech Discrimination with an 8-Channel
Compression Hearing Aid and Conventional Aids in Back-
ground of Speech~-Band Noise”, Journal of Rehabilitation
Research and Development, vol. 24, No. 4. Fall 1987, pp.
161-180.

Moore, “Design and Evaluation of a Two—Channel Com-
pression Hearing Aid”, Journal of Rehabilitation Research
and Developmeni, vol. 24, No. 4, Fall 1987, pp. 181-192.

Plomp, “The Negative Effect of Amplitude Compression in
Multichannel Hearing Aids in the Light of the Modulation—
Transfer Function”. The Journal of the Acoustical Society of
America, vol. 83, No. 6, Jun. 1988, pp. 2322-2327.

Waldhauer et al.. “Full Dynamic Range Multiband Com-
pression in a Hearing Aid”, The Hearing Journal, Sep. 1988.
Pp. 29-32.

Van Tasell et al., “Effects of an Adaptive Filter Hearing Aid
on Speech Recognition in Noise by Hearing-Impaired Sub-
jects”, Ear and Hearing, vol. 9, No. 1, 1988, pp. 15-21.

Moore et al.. “Practical and Theoretical Considerations in
Designing and Implementing Automatic Gain Control
(AGC) in Hearing Aids”. Quaderni di Audiologia, No. 4.
1988. pp. 522-527.

Leijon, “1.3.5 Loudness~Density Equalization”. Optimiza-
tion of Hearing-Aid Gain and Frequency Response for
Cochlear Hearing Losses, Technical Report No. 189,
Chalmers University of Technology, 1989, pp. 17-20.

Leijon, “4.7 Loudness—-Density Equalization”. Optimization
of Hearing—Aid Gain and Frequency Response for Cochlear
Hearing Losses, Technical Report No. 189, Chalmers Uni-
versity of Technology. 1989, pp. 127-128.

Johnson et al., “Digitally Programmable Full Dynamic
Range Compression Technology™. Hearing Instruments,
vol. 40, No. 10 1989, pp. 26-27 & 30.

Killion. “A High Fidelity Hearing Aid”. Hearing Instru-
ments, vol. 41. No. 8. 1990. pp. 38-39.

Van Dijkhuizen, Studies on the Effectiveness of Multichan-
nel Automatic Gain—Control in Hearing Aids, Vrije Univer-
siteit te Amsterdam, 1951. pp. 1-86, in addition to ERRATA
sheets, pp. 1 & 2.

Rankovic et al., “Potential Benefits of Adaptive Frequen-
cy-QGain Characteristics for Speech Reception in Noise”,
The Journal of The Acoustical Society of America, vol. 91.
No. 1, Jan. 1992. pp. 354-362.

Moore et al.. “Effect on the Speech Reception Threshold in
Noise of the Recovery Time of the Compressor in the
High-Frequency Channel of a Two—Channel Aid”. Scand
Audiol, No. 38 1993, pp. 1-10.

U.S. Patent Mar. 3, 1998 Sheet 1 of 6 5,724,433
b
10 .
16 26
14 /28 ,? /
~1 INPUT = {IMITER = OUTPUT
12 - 18
b 20 ! 2
Gl COMPARATOR
Y
FIG. 1 | 52 THRESHOLD
24— LEVEL 50
GAIN 34
REGISTER CLOCK
x
48 54
46 o W !
“___| ADDER
)
A4
38—/ MPX
i 36
NN
120 :
132
FIG.6 fm // s
—={F1] ——{ AMPLFIER |—— 0
122 126 134~ 4 S
1?\ k = F2 II - = AMPLIFIER — /142
128 136 |
S
- = OUTPUT
INPUT (s / — APl _ OUTPU
/130 138 L sl s
- F4 =—— AMPLIFIER — \
i 154 \ \
144 136y =
N 4
L 51 | perECTOR = .10G —={ MEMORY

146

U.S. Patent

FIG.2

2

Mar. 3, 1998

78

INPUT

70\

66\

X = GAIN CR

64

COMPRESSION
RATIO

- 62

40

Sheet 2 of 6

60

/?80

5,724,433

82

a

]

LIMITER

OUTPUT

GAIN

32

COMPARATOR

+

THRESHOLD
LEVEL

REGISTER

CLOCK
50

54

L — 42

5,724,433

Sheet 3 of 6

Mar. 3, 1998

U.S. Patent

(8p) 13A31 LNdNI

ool 08 09 oy 0z 0
: 0
| | _ _
— o
— or
i g

(=04 V - 09

L= ol H

050 =0V X
szo=ouwy > | %8

SZ1'0 = Oy [
0=0 O |

OILLV¥ NOISS3ddWOD 40 NOILONNA
V S SIA¥ND 1NdLNO / LNdNI

€Ol

OUTPUT LEVEL { dB)

U.S. Patent Mar. 3, 1998 Sheet 4 of 6 5,724,433

28 / 26 30
— F1 LIMITER = F]
COMPARATOR +—
{
102
TGN o
INPUT REGISTER THRESHOLD QUTPUT
LEVEL
) 48_ 4
12 46 — 34
“~~___| ADDER
[t CLOCK
4 N 54 - 50
38’\/ MPX =
i 1
40 AP Am L — 42
_
10
— F2 _ it - — F2
- R X —--— — F3
9 Ff4 - —--— — F4

U.S. Patent Mar. 3, 1998 Sheet 5 of 6 5,724,433
12 -
(LNeT FIG.5 112~ ouTPUT |
p 110
80
L
F LIMITER = F1
1 70 -
66
\ I - 28 ya 32
] 34 — [}
64 THRESHOLD
~— LEVEL
COMPRESSION
RATIO GAIN -
C ~ | REGISTRR | CLOCK
62 24" [T
“~__| ADDER
b
44—
54
38—/ MPX %
| A
60),
49_, Ap Am [42 36
-
H R —— : ——— —F2
AR — : —--— — F3
R — —IF4

U.S. Patent Mar. 3, 1998 Sheet 6 of 6 5,724,433

FIG.7 160
160 166 I/wa 170
—={ FILTER |={ AMP }-=—{ LIMITER }—= FILTER —= OUTPUT]|
| |
A 171
INPUT 7 17
e 172
12 DETECTOR |~ i LOG |—=—{ MEMORY
-
s~ 162
180
FIG.8 124
' /132
m__ AMPLIFIER -
I
126 134 = QUTPUT
N
INPUT ={_F2_l-(>~ AMPLIFIER = \140 \
——150 142
N1, I fau 1
DETECTOR |-={ u LOG |——=—| MEMORY

» /]46/ 148

AN | R 4

(dB)

INPUT LEVEL (dB)

5,724,433

1

ADAPTIVE GAIN AND FILTERING CIRCUIT
FOR A SOUND REPRODUCTION SYSTEM

This is a division of application Ser. No. 08/044,246,
filed Apr. 7, 1993.

GOVERNMENT SUPPORT

This invention was made with U.S. Government support
under Veterans Administration Contracts VA KV 674-P-857
and VA KV 674-P-1736 and National Aeronautics and Space
Administration (NASA) Research Grant No. NAG10-0040.
The U.S. Government has certain rights in this invention.

NOTICE

Copyright ©1988 Central Institute for the Deaf. A portion
of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure. as it
appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

The present invention relates to adaptive compressive
gain and level dependent spectral shaping circuitry for a
sound reproduction system and, more particularly, to such
circuitry for a hearing aid.

The ability to perceive speech and other sounds over a
wide dynamic range is important for employment and daily
activities. When a hearing impairment limits a person’s
dynamic range of perceptible sound, incoming sound falling
outside of the person’s dynamic range should be modified to
fall within the limited dynamic range to be heard. Soft
sounds fall outside the limited dynamic range of many
hearing impairments and must be amplified above the per-
son’s hearing threshold with a hearing aid to be heard. Loud
sounds fall within the limited dynamic range of many
hearing impairments and do not require a hearing aid or
amplification to be heard. If the gain of the hearing aid is set
high enough to enable perception of soft sounds; however.
intermediate and loud sounds will be uncomfortably loud.
Because speech recognition does not increase over that
obtained at more comfortable levels, the hearing-impaired
person will prefer a lower gain for the hearing aid. However.
a lower gain reduces the likelihood that soft sounds will be
amplified above the hearing threshold. Modifying the opera-
tion of a hearing aid to reproduce the incoming sound at a
reduced dynamic range is referred to herein as compression.

It has also been found that the hearing-impaired prefer a
hearing aid which varies the frequency response in addition
to the gain as sound level increases. The hearing-impaired
may prefer a first frequency response and a high gain for low
sound levels, a second frequency response and an interme-
diate gain for intermediate sound levels. and a third fre-
quency response and a low gain for high sound levels. This
operation of a hearing aid to vary the frequency response and
the gain as a function of the level of the incoming sound is
referred to herein as “level dependent spectral shaping.”

In addition to amplifying and filtering incoming sound
effectively, a practical ear-level hearing aid design must
accommodate the power, size and microphone placement
limitations dictated by current commercial hearing aid
designs. While powerful digital signal processing techniques
are available, they can require considerable space and power

10

15

20

25

30

35

45

50

55

65

2

so that most are not suitable for use in an ear-level hearing
aid. Accordingly. there is a need for a hearing aid that varies
its gain and frequency response as a function of the level of
incoming sound, i.e., that provides an adaptive compressive
gain feature and a level dependent spectral shaping feature
each of which operates using a modest number of
computations, and thus allows for the customization of
variable gain and variable filter parameters according to a
user’s preferences.

SUMMARY OF THE INVENTION

Among the several objects of the present invention may
be noted the provision of a circuit in which the gain is varied
in response to the level of an incoming signal; the provision
of a circuit in which the frequency response is varied in
response to the level of an incoming signal; the provision of
a circuit which adaptively compresses an incoming signal
occurring over a wide dynamic range into a limited dynamic
range according to a user’s preference; the provision of a
circuit in which the gain and the frequency response are
varied in response to the level of an incoming signal; and the
provision of a circuit which is small in size and which has
minimal power requirements for use in a hearing aid.

Generally, in one form the invention provides an adaptive
compressing and filtering circuit having a plurality of chan-
nels connected to a common output. Each channel includes
a filter with preset parameters to receive an input signal and
to produce a filtered signal. a channel amplifier which
responds to the filtered signal to produce a channel output
signal, a threshold circuit to establish a channel threshold
level for the channel output signal, and a gain circuit. The
gain circuit responds to the channel output signal and the
channel threshold level to increase the gain setting of the
channel amplifier up to a predetermined limit when the
channel output signal falls below the channel threshold level
and to decrease the gain setting of the channel amplifier
when the channel output signal rises above the channel
threshold level. The channel output signals are combined to
produce an adaptively compressed and filtered output signal.
The circuit is particularly useful when incorporated in a
hearing aid. The circuit would include a microphone to
produce the input signal and a transducer to produce sound
as a function of the adaptively compressed and filtered
output signal. The circuit could also include a second
amplifier in each channel which responds to the filtered
signal to produce a second channel output signal. The
hearing aid may additionally include a circuit for program-
ing the gain setting of the second channel amplifier as a
function of the gain setting of the first channel amplifier.

Another form of the invention is an adaptive gain ampli-
fier circuit having an amplifier to receive an input signal in
the audible frequency range and to produce an output signal.
The circuit includes a threshold circuit to establish a thresh-
old level for the output signal. The circuit further includes a
gain circuit which responds to the output signal and the
threshold level to increase the gain of the amplifier up to a
predetermined limit in increments having a magnitude dp
when the output signal falls below the threshold level and to
decrease the gain of the amplifier in decrements having a
magnitude dm when the output signal rises above the
threshold level. The output signal is compressed as a func-
tion of the ratio of dm over dp to produce an adaptively
compressed output signal. The circuit is particularly useful
in a hearing aid. The circuit may include a microphone to
produce the input signal and a transducer to produce sound
as a function of the adaptively compressed output signal.

Still another form of the invention is a programmable
compressive gain amplifier circuit having a first amplifier to

5724433

3

receive an input signal in the audible frequency range and to
produce an amplified signal. The circuit includes a threshold
circuit to establish a threshold level for the amplified signal.
The circuit further includes a gain circuit which responds to
the amplified signal and the threshold level to increase the
gain setting of the first amplifier up to a predetermined limit
when the amplified signal falls below the threshold level and
to decrease the gain setting of the first amplifier when the
amplified signal rises above the threshold level. The ampli-
fied signal is thereby compressed. The circuit also has a
second amplifier to receive the input signal and to produce
an output signal. The circuit also has a gain circuit to
program the gain setting of the second amplifier as a
function of the gain setting of the first amplifier. The output
signal is programmably compressed. The circuit is useful in
a hearing aid. The circuit may include a microphone to
produce the input signal and a transducer to produce sound
as a function of the programmably compressed output
signal.

Still another form of the invention is an adaptive filtering
circuit having a plurality of channels connected to a com-
mon output, each channel including a filter with preset
parameters to receive an input signal in the audible fre-
quency range to produce a filtered signal and an amplifier
which responds to the filtered signal to produce a channel
output signal. The circuit includes a second filter with preset
parameters which responds to the input signal to produce a
characteristic signal. The circuit further includes a detector
which responds to the characteristic signal to produce a
control signal. The time constant of the detector is program-
mable. The circuit also has a log circuit which responds to
the detector to produce a log value representative of the
control signal. The circuit also has a memory to store a
preselected table of log values and gain values. The memory
responds to the log circuit to select a gain value for each of
the amplifiers in the channels as a function of the produced
log value. Each of the amplifiers in the channels responds to
the memory to separately vary the gain of the respective
amplifier as a function of the respective selected gain value.
The channel output signals are combined to produce an
adaptively filtered output signal. The circuit is useful in a
hearing aid. The circuit may include a microphone to
produce the input signal and a transducer to produce sound
as a function of the adaptively filtered output signal.

Yet still another form of the invention is an adaptive
filtering circuit having a filter with variable parameters to
receive an input signal in the audible frequency range and to
produce an adaptively filtered signal. The circuit includes an
amplifier to receive the adaptively filtered signal and to
produce an adaptively filtered output signal. The circuit
additionally has a detector to detect a characteristic of the
input signal and a controller which responds to the detector
to vary the parameters of the variable filter and to vary the
gain of the amplifier as functions of the detected character-
istic.

Other objects and features will be in part apparent and in
part pointed out hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of an adaptive compressive gain
circuit of the present invention.

FIG. 2 is a block diagram of an adaptive compressive gain
circuit of the present invention wherein the compression
ratio is programmable.

FIG. 3 is a graph showing the input/output curves for the
circuit of FIG. 2 using compression ratios ranging from 0-2.

10

15

20

25

30

35

45

50

55

65

4

FIG. 4 shows a four channel level dependent spectral
shaping circuit wherein the gain in each channel is adap-
tively compressed using the circuit of FIG. 1.

FIG. S shows a four channel level dependent spectral
shaping circuit wherein the gain in each channel is adap-
tively compressed with a programmable compression ratio
using the circuit of FIG. 2.

FIG. 6 shows a four channel level dependant spectral
shaping circuit wherein the gain in each channel is adap-
tively varied with a level detector and a memory.

FIG. 7 shows a level dependant spectral shaping circuit
wherein the gain of the amplifier and the parameters of the
filters are adaptively varied with a level detector and a
memory.

FIG. 8 shows a two channel version of the four channel
circuit shown in FIG. 6.

FIG. 9 shows the output curves for the control lines
leading from the memory of FIG. 8 for controlling the
amplifiers of FIG. 8.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

An adaptive filtering circuit of the present invention as it
would be embodied in a hearing aid is generally indicated at
reference number 10 in FIG. 1. Circuit 10 has an input 12
which represents any conventional source of an input signal
such as a microphone. signal processor. or the like. Input 12
also includes an analog to digital converter (not shown) for
analog input signals if circuit 10 is implemented with digital
components. Likewise, input 12 includes a digital to analog
converter (not shown) for digital input signals if circuit 1¢
is implemented with analog components.

Input 12 is connected by a line 14 to an amplifier 16. The
gain of amplifier 16 is controlled via a line 18 by an amplifier
20. Amplifier 20 amplifies the value stored in a gain register
24 according to a predetermined gain setting stored in a gain
register 22 to produce an output signal for controlling the
gain of amplifier 16. The output signal of amplifier 16 is
connected by a line 28 to a limiter 26. Limiter 26 peak clips
the output signal from amplifier 16 to provide an adaptively
clipped and compressed output signal at output 30 in accor-
dance with the invention, as more fully described below. The
output 30, as with all of the output terminals identified in the
remaining Figs. below, may be connected to further signal
processors or to drive the transducer (not shown) of a
hearing aid.

With respect to the remaining components in circuit 10, a
comparator 32 monitors the output signal from amplifier 16
via line 28. Comparator 32 compares the level of said output
with a threshold level stored in a register 34 and outputs a
comparison signal via a line 36 to a multiplexer 38. When
the level of the output signal of amplifier 16 exceeds the
threshold level stored in register 34, comparator 32 outputs
a high signal via line 36. When the Ievel of the output of
amplifier 16 falls below the threshold level stored in register
34, comparator 32 outputs a low signal via line 36. Multi-
plexer 38 is also connected to a register 40 which stores a
magnitude dp and to a register 42 which stores a magnitude
dm. When multiplexer 38 receives a high signal via line 36.
multiplexer 38 outputs a negative value corresponding to dm
via a line 44. When multiplexer 38 receives a low signal via
line 36. multiplexer 38 outputs a positive value correspond-
ing to dp via line 44. An adder 46 is connected via line 44
to multiplexer 38 and is connected via a line 54 to gain
register 24. Adder 46 adds the value output by multiplexer
38 to the value stored in gain register 24 and outputs the sum

5,724,433

5

via a line 48 to update gain register 24. The circuit compo-
nents for updating gain register 24 are enabled in response
to a predetermined portion of a timing sequence produced by
a clock 50. Gain register 24 is connected by a line 52 to
amplifier 20. The values stored in registers 22 and 24 thereby
contro} the gain of amplifier 20. The output signal from
amplifier 20 is connected to amplifier 16 for increasing the
gain of amplifier 16 up to a predetermined limit when the
output level from amplifier 16 falls below the threshold level
stored in register 34 and for decreasing the gain of amplifier
16 when the output level from amplifier 16 rises above the
threshold level stored in register 34.

In one preferred embodiment, gain register 24 is a 12 bit
register. The six most significant bits are connected by line
52 to control the gain of amplifier 16. The six least signifi-
cant bits are updated by adder 46 via line 48 during the
enabling portion of the timing sequence from clock 50. The
new values stored in the six least significant bits are passed
back to adder 46 via line 54. Adder 46 updates the values by
dm or dp under the control of multiplexer 38. When the six
least significant bits overflow the first six bits of gain register
24, a carry bit is applied to the seventh bit of gain register
24, thereby incrementing the gain setting of amplifier 20 by
one bit. Likewise, when the six least significant bits under-
flow the first six bits of gain register 24. the gain setting of
amplifier 20 is decremented one bit. Because the magnitudes
dp and dm are stored in log units, the gain of amplifier 16
is increased and decreased by a constant percentage. A one
bit change in the six most significant bits of gain register 24
corresponds to a gain change in amplifier 16 of approxi-
mately Y4 dB. Accordingly. the six most significant bits in
gain register 24 provide a range of 32 decibels over which
the conditions of adaptive limiting occur.

The sizes of magnitudes dp and dm are small relative to
the value comresponding to the six least significant bits in
gain register 24. Accordingly, there must be a net contribu-
tion of positive values corresponding to dp in order to raise
the six least significant bits to their full count, thereby
incrementing the next most significant bit in gain register 24.
Likewise, there must be a net contribution of negative values
corresponding to dm in order for the six least significant bits
in gain register 24 to decrement the next most significant bit
in gain register 24. The increments and decrements are
applied as fractional values to gain register 24 which pro-
vides an averaging process and reduces the variance of the
mean of the gain of amplifier 16. Further. since a statistical
average of the percent clipping is the objective. it is not
necessary to examine each sample. If the signal from input
12 is in digital form, clock 50 can operate at a frequency well
below the sampling frequency of the input signal. This
yields a smaller representative number of samples. For
example. the sampling frequency of the imput signal is
divided by 512 in setting the frequency for clock 50 in FIG.
1.

In operation. circuit 10 adaptively adjusts the channel
gain of amplifier 16 so that a constant percentage clipping by
limiter 26 is achieved over a range of levels of the signal
from input 12. Assuming the input signal follows a Lapla-
cian distribution, it is modeled mathematically with the
equation:

POEL(SQri(2)R) ¢ AR o

In equation (1). R represents the overall root means square
signal level of speech. A variable F, is now defined as the
fraction of speech samples that fall outside of the limits (L.,
-L). By integrating the Laplacian distribution over the
intervals (—eo,~L) and (L.4<o). the following equation for F,
is derived:

5

10

15

20

25

30

35

45

50

55

65

6
pLze—(-'ql'f(l')UR) 2)
As above, when a sample of the signal from input 12 is in
the limit set by register 34, the gain setting in gain register
24 is reduced by dm. When a sample of the signal from input
12 is not in limit, the gain is increased by dp. Therefore,
circuit 10 will adjust the gain of amplifier 16 until the
following condition is met:

(1-F)dp=F;dm 3
After adaption, the following relationships are found:

dp=F(dp+dm) @)

RAL=sqrt(2y/In(1+dm/dp) (&)

Within the above equations, the ratio R/L represents a
compression factor established by the ratio dm/dp. The
percentage of samples that are clipped at L is given by:

% clipping=F; *100 6)

Table I gives typical values that have been found useful in
a hearing aid. Column three is the “headroom” in decibels
between the root mean square signal value of the input signal
and limiting.

TABLE 1
dm/dp R/L R/L in dB % clipping
0 oo o 100
Y 233 274 94
T 120 21.6 89
% 6.3 16.0 80
Ya 35 109 67
1 2.04 6.2 50
2 1.29 22 33
4 .88 -1.1 20
8 .64 -3.8 11
16 .50 -6.0 6
32 40 -79 3

In the above equations. the relationship. R=Go. applies
where G represents the gain prior to limiting and © repre-
sents the root mean square speech signal level of the input
signal. When the signal level ¢ changes, circuit 10 will adapt
to a new state such that R/l or Go/L returns to the com-
pression factor determined by dp and dm. The initial rate of
adaption is determined from the following equation:

dg/dt=f (dp(1 - FaDHGIN)_ge(,~qra2L/ GOy ™

In equation (7). f, represents the clock rate of clock 50. The
path followed by the gain (G) is determined by solving the
following equations recursively:

dG=dp(1-eT PN e NLHGOY) @)

G=G+dG ®

Within equations (8) and (9), the attack and release times
for circuit 10 are symmetric only for a compression factor
(R/L) of 2.04. The attack time corresponds to the reduction
of gain in response to an increase in signal ¢. Release time
corresponds to the increase in gain after the signal level o is
reduced. For a compression factor setting of 12, the release
time is much shorter than the attack time. for a compression
factor setting of 0.64 and 0.50, the attack time is much
shorter than the release time. These latter values are pref-
erable for a hearing aid.

As seen above. the rate of adaption depends on the
magnitudes of dp and dm which are stored in registers 40

5,724,433

7

and 42. These 6-bit registers have a range from Y128 dB to
%28 (dB). Therefore, at a sampling rate of 16 kHz from
clock 50, the maximum slope of the adaptive gain function
ranges from 125 dB/sec to 8000 dB/sec. For a step change
of 32 dB. this corresponds to a typical range of time constant
from 256 milliseconds to four milliseconds respectively. If
dm is set to zero, the adaptive compression feature is
disabled.

FIG. 2 discloses a circuit 60 which has a number of
common circuit elements with circuit 10 of FIG. 1. Such
common clements have similar functions and have been
marked with common reference numbers. In addition to
circuit 10. however. circuit 60 of FIG. 2 provides for a
programmable compression ratio. Circuit 60 has a gain
control 66 which is connected to a register 62 by a line 64
and to gain register 24 by a line 68. Register 62 stores a
compression factor. Gain control 66 takes the value stored in
gain register 24 to the power of the compression ratio stored
in register 62 and outputs said power gain value via a line 70
to an amplifier 72. Amplifier 72 combines the power gain
value on line 70 with the gain value stored in a register 74
to produce an output gain on a line 76. An amplifier 78
receives the output gain via line 76 for controlling the gain
of amplifier 78. Amplifier 78 amplifies the signal from input
12 accordingly. The output signal from amplifier 78 is peak
clipped by a limiter 80 and supplied as an output signal for
circuit 60 at an output 82 in accordance with the invention.

To summarize the operation of circuit 60, the input to
limiter 80 is generated by amplifier 78 whose gain is
programmably set as a power of the gain setting stored in
gain register 24, while the input to comparator 32 continues
to be generated as shown in circuit 10 of FIG. 1. Further, one
of the many known functions other than the power function
could be used for programmably setting the gain of amplifier
78.

The improvement in circuit 60 of FIG. 2 over circuit 10
of FIG. 1 is seen in FIG. 3 which shows the input/output
curves for compression ratios ranging from zero through
two. The curve corresponding to a compression ratio of one
is the single input/output curve provided by circuit 10 in
FIG. 1. Circuit 60 of FIG. 2. however, is capable of
producing all of the input/output curves shown in FIG. 3.

In practice, circuit 10 of FIG. 1 or circuit 60 of FIG. 2 may
be used in several parallel channels, each channel filtered to
provide a different frequency response. Narrow band or
broad band filters may be used to provide maximum fiex-
ibility in fitting the hearing aid to the patient’s hearing
deficiency. Broad band filters are used if the patient prefers
one hearing aid characteristic at low input signal levels and
another characteristic at high input signal levels. Broad band
filters can also provide different spectral shaping depending
on background noise level. The channels are preferably
constructed in accordance with the filter/limit/filter structure
disclosed in U.S. Pat. No. 5.111.419 (hereinafter “the *419
patent”) and incorporated herein by reference.

FIG. 4 shows a 4-channel filter/limit/filter structure for
circuit 10 of FIG. 1. While many types of filters can be used
for the channel filters of FIG. 4 and the other Figs.. FIR
filters are the most desirable. Each of the filters F1. F2, F3
and F4 in FIG. 4 are symmetric FIR filters which are equal
in length within each channel. This greatly reduces phase
distortion in the channel output signals, even at band edges.
The use of symmetric filters further requires only about one
half as many registers to store the filter co-efficients for a
channel. thus allowing a simpler circuit implementation and
lower power consumption. Each channel response can be
programmed to be a band pass filter which is contiguous

10

15

20

25

30

35

40

45

50

55

65

8

with adjacent channels. In this mode, filters F1 through F4
have preset filter parameters for selectively passing input 12
over a predetermined range of audible frequencies while
substantially attenuating any of input 12 not occurring in the
predetermined range. Likewise, channel filters F1 through
F4 can be programmed to be wide band to produce over-
lapping channels. In this mode, filters F1 through F4 have
preset filter parameters for selectively altering input 12 over
substantially all of the audible frequency range. Various
combinations of these two cases are also possible. Since the
filter coefficients are arbitrarily specified, in-band shaping is
applied to the band-pass filters to achieve smoothly varying
frequency gain functions across all four channels. An output
102 of a circuit 100 in FIG. 4 provides an adaptively
compressed and filtered output signal comprising the sum of
the filtered signals at outputs 30 in each of the four channels
identified by filters F1 through F4.

FIG. 5 shows a four channel filter/limit/filter circuit 110
wherein each channel incorporates circuit 60 of FIG. 2. An
output 112 in FIG. § provides a programmably compressed
and filtered output signal comprising the sum of the filtered
signals at outputs 82 in each of the four channels identified
by filters F1 through F4.

The purpose of the adaptive gain factor in each channel of
the circuitry of FIGS. 4 and 5 is to maintain a specified
constant level of envelope compression over a range of
inputs. By using adaptive compressive gain. the input/output
function for each channel is programmed to include a linear
range for which the signal envelope is unchanged, a higher
input range over which the signal envelope is compressed by
a specified amount, and the highest input range over which
envelope compression increases as the input level increases.
This adaptive compressive gain feature adds an important
degree of control over mapping a widely dynamic input
signal into the reduced auditory range of the impaired ear.

The design of adaptive compressive gain circuitry for a
hearing aid presents a number of considerations. such as the
wide dynamic range. noise pattern and bandwidth found in
naturally occurring sounds. Input sounds present at the
microphone of a hearing aid vary from quiet sounds (around
30 dB SPL) to those of a quiet office area (around 50 dB
SPL) to much more intense transient sounds that may reach
100 dB SPL or more. Sound levels for speech vary from a
casual vocal effort of a talker at three feet distance (55 dB
SPL) to that of a talker’s own voice which is much closer to
the microphore (80 dB SPL). Therefore, long term averages
of speech levels present at the microphone vary by 25 dB or
more depending on the talker, the distance to the talker, the
orientation of the talker and other factors. Speech is also
dynamic and varies over the short term. Phoneme intensities
vary from those of vowels, which are the loudest sounds. to
unvoiced fricatives. which are 12 dB or so less intense, to
stops, which are another 18 dB or so less intense. This adds
an additional 30 dB of dynamic range required for speaking.
Including both long-term and short-term variation, the over-
all dynamic range required for speech is about 55 dB. If a
talker whispers or is at a distance much greater than three
feet. then the dynamic range will be even greater.

Electronic circuit noise and processing noise limit the
quietest sounds that can be processed. A conventional hear-
ing aid microphone has an equivalent input noise figure of
25 dB SPL. which is close to the estimated 20 dB noise
figure of a normal ear. If this noise figure is used as a lower
bound on the input dynamic range and 120 dB SPL is used
as an upper bound, the input dynamic range of good hearing
aid system is about 100 dB. Because the microphone will
begin to saturate at 90 to 100 dB SPL. a lesser dynamic
range of 75 dB is workable.

5.724,433

9

Signal bandwidth is another design consideration.
Although it is possible to communicate over a system with
a bandwidth of 3 kHz or less and it has been determined that
3 kHz carries most of the speech information, hearing aids
with greater bandwidth result in better articulation scores.
Skinner. M. W. and Miller, J. D., Amplification Bandwidth
and Intelligibility of Speech in Quiet and Noise for Listeners
with Sensorineural Hearing Loss, 22:253-79 Audiology
(1983). Accordingly, the embodiment disclosed in FIG. 1
has a 6 kHz upper frequency cut-off.

The filter structure is another design consideration. The
filters must achieve a high degree of versatility in program-
ming bandwidth and spectral shaping to accommodate a
wide range of hearing impairments. Further, it is desirable to
use shorter filters to reduce circuit complexity and power
consumption. It is also desirable to be able to increase filter
gain for frequencies of reduced hearing sensitivity in order
to improve signal audibility. However, studies have shown
that a balance must be maintained between gain at low
frequencies and gain at high frequencies. It is recommended
that the gain difference across frequency should be no
greater than 30 dB. Skinner, M. W.. Hearing Aid Evaluation,
Prentice Hall (1988). Further, psychometric functions often
used to calculate a “prescriptive” filter characteristic are
generally smooth, slowly changing functions of frequency
that do not require a high degree of frequency resolution to
fit.

Within the above considerations, it is preferable to use
FIR filters with transition bands of 1000 Hz and out of band
rejection of 40 dB. The required filter length is determined
from the equation:

L=((=20 log,o(c)~7.95Y(14.36TBA))+1 (10)

In equation (10). L represents the number of filter taps. &
represents the maximum error in achieving a target filter
characteristic, —20 log,o(G) represents the out of band rejec-
tion in decimals. TB represents the transition band, and f, is
the sampling rate. See Kaiser, Nonrecursive Filter Design
Using the 1,-SINH Window Function, Pros., IEEE Int.
Symposium on Circuits and Systems (1974). For an out of
band rejection figure of 35 dB with a transition band of 1000
Hz and a sampling frequency of 16 kHz, the filter must be
approximately 31 taps long. If a lower out of band rejection
of 30 dB is acceptable, the filter length is reduced to 25 taps.
This range of filter lengths is consistent with the modest
filter structure and low power limitations of a hearing aid.

All of the circuits shown in FIGS. 1 through 9 use log
encoded data. See the *419 patent. Log encoding is similar
to u-law and A-law encoding used in Codecs and has the
same advantages of extending the dynamic range. thereby
making it possible to reduce the noise floor of the system as
compared to linear encoding. Log encoding offers the addi-
tional advantage that arithmetic operations are performed
directly on the log encoded data. The log encoded data are
represented in the hearing aid as a sign and magnitude as
follows:

x=sgn(y) log (Hl¥ log (B) an

In equation (11). B represents the log base. which is positive
and close to but less than unity. x represents the log value
and y represents the equivalent linear value. A reciprocal

refation for y as a function of x follows:
y=sgn(x)B* (12)

If x is represented as sign and an 8-bit magnitude and the log
base is 0.941. the range of y is *1 to *1.8x107". This

10

15

25

30

35

45

50

55

65

10

comresponds to a dynamic range of 134 dB. The general
expression for dynamic range as a function of the log base
B and the number of bits used to represent the log magnitude
value N follows:

dynamic range (dB)=20 log,o(B®"-1) (13)

An advantage of log encoding over u-law encoding is that
arithmetic operations are performed directly on the encoded
signal without conversion to another form. The basic FIR
filter equation. y(n)=Zax(n—i), is implemented recursively
as a succession of add and table lookup operations in the log
domain. Multiplication is accomplished by adding the mag-
nitude of the operands and determining the sign of the result.
The sign of the result is a simple exclusive-or operation on
the sign bits of the operands. Addition (and subtraction) are
accomplished in the log domair by operations of
subtraction, table lookup. and addition. Therefore. the
sequence of operations required to form the partial sum of
products of the FIR filter in the log domain are addition.
subtraction, table lookup, and addition.

Addition and subtraction in the log domain are imple-
mented by using a table lookup approach with a sparsely
populated set of tables T, and T_ stored in a memory (not
shown). Adding two values, x and y. is accomplished by
taking the ratio of the smaller magnitude to the larger and
adding the value from the log table T, to the smaller.
Subtraction is similar and uses the log table T_. Since x and
y are in log units, the ratio. ly/x| (or Ix/yl), which is used to
access the table value, is obtained by subtracting |x! from Iyl
(or vice-versa). The choice of which of the tables, T, or T_,
to use is determined by an exclusive-or operation on the sign
bits of x and y. Whether the table value is added to x or to
y is determined by subtracting Ix| from [yl and testing the
sign bit of the result.

Arithmetic roundoff errors in using log values for multi-
plication are not significant. With an 8-bit representation. the
log magnitude values are restricted to the range 0 to 255.
Zero corresponds to the largest possible signal value and 255
to the smallest possible signal value. Log values less than
zero cannot occur. Therefore, overflow can only occur for
the smallest signal values. Product log values greater than
255 are truncated to 255. This corresponds to a smallest
signal value (255 LU’s) that is 134 dB smaller than the
maximum signal value. Therefore. if the system is scaled by
setting the amplifier gains so that 0 LU corresponds to 130
dB SPL. the truncation errors of multiplication (255 LU)
comrespond to —134 dB relative to the maximum possible
signal value (0 LU). In absolute terms, this provides a —4 dB
SPL or —43 dB SPL spectrum level. which is well below the
normal hearing threshold.

Roundoff errors of addition and subtraction are much
more significant. For example, adding two numbers of equal
magnitude together results in a table lookup error of 2.4%.
Conversely, adding two values that differ by three orders of
magnitude results in an error of 0.1%. The two tables. T, and
T_, are sparsely populated. For a log base of 0.941 and table
values represented as an 8-bit magnitude, each table contains
57 nonzerc values. If it is assumed that the errors are
uniformly distributed (that each table value is used equally
often on the average). then the overall average error asso-
ciated with table roundoff is 1.01% for T, and 1.02% for T_.

Table errors are reduced by using a log base closer to
unity and a greater number of bits to represent log magni-
tude. However. the size of the table grows and quickly
becomes impractical to implement. A compromise solution
for reducing error is to increase the precision of the table
entries without increasing the table size. The number of

5,724,433

11

nonzero entries increases somewhat. Therefore, in imple-
menting the table lookup in the digital processor, two
additional bits of precision are added to the table values.
This is equivalent to using a temporary log base which is the
fourth root of 0.941 (0.985) for calculating the FIR filter
summation. The change in log base increases the number of
nonzero entries in each of the tables by 22, but reduces the
average error by a factor of four. This increases the output
SNR of a given filter by 12 dB. The T, and T_ tables are still
sparsely populated and implemented efficiently in VLSI
form.

In calculating the FIR equation, the table lookup opera-
tion is applied recursively N—1 times. where N is the order
of the filter. Therefore, the total error that results is greater
than the average table roundoff error and a function of filter
order. f it is assumed that the errors are uniformly distrib-
uted and that the input signal is white, the expression for
signal to roundoff noise ratio follows:

€,°0,2=€%(c, "+ 20,7+ . . HN-Dey2c 24,2+ . . . +647) (14)
In equation (14) eyz represents the noise variance at the
output of the filter 0,,2 represents the signal variance at the
output of the filter, and e represents the average percent table
error. Accordingly. the filter noise is dependent on the table
lookup error, the magnitude of the filter coefficients. and the
order of summation. The coefficient used first introduces an
error that is multiplied by N—1. The coefficient used second
introduces an error that is multiplied by N-2 and so on.
Since the error is proportional to coefficient magnitude and
order of summation. it is possible to minimize the overall
error by ordering the smallest coefficients earliest in the
calculation. Since the end tap values for symmetric filters are
generally smaller than the center tap value, the emror was
further reduced by calculating partial sums using coefficients
from the outside toward the inside.

In FIGS. 4 and 5. FIR filters F1 through F4 represent
channel filters which are divided into two cascaded parts.
Limiters 26 and 80 are implemented as part of the log
multiply operation. G, is a gain factor that, in the log
domain, is subtracted from the samples at the output of the
first FIR filter. If the sum of the magnitudes is less than zero
(maximum signal value), it is clipped to zero. G, represents
an attenuation factor that is added (in the log domain) to the
clipped samples. G, is used to set the maximum output level
of the channel.

Log quantizing noise is a constant percentage of signal
level except for low input levels that are near the smaliest
quantizing steps of the encoder. Assuming a Laplacian
signal distribution. the signal to quantizing noise ratio is
given by the following equation:

SNR(dB)=10 log,o(12)-20 log, ,(ln(B)) (15)

For a log base of 0.941, the SNR is 35 dB. The quantizing
noise is white and, since equation (15) represents the total
noise energy over a bandwidth of 8 kHz, the spectrum level
is 39 dB less or 74 dB smaller than the signal level. The ear
inherently masks the quantizing noise at this spectrum level.
Schroeder. et al., Optimizing Digital Speech Coders by
Exploiting Masking Properties of the Human Ear. Vol. 66(6)
J. Acous. Soc. Am. pp.1647-52 (December 1979). Thus, log
encoding is ideally suited for auditory signal processing. It
provides a wide dynamic range that encompasses the range
of levels of naturally occurring signals, provides sufficient
SNR that is consistent with the limitation of the ear to
resolve small signals in the presence of large signals. and
provides a significant savings with regard to hardware.

10

15

20

25

30

35

45

50

55

65

12

The goal of the fitting system is to program the digital
hearing aid to achieve a target real-ear gain. The real-ear
gain is the difference between the real-ear-aided-response
(REAR) and the real-ear-unaided-response (REUR) as mea-
sured with and without the hearing aid on the patient. It is
assumed that the target gain is specified by the audiologist
or calculated from one of a variety of prescriptive formulae
chosen by the audiologist that is based on audiometric
measures. There is not a general consensus about which
prescription is best. However. prescriptive formulae are
generally quite simple and easy to implement on a small host
computer. Various prescriptive fitting methods are discussed
in Chapter 6 of Skinner, M. W., Hearing Aid Evaluation,
Prentice Hall (1988).

Assuming that a target real-ear gain has been specified,
the following strategy is used to automatically fit the four
channel digital hearing aid where each channel is pro-
grammed as a band pass filter which is contiguous with
adjacent channels. The real-car measurement system dis-
closed in U.S. Pat. No. 4.548.082 (hereinafter “the 082
patent™) and incorporated herein by reference is used. First,
the patient’s REUR is measured to determine the patient’s
normal, unoccluded ear canal resonance. Then the hearing
aid is placed on the patient. Second, the receiver and
earmold are calibrated. This is done by setting G2 of each
channel to maximum attenuation (—134 dB) and turning on
the noise generator of the adaptive feedback equalization
circuit shown in the *082 patent. This drives the output of the
hearing aid with a flat-specttum-level, pseudorandom noise
sequence. The noise in the ear canal is then deconvolved
with the pseudorandom sequence to obtain a measure of the
output transfer characteristic (H,) of the hearing aid. Third.
the microphone is calibrated. This is done by setting the
channels to a flat nominal gain of 20 dB. The cross-
correlation of the sound in the ear canal with the reference
sound then represents the overall transfer characteristic of
the hearing aid and includes the occlusion of sound by the
earmold. The microphone calibration (Hm) is computed by
subtracting H, from this measurement. Last, the channel
gain functions are specified and filter coefficients are com-
puted using a window design method. See Rabiner and
Schafer, Digital Processing of Speech Signals, Prentice Hall
(1978). The coefficients are then downloaded in bit-serial
order to the coefficient registers of the processor. The
cocfficient registers are connected together as a single serial
shift register for the purpose of downloading and uploading
values.

The channel gains are derived as follows. The acoustic
gain for each channel of the hearing aid is given by:

Gain=H,+H,+H,+G1,+Gan (16

The filter shape for each channel is determined by setting the
Gain in equation (16) to the desired real-ear gain plus the
open-ear resonance. Since G, and G,, are gain constants
for the channel and independent of frequency, they do not
enter into the calculation at this point. The normalized filter
characteristics is determined from the following equation.

Hn=0.5 (Desired Real-ear gain+open ear cal-H,,—H,+G,) an

H,, and H_represent the microphone and receiver calibration
measures, respectively. that were determined for the patient
with the real ear measurement system and G, represents a
normalization gain factor for the filter that is included in the
computation of G,, and G,,. H,, and H, include the trans-
ducer transfer characteristics in addition to the frequency
response of the amplifier and any signal conditioning filters.

5,724,433

13

Once H,, is determined, the maximum output of each chan-
nels which is limited by L, are represented by G,, as
follows:

Gor=MPO,—L-avg(H,+H, G, (18)

In equation (18), the “avg” operator gives the average of
filter gain and receiver sensitivity at filter design frequencies
within the channel. L represents a fixed level for all channels
such that signals falling outside the range *L are peak-
clipped at +L.. G, represents the filter normalization gain,
and MPO,, represents the target maximum power output.
Overall gain is then established by setting G,,, as follows:

G1,=2G,~G,, (19)

G, represents the gain normalization factor of the filters that
were designed to provide the desired linear gain for the
channel.

By using the above approach. target gains typically are
realized to within 3 dB over a frequency range of from 100
Hz to 6000 Hz. The error between the step-wise approxi-
mation to the MPO function and the target MPO function is
also small and is minimized by choosing appropriate cross-
over frequencies for the four channels.

Because the channel filters are arbitrarily specified, an
alternative fitting strategy is to prescribe different frequency-
gain shapes for signals of different levels. By choosing
appropriate limit levels in each channel. a transition from the
characteristics of one channel to the characteristics of the
next channel will occur automatically as a function of signal
level. For example, a transparent or low-gain function is
used for high-level signals and a higher-gain function is used
for low-level signals. The adaptive gain feature in each
channel provides a means for controlling the transition from
one channel characteristic to the next. Because of recruit-
ment and the way the impaired ear works. the gain functions
are generally ordered from highest gain for soft sounds to the
lowest gain for loud sounds. With respect to circuit 100 of
FIG. 4. this is accomplished by setting G1 in gain register 22
very high for the channel with the highest gain for the soft
sounds. The settings for G1 in gain registers 22 of the next
succeeding channels are sequentially decreased. with the G1
setting being unity in the last channel which channel has the
lowest gain for loud sounds. A similar strategy is used for
circuit 110 of FIG. 5, except that G1 must be set in both gain
registers 22 and 74. In this way, the channel gain settings in
circuits 100 and 11¢ of FIGS. 4 and 5 are sequentially
modified from first to last as a function of the level of input
12,

The fitting method is similar to that described above for
the four-channel fitting strategy. Real-ear measurements are
used to calibrate the ear. receivers and microphone.
However. the filters are designed differently. One of the
channels is set to the lowest gain function and highest ACG
threshold. Another channel is set to a higher-gain function,
which adds to the lower-gain function and dominates the
spectral shaping at signal levels below a lower ACG thresh-
old setting for that channel. The remaining two channels are
set to provide further gain contributions at successively
lower signal levels. Since the channel filters are symmetric
and equal length, the gains will add in the linear sense. Two
channels set to the same gain function will provide 6 dB
more gain than either channel alone. Therefore. the channels

filters are designed as follows:
Hy=%2 D, (20)

Hy=Y2 log,o (1072-1071) 21

10

15

20

25

30

a5

45

50

55

65

14
Hy=% log g (107°-1072-10°") 22)
H =% log,y (1024-10%-1072-10°%) (23)

where: D,<D,<D;<D,. D, represents the filter design target
in decibels that gives the desired insertion gain for the
hearing aid and is derived from the desired gains specified
by the audiologist and corrected for ear canal resonance and
receiver and microphone calibrations as described previ-
ously for the four-channel fit. The factor. . in the above
expressions takes into account that each channel has two
filters in cascade.

The processor described above has been implemented in
custom VLSI form. When operated at 5 volts and at a
16-kHz sampling rate. it consumes 4.6 mA. When operated
at 3 volts and at the same sampling rate. it consumes 2.8 mA.
When the circuit is implemented in a low-voltage form. it is
expected to consume less than 1 mA when operated from a
hearing aid battery. The processor has been incorporated into
a bench-top prototype version of the digital hearing aid.
Results of fitting hearing-impaired subjects with this system
suggest that prescriptive frequency gain functions are
achieved within 3 dB accuracy at the same time that the
desired MPO frequency function is achieved within 5 dB or
so of accuracy.

For those applications that do not afford the computa-
tional resources required to implement the circuitry of FIGS.
1 through 5. the simplified circuitry of FIGS. 6 through 9 is
used. In FIG. 6, a circuit 120 includes an input 12 which
represents any conventional source of an input signal such as
a microphone. signal processor. or the like. Input 12 also
includes an analog to digital converter (not shown) for
analog input signals if circuit 120 is implemented with
digital components. Likewise. input 12 includes a digital to
analog converter (not shown) for digital input signals if
circuit 120 is implemented with analog components.

Input 12 is connected to a group of filters F1 through F4
and a filter S1 over a line 122, Filters F1 through F4 provide
separate channels with filter parameters preset as described
above for the multichannel circuits of FIGS. 4 and 5. Each
of filters F1, F2, F3 and F4 outputs an adaptively filtered
signal via a line 124, 126. 128 and 130 which is amplified
by a respective amplifier 132, 134. 136 and 138. Amplifiers
132 through 138 cach provide a channel output signal which
is combined by a line 140 to provide an adaptively filtered
signal at an output 142 of circuit 120.

Filter S1 has parameters which are set to extract relevant
signal characteristics present in the input signal. The output
of filter S1 is received by an envelope detector 144 which
detects said characteristics. Detector 144 preferably has a
programmable time constant for varying the relevant period
of detection. When detector 144 is implemented in analog
form. it includes a full wave rectifier and a resistor/capacitor
circuit (not shown). The resistor, the capacitor. or both. are
variable for programming the time constant of detector 144.
When detector 144 is implemented in digital form. it
includes an exponentially shaped filter with a programmable
time constant. In either event, the “on” time constant is
shorter than the relatively long “off” time constant to prevent
excessively Ioud sounds from existing in the output signal
for extended periods.

The output of detector 144 is a control signal which is
transformed to log encoded data by a log transformer 146
using standard techniques and as more fully described
above. The log encoded data represents the extracted signal
characteristics present in the signal at input 12. A memory
148 stores a table of signal characteristic values and related
amplifier gain values in log form. Memory 148 receives the

5,724,433

15

log encoded data from log transformer 146 and, in response
thereto, recalls a gain value for each of amplifiers 132, 134,
136 and 138 as a function of the log value produced by log
transformer 146. Memory 148 outputs the gain values via a
set of lines 150, 152.154 and 156 to amplifiers 132, 134, 136
and 138 for setting the gains of the amplifiers as a function
of the gain values. Arbitrary overall gain control functions
and blending of signals from each signal processing channel
are implemented by changing the entries in memory 148.

In use. circuit 120 of FIG. 6 may include a greater or
lesser number of filtered channels than the four shown in
FIG. 6. Further, circuit 120 may include additional filters.
detectors and log transformers corresponding to filter S1,
detector 144 and log transformer 146 for providing addi-
tional input signal characteristics to memory 1480 Still
further. any or all of the filtered signals in lines 124, 126. 128
or 130 could be used by a detector(s). such as detector 144,
for detecting an input signal characteristic for use by
memory 148.

FIG. 7 includes input 12 for supplying an input signal to
a circuit 160. Input 12 is connected to a variable filter 162
and to a filter S1 via a line 164. Variable filter 162 provides
an adaptively filtered signal which is amplified by an ampli-
fier 166. A limiter 168 peak clips the adaptively filtered
output signal of amplifier 166 to produce a limited output
signal which is filtered by a variable filter 170. The adap-
tively filtered and clipped output signal of variable filter 170
is provided at output 171 of circuit 160.

Filter S1. a detector 144 and a log ransformer 146 in FIG.
7 perform similar functions to the like numbered compo-
nents found in FIG. 6. A memory 162 stores a table of signal
characteristic values, related filter parameters. and related
amplifier gain values in log form. Memory 162 responds to
the output from log transformer 146 by recalling filter
parameters and an amplifier gain value as functions of the
log value produced by log transformer 146. Memory 162
outputs the recalled filter parameters via a line 172 and the
recalled gain value via a line 174. Filters 162 and 170
receive said filter parameters via line 172 for setting the
parameters of filters 162 and 170. Amplifier 166 receives
said gain value via line 174 for setting the gain of amplifier
166. The filter coefficients are stored in memory 162 in
sequential order of input signal level to control the selection
of filter coefficients as a function of input level. Filters 162
and 170 are preferably FIR filters of the same construction
and length and are set to the same parameters by memory
162. In operation, the circuit 160 is also used by taking the
output signal from the output of amplifier 166 to achieve
desirable results. Limiter 168 and variable filter 170 are
shown. however. to illustrate the filter/limit/filter structure
disclosed in the *419 patent in combination with the pair of
variable filters 162 and 170.

With a suitable choice of filter coefficients. a variety of
level dependent filtering is achieved. When memory 162 is
a random-access memory. the filter coefficients are tailored
to the patient’s hearing impairment and stored in the
memory from a host computer during the fitting session. The
use of the host computer is more fully explained in the 082
patent.

A two channel version of circuit 120 in FIG. 6 is shown
in FIG. 8 as circuit 180. Like components of the circuits in
FIGS. 6 and 8 arc identified with the same reference
numerals. A host computer (such as the host computer
disclosed in the *082 patent) is used for calculating the F1
and F2 filter coefficients for various spectral shaping, for
calculating entries in memory 148 for various gain functions
and blending functions. and for down-loading the values to
the hearing aid.

10

15

20

25

30

35

45

50

55

65

16

The gain function for each channel is shown in FIG. 9. A
segment “a” of a curve Gl provides a “voice switch”
characteristic at low signal levels. A segment “b” provides a
linear gain characteristic with a spectral characteristic deter-
mined by filter F1 in FIG. 8. A segment “c” and “d” provide
a transition between the characteristics of filters F1 and F2.
A segment “e” represents a linear gain characteristic with a
spectral characteristic determined by filter F2. Lastly. seg-
ment “f” corresponds to a region over which the level of
output 142 is constant and independent of the level of input
12.

The G1 and G2 functions are stored in a random access
memory such as memory 148 in FIG. 8. The data stored in
memory 148 is based on the specific hearing impairment of
the patient. The data is derived from an appropriate algo-
rithm in the host computer and down-loaded to the hearing
aid model during the fitting session. The coefficients for
filters F1 and F2 are derived from the patients residual
hearing characteristic as follows: Filter F2, which deter-
mines the spectral shaping for loud sounds. is designed to
match the patients UCL function. Filter F1, which deter-
mines the spectral shaping for softer sounds. is designed to
match the patients MCL or threshold functions. One of a
number of suitable filter design methods are used to compute
the filter coefficient values that correspond to the desired
spectral characteristic.

A Kaiser window filter design method is preferable for
this application. Once the desired spectral shape is
established, the filter coefficients are determined from the
following equation:

Cr=XA{cos(2nnfi)W, 24
In equation (24), C, represents the n'th filter coefficient, A,
represents samples of the desired spectral shape at frequen-
cies f,, f, represents the sampling frequency and W, repre-
sents samples of the Kaiser Window. The spectral sample
points, A,. are spaced at frequencies. f;, which are separated
by the 6 dB bandwidth of the window. W,, so that a
relatively smooth filter characteristic results that passes
through each of the sample values. The frequency resolution
and maximum slope of the frequency response of the
resulting filter is determined by the number of coefficients or
length of the filter. In the implementation shown in FIG. 8.
filters F1 and F2 have a length of 30 taps which, at a
sampling rate of 12.5 kHz. gives a frequency resolution of
about 700 Hz and a maximum spectral slope of 0.04 dB/Hz.

Circuit 180 of FIG. 8 simplifies the fitting process.
Through a suitable interactive display on a host computer
(not shown), each spectral sample value A, is independently
selected. While wearing a hearing aid which includes circuit
180 in a sound field, such as speech weighted noise at a
given level, the patient adjusts each sample value A, to a
preferred setting for listening. The patient also adjusts filter
F2 to a preferred shape that is comfortable only for loud
sounds.

Appendix A contains a program written for a Macintosh
host computer for setting channel gain and limit values in a
four channel contiguous band hearing aid. The filter coef-
ficients for the bands are read from a file stored on the disk
in the Macintosh computer. An interactive graphics display
is used to adjust the filter and gain values.

In view of the above, it will be seen that the several
objects of the invention are achieved and other advantageous
results attained.

As various changes could be made in the above construc-
tions without departing from the scope of the invention. it is
intended that all matter contained in the above description or
shown in the accompanying drawings shall be interpreted as
iliustrative and not in a limiting sense.

5,724,433
17 18

Program WDHA

—ma—

Dearable Digital Hearing Rid Contral Program V. 1.0
Central institute For The Deaf

818 South Euclid Ave.
St. Louis Mo. 63110

Phone: 314-652-3200

Supported in part by:
The Rehabilitation Research And Bevelopment Service
Dept. of Medicine and Surgery: Ueterans Administration

e g —

General Overview

A program entitled "WDHA" has been written for the Macintosh
personal computer. When a wearable digital hearing aid is attached
to the Macintosh’'s SCSI bus peripheral interface, the user of the
WDHA program can alter the operation of the hearing aid via an easy
to use Macintosh style user interface.

_Using the WDHA Program
Starting The Program

Upon starting the program, the Macintosh interrogates the
hearing aid to determine which program it is running. If the hearing
aid responds appropriately, a menu containing the options which
apply to that particular program appears in the menu bar. If no
response is received from the hearing aid, the menu entitled "WDHA
Disconnected” appears in the menu bar, as follows:

r

& Ffile LWDHA Disconnected

roResn

Should this menu appear, this indicates that there is some
problem with the hearing aid. The source of this problem could be
that the hearing aid is truly disconnected, that it is simply turned off,
or that the hearing aid battery is dead. Upon correcting the problem,

&

5.724,433
19 20

choose the "New WDHA Program” menu eatry to activate the proper
menu for the hearing aid.

The Aid Parameters Window
The four channel hearing aid programs have the titles Aid12

through Aidl4. Choosing the “Aid Parameters” menu entry will
cause the aid parameters window to be displayed, as follows:

© Aid Parameters~— — —rTTeTT

Gain Limitspl (X Hearing Rid On

26 10s| B4 Input Attenuation

20 106| [Output Attenuation
ite Sr

32 110| HC1 = 0 dB (Real ~ Zwislocki)

HC2 = 3 4B (Real - Zwislocki)

: - 40 115 | HC3 = G dB (Real - Zwislocki)

1 2 3 4 HC4 3 4 dB (Rea) - Zwislacki)
A Channel)

The bar graph and chart depict the current settings of the gains
and limits for each channel of the hearing aid. A gain or limit setting
can be changed by dragging the appropriate bar up or down with the
mouse. The selected bar will blink when it is activated, and can be
moved until the mouse is released, at which point the hearing aid is
updated with the new values,

The control buttons indicate whether the hearing aid is on or
off (i.e. whether the hearing aid program is running), and whether
the input or output attenuators are switched on or off. Any of these
settings can be changed simply by clicking on the appropriate
buttons.

Ear Module Calibration
The File menu has an option called "Calibrate Ear Module”

which should be used whenever the program is started or an ear
module is inserted (or re-inserted) in a patient's ear. Proper use of

3b

5,724,433
21 795

this option insures that the gains actually generated by the hearing
aid are as close to the gains indicated by the program as possible.

The lower right hand corner of the Aid Parameters window
displays the results of the most recent ear module calibration,
including the name of the calibration file and the four Hc values,
where Hc is the difference between the real ear pressure measured
in the ear canal and the standard pressure measured on a Zwislocki
at the center frequency of each channel. After choosing this option
the user must open the file containing the ear module coefficients, by
double clicking on the file's name, via a standard Macintosh dialog
box:

r__________.__—-———__—_-__—.j
[Ear Module Calibrations)|

D ite.31 5 Ear Module ... _
O ite.3r _

0O ite.dl Eject

0 ite.4r Drive

D ite.5i

0 ite.sr -

1

D ite.6l Open *
O ite.6r
0 ite. 7!

The program will then play a series of four tones in the
patient’s ear, using the power measurement fo determine the real
pressure in the ear canal.

The file containing the ear module coefficients should be
created with a text editor and saved as a text-only file. The file
contains all the H values for a given ear module, seperated by tabs,
spaces, or carriage returns. It should begin with the four He values,
followed by the Hr values, then Hc, and then Hp. The values entered
for the Hc values can be arbitrary, since the program calculates them
and stores them into the file. An ear module file as you would enter
it might look as follows:

-100 -85 -90 -84 121 116 127 120

0
0

31

5.724.433
23 24

0
0
-124 -121 -134 -143

Here the first row contains both the four He values and the
four Hr values. Following this are four zeros (since the Hc values are
unknown). The sixth row contains the Hp values. Note that values
are arbitrarily seperated by tabs, spaces, or carriage returns.

After doing an ear module calibration with the program, the
new Hc values are displayed in the Aid Seuings window, and also
written to the same file, with the data re-formatted into a seperate
row for each H value, as follows:

-100 -85 -90 -84
121 116 127 120
-5 -4 -10 O

-124 -121 -134 -143

The Tone Parameters Window

The four channel programs alsc have the ability to play pure
_tones for audiometric purposes. The Tone Parameters window is
available to activate these functions. Choosing the "Tone Parameters”
menu entry will cause the Tone Parameters window to be displayed,
as follows:

- ~-- Tone Parameters ——— -~ r—r=irrmie s
Tone burst count? 3 [X Hearing fid On
Rise time sample count? (309] Input Rttenuation

i 5
Signat on semple count? [245 [J output Attenuation
Fell time sample count? |309

Field Mike
Signat off sample count? [3069 O _
Frequency? 2600 ® Probe Mike

Atten re max out (d8)? |20

Power = -12.816046

33

5,724,433
25 26

The text boxes specify the number of tone bursts to generate
and the envelope of the tone bursts generated, as follows:

rise fall
time an time time ott time

A
amplitude
3
frequency
probs sample time

All tmes are specified in number of sample periods, and
cannot exceed 32767 sample periods. The test is initiated by clicking
on the start button. The control buttons act just as in the aid
parameters window.

. Loading Filter Taps

The programs titled Aid13 and Aidl4 have the capability to
download filter tap coefficients to the hearing aid. The coefficients
are read into memory from a text file which the user creates with
any standard text editor. The coefficients in these files are signed
integers such as "797" or "-174" (optionally be followed by a divisor,
such as in "-12028/2") and must be seperated by spaces, tabs, or
carriage returns.

. The Aid13 program has 32 taps per filter, and the Aidl4
program has 31 taps per filter, but since the filters are symmetric
about the center tap you only provide half this number of taps, orl6
taps per filter. Thus the files contain 64 coefficients for the 4
channels. For example, the file titled TapsFour has the following
format:

-535/4 -431/4 -254/4 0 333/4 743/4 1220/4 1750/4

2315/4 2892/4 3545/4 3977/4 4432/4 4797/4 5052/4 5183/4
-34/2 -231/2 -223/2 0 292/2 3982 77/2 -745/2

-1873/2 -2869/2 -3212/2 -2535/2 -831/2 1483/2 3683/2 5021/2
-83/2 502/2 859/2 0 -1128/2 -866/2 189/2 12872

-442/2 89072 3076/2 1605/2 -3814/2 -6280/2 -922/2 65432

39

5,724,433
27 28

528/2 -167/2 -446/2 O 585/2 288/2 -1203/2 242/2
44272 1525/2 -2946/2 797/2 -174/2 6280/2 -12028/2 6482/2

The option to download coefficients is enabied by choosing the
"Tap Filter Load” menu entries. The Macintosh will then present the
standard open file dialog box, which you use to specify the name of
the appropriate text file.

Program Design

The program is written in 68000 Assembly Language using the
Macintosh Development System assembler, from Apple.

The program has been structured into seperate managers for
each of the program's functions. A seperate file contains the
functions associated with each manager. For example, the Parameter
Settings (or "PS™) manager is contained in the file WDHAPS.Asm, and
includes all routines associated with the Aid Parameters window.

Below is a description of each manager, it's function, and the
routines contained in each.

"WDHA.Asm

The overall program structure is typical of a Macintosh
application in that it has an event loop which dequeues events from
the event queue, and then branches to code which processes each
particular type of event. WDHA Asm contains the WDHA program’s
event loop.

WDHAPS.Asm

The Parameter Settings ("PS") manager contains all routines
associated with the Aid Parameters window, which allows the user to
control the gains and limits of each of the channels in the four
channel programs. Specifically, these routines are as follows:

WDHAPSOpen - Create and display the Aid Parameters window.

WDHAPSClose - Close the Aid Parameters window and dispose

the memory associated with it.

WDHAPSShow - Make the Aid Parameters window visible.

WDHAPSHide - Make the Aid Parameters window invisible.

WDHAPSDraw - Update the contents of the Aid Parameters

window.

40

5,724,433
29 30

WDHAPSControl - Cause the appropriate modification of the Aid
Parameters window when a mousedown event occurs
within it's content region.

WDHAPSIS - Given a window pointer, this routine determines if
it is the Aid Parameters window or not.

WDHAPSSetParam - Update the hearing aid to contain the
settings specified in the Aid Parameters window.

WDHATC.Asm

The TC manager contains all routines associated with the Tone
Parameters window, which allows the user to specify the parameters
for the test/calibrate function of the four channel program, and
initiate the test. Specifically, these routines are as follows:

WDHATCOpen - Create and display the Tone Parameters
window.

WDHATCClose - Close the Tone Parameters window and dispose
the memory associated with it

WDHATCShow - Make the Tone Parameters window visible,

WDHATCHide - Make the Tone Parameters window invisible.

WDHATCDraw - Update the contents of the Tone Parameters
window. _

WDHATCControl - Cause the appropriate modification of the
Tone Parameters window when a mousedown event
occurs within it's coatent region.

' WDHATCIS - Given a window pointer, this routine determines if

' it is the Tone Parameters window or not.

WDHATCIdle - Blink the text caret of the Tone Parameters
window.

WDHATCKey - Insert a key press into the active text box of the

B Tone Parameters window.

WDHATCDoTest - Initiate a test by the hearing aid program,
using the parameters specified by the Tone Parameters
window.

EarModuleCalibrate - Compute the Hc values for each of the
four channels (this routine uses the test/calibrate
function of the hearing aid to figure the real ear pressure
at the center frequency of each channel).

WDHASCSL.Asm
The SCSI manager contains all routines which send record
structures to the hearing aid via the SCSI bus.

Al

<

5.724.433
31 32

SetParam - Send the four channel parameter record (containing
the gains and limits) to the four channel hearing aid
program.

SetCoefficients - Send out the filter tap coefficients to the four
channel hearing aid program.

SetFileParams - Send the parameters required by the spectral
shaping program.

wdhatest - Initiate a pure tone test by sending the
test/calibrate record to the hearing aid.

WDHAFC.Asm

The WDHA program accesses some numerical values it needs
by reading them in from text files. The File Coefficients (FC) manager
contains routines which access these text files.

WDHAFCSet - This routine is called when the user selects the
"Load Filter Taps" menu option. It uses the SFGetFile
dialog to get the name of a text file containing filter
coefficients, convert the contents to integer form, and
then downloads them to the hearing aid.

WDHASetFileParams - This routine is used to download
parameters to the Spectral Shaping hearing aid program.
It uses the SFGetFile dialog to get the name of a text file
containing the spectral shaping parameters, converts the
contents to integer form, then downloads them to the
hearing aid.

WDHACalEarModFile - This routine is called when the user
calibrates the ear module. It uses the SFGetFile dialog to
get the name of a text file containing ear moduie H
Tables, and converts it's contents to integer form in
memory. Then it calibrates the ear module using the TC
manager function EarModuleCalibrate. Finally, it writes
the new H Tables over the same file.

WDHAMenu.Asm
The Menu manager contains all routines associated with the

WDHA program’s menu bar.

MakeMenus - Create the Menu bar containing the accessory,
file, and hearing aid menus, and display it on the screen.

42

o

5,724,433
33 34

MenuBar - When the main event loop gets a mouseDown event
located in the menu Bar, this routine calls the appropriate
code to handle the selection.

SetProgMenu - This routine interrogates the hearing aid to
determine which program it is currently running, then
places the appropriate menu in the menu bar.

Programmer’'s Note -

As explained earlier, the WDHA program has seperate
pulldown menus defined for each program which runs on the hearing
aid, giving the options available for that particular program. It is not
difficult to add a new menu to the hearing aid program. The
following example shows the steps one would follow to add a new aid
menu (in this case 'Aid17') to the menu bar.

First of all, the constants needed for the menu must be defined
with equate statements. You must define the code returned by the
aid program when it is interrogated by the Macintosh, the identifier
for the menu itself (as required by the NewMenu toolbox function),
and the offset within the menu handles declarations where this
handle will reside (the handles are defined in a sequential block of

. memory near the end of the Menu.Asm file).

Aid17ID equ -17 . aid program id returned by interrogating the
aid.

Aid17Menu equ 17 ; Unique menu identifier
menuaidl7equ 40 ; 10*4=menuhandle offset (this is the tenth
handle)

Next you would declare the location to store the menu's handle
at the end of the menu handles declarations:

del O : Aidl7 menu handle

Next one would add code to the MakeMenus routine to create
the new menu (simply cut and paste the code which creates one of
the current menus and medify it accordingly).

You would also modify the SetProgMenu routine to handle the
new menu (once again simply replicate the code sections which
handle one of the old menus, and change the menu names
appropriately).

Finally, you would modify the MenuBar routine to handle your
new menu, If all the options contained in your menu are also in the

43

T

5,724,433
35 36

other hearing aid menus, you can call the InAidMenu procedure (as
the other menus do), otherwise you must define your own procedure
to call.

WDHADiIsk.Asm
The disk manager contains routines used to access disk files on
the Macintosh.

DiskCreate - Create a new file.

DiskRead - Read sectors from a file.

DiskWrite - Write sectors to a file.

DiskEject - Eject a disk,

DiskOpen - Open a file.

DiskClose - Close a file

DiskSetFPos - Set the position of a file's read/write mark.

DiskSetEQF - Set the location of the end of file marker for a
file.

DiskSetFInfo - Set the finder information for a file.

e

g . e

iy VP

5,724,433
37 38

Include MacTraps.D

Include ToclEquX.D

include SysEquX.D

inciude QuickEquX.D

include MDS2:WDHAPS . hdr
Include MDS2:WDHATC.har
Include MDS2:WDHAMenu.hdr

; This program controls severa! Macintosh windows which allow the user 1o
; manipulate the digital hearing aid. The Macintosh communicates with the aic

; by sending records via the SCSI port.,

H This particular file is a "standard” Macintosh style event loop

. which dequeues each event and calls the appropriate routine to handle the evant.
H Additional files contain routines associated with each control window.

; Executing the program should provide an ovarall undarstanding of the function

; of these windows, Specifically, the packages used are:

; The WDHA Paramater Settings Window Manager - in WDHAPS.Asm
; The WDHA Test/Calibrate Window Manager - in WOHATC.Asm

; In addition, the following files contain varigus ufility routinas:

H WDHAMenu.Asm - sets up the menus

; WDHASCSi.Asm - low level routines for communicating through the SCSI bus.
; WDHAFC.Asm - contains high-level routines ‘or downloading coefficient

| files to the hearing aid.

R WO HADisk.Asm - routines for deing disk access.

--------------------- Extarnal Delinitions-eceemsoecmncmoecnctaciuencnaceaaey
XDEF Start
XDEF EventLoop
XDEF Update
YXDEF What
XDEF When

XDEF EventRecard
. XDEF WWindow

XDEF Message

XDEF Whare

XDEF Modify
HE R Constant Dslinitions --secccermcmmumcieseccnaniciinnnnnes
ActiveBit equ 0 ;Bit paosition of de/activate in modify
RS S it Code Starts Here «ecccccamemcmoomcemcaiotoraineneanan
Start

bsr InitManagers ; Initialize ToolBox

bsr WDHAPSOpen ; Craate the parameter setlings window.

bsr WDHAPSHide . Don't leave it open though.

bsr WOHATCOpen , Creata the test/calibrate window.

bsr WOHATCHide : Don't leave it open though.

45

5,724,433

39
bsr MakeMenus ; Sat up the menus
EventLoop:
_SystemTask ; Give System some time
bsr WOHATCldle ; Blink the test window's caret

. FUNCTICON GetNaxtEveni(eventMask: INTEGER;
: VAR theEvent: EventRecord) : BOOLEAN

CLR -(SP) ; Clear space for result
MOVE #S0FFF -(SP) ; Allow 12 low events
PEA EventRecord ; Place to returmn resuits
_GetNextEvent ; Loak for an event
MOVE (SP)+.DO : Get result code

BEQ EventLoop ; No svent... Ksap wailing
BSR HandlsEvent ; Go handle svent

bra EventLoop : return 1o eventloep call

HandieEvent:

: Use the event number as an index into the Event tabls. Thess 12 events
: are al} the things that could spontaneously happen while the program is
; in the main loop.

MOVE What,DQ ; Get event number
ADD 00,00 ; *2 for table index
MOVE EventTanie(D0),D0 ;. Point to routine offset
JMP EventTable(DQ) ; and jump to it
EvantTable:
oCcwW OtherEvent-EventTable ; Null Event (Not used)
pCcw MouseDown-EventTabie ; Mouse Down
bDCw OtherEvent-EventTable ; Mouse Up (Not used)
ocw KeyEvent-EventTable ; Key Down
DCwW OtherEvent-EventTable ; Key Up (Not used)
DCc.w KeyEvent-EventTable ; Aulo Key
oCcw UpDate-EvantTable ; Update
pCcw OtherEvent-EventiTable ; Disk {Not used)
Dcw Activate-EvantTable ; Activate
DC.wW OtherEvent-EventTable ; Abort (Not used)
pCcw OtherEvant-EvantTable ; Network (Not used)
pcw OtharEvent-EventTable ; VO Driver (Not used}
R R] Evant ACHIONS ~vmemveemcmmmmmiciieeiaons
OtherEvent:
ris
Activate:

. An activate event is posted by the system when a window needs io be
; activated or deactivated. The information that indicates which window
. needs to be updated was returned by the NextEvent call.

bist #ActiveBit,Modify ; Activate?

beq Deactivate i No, go do Deactivate
; Bring it to the front

mova.| Message,-(sp)

4

PR P .

5,724,433
41 42

_BringToFront

; Show it
maove.| Message.-(sp}
_ShowWindow

; Select it
move.| Message,-(sp)
_SelectWindow
rts

Deactivate:
rts
Update:
; The window needs to be redrawn.

:PROCEDURE BeginUpdate (theWindow: WindowPtr);

MOVEL message,-(SP) ;. Get painter to window
_BeginUpDate ; Begin the update
move.| massage,-(sp)
bsr WOHATCIS : Was it our TC window?
tst.w (sp)+
BEQ DontTCDraw
bsr WDHATCDraw ; Draw the TC window.
bra DoneDraw

DontTCDraw:
move.! message,-(sp)
bsr WOHAPSIS : Was it our PS window?
tst.w (sp)+
BEQ DontPSOraw
bsr WOHAPSDraw : Draw the PS window.
bra DoneDraw

DontPSDraw:

DoneDraw:

:PROCEDURE EndUpdate (theWindow: WindowPtr);
MOVEL message.-(SP) ; Get pointer to window
_EndUpdate ; and end the update
rts

MoussDown:

. if the mouse button was pressed, we must detarmine where the click
: occurrec before we can do anything. Call FindWindow fo determine
; where the click was; dispalch the event according o the resuit

:FUNCTION FindWindow {thePt: Paint;
: VAR whichWindow: WindowPtr): INTEGER;

CLR -(SP) ; Space for result
MOVEL Where,-(SP) . Get mouse coordinates
PEA WWindow + Event Window
_FindWindow ; Who's got the click?
MOVE (SP)+,DO0 ; Gel region number
ADD Do,DO . *2 for indexinto table

MCVE WindowTabie(D0),D0 ; Paoint to routine offset

41

5.724.433
43

' JMP WindowTable{D0) ; Jump to routine
WindowTable:
DCW other-WindowTable ; In Desk (Not used)
DCW MenuBar-WindowTable ; !n Menu Bar
DC.wW SystamEvent-WindowT able . System Window {(Not used)
pcw Content-WindowTable ; In Content
ocwW Drag-WindowTable ; In Drag
oCcw Grow-WindowTable ; In Grow
DcwW GoAway-WindowTable ; In Go Away
Other:
rts
SystemEvent: .
; Call SystamClick to handle the desk accessory windows.
pea EventRecord
move.l wwindow,-(sp)
_SystemClick
rts
Content;
; Was it in the content of an aclive window?
cir.! -(sp)
_FrontWindow
move.! {sp)+.d1 ; Get the FrontWindow in d1
cmp.! wwindow,d1 ; Are they the same?
! . beg WasActive
: move.| wwindow,-(sp) o It wasnt
_SelectWindow ; So seiect it
bra DoneContent
WasActive:
move.| wwindow,-(sp)
bsr WDHAPSIS ; Was it our PS window?
tst.w (sp)+
bagq NotPSContent
move.} where,-{sp)
bsr WDHAPSControl . Handle the event.
bra DoneContent
NotPSContent:
move.| wwindow,-(8p) .
bsr WDHATCIS ; Was it our TC window?
tst.w (sp)+
beq NotTCContent
move.| where,-{sp)
bsr WDHATCControl ; Handle the event
bra DoneContent
NotTCContent:
DoneContent:
ris
Crag:
. The click was in the drag bar of the window. Draggit.
; DragWindow (theWindow:WindowPtr; stariPt. Point; boundsfect: Rect);
48

SRR Y e cha PR DY

5,724,433
45

MOVEL wwindow,-(SP);Pass window pointer
MOVEL where,-(SP) ;mouse cocrdinates

PEA bourd :and boundaries
_DragWindow ;Drag Window
rts
Grow:
; The click was in the grow box
NoGrow: rts
GoAway: ; Close the Window
clrb -(sp) ; make room jor a Boolean
move.l wwindow,-(sp)
move.! whera,-(3p)
_TrackGoAway . Track It
tst.h {sp)+ ; Did they stay in the box?
beq NoGoAway : if no then don't close.
JustHide:
:PROCEDURE HideWindow (theWindow: WindowPtr)
MOVE.L wwindow,-(SP) ; Pass window painter
_HideWindow ; Hide the Window
NoGoAway:
rts
KayEvent:
CLAL -(SP) ; Space for result
_FrontWindow ; Get window peinter on stack
bsr WDHATCIS : Was it our TC window?
tst.w (sp)+
beq TCNatActive
move.wmessage+2,-(Sp) ; get the char
bsr WOHATCKey ; Insert it in the aclive text box
TCNatActive:
rts

; InitManagers initializes all the ToclBox managers. You should call
; InitManagers once at the beginning of your pragram if you are using
; any of the TociBox routines.
initManagers:

pea -4(a§)

InitGraf

_InitFonts

move.} #$C0COFFFF,dO

_FlushEvenis

_initWindows

InitMenus

elr.t -{sp)

_InitDialogs

_TEinit

_InitCursor

rts

49

5.724.433
47

; WDHA header file

; this file must ba inciuded to access the data structures conlained in

: the flie WOHA.Asm
XREF Eveniloop
XREF Update
XREF EventRecard
XREF What
YREF Messags
YREF When
XREF Whaere
XREF Modily

o XREF WWindow

&0

P R L L e, o AN,

5,724,433
49 50

‘WDHAMac. txt

.macros

for WDHA program

;12127186 AME

:Dialog
Macro

Macro Dialog xpos,ypos.ixtsiring,result =
move.w{xpos},-(SP)

move.w (ypos},-(SP)

_MoveTo

pea (txtstring}’

_DrawString

pea KeyBuf

bsr GetStr

lea keybuf a0

move.w#1,-(SP}

_Pack7? ;StringToNum
mova.wd0,{result}

:DispString

:Macro

Macro DispString xpos,ypos,txistring =
move.w{xpos},-(SP)
move.w{ypos},-(SP)

_MoveTo

pea ‘{txtstring}’

_DrawString

|

:DispValue

:Macro

Macro DispValues xpes,ypos,label vaiue =
movem.| a0-a6/d0-d7,-{sp)
move.w{xpos},-(SP)
move.w{ypos},-(SP)

_MoveTo

“pea '(labei}’

:DispWValue

:Macro

_DrawString

fea KayBuf,a0

move.| {value},d0

move.w#C,-(SP) :Select NumTaString
_Pack?

pea KeyBuf

_DrawString

movem.| (sp)+,a0-a6/d0-d7
|

51

- A ¢

-y

- e

5,724,433
51 52

Macro DispWValue xpos,ypos,iabelvalue =
movem.} a0-a6/d0-d7,-(sp)
move.w{xpos},~(SP)

move.w{ypos},-(SP)

_MovaTo

pea ‘{label}’

_DrawString

lea KeyBuf,a0

move.w (value},d0

ext.] do

move.w#0,-{SP) ;Selact NumToString
_Pack?

pea KeyBut
_DrawString
movem.| (sp)+,a0-a6/d0-d7

5%

5.724,433
53 54

; WDHAMenu.Asm
. This file contains routines which create and manipulate the menus used in
; the WOHA program.

Include MacTraps.D

inciude ToolEquX.D

Include SysEqux.D

Include QuickEquX.D

Inciude MDS2:WDHAMac, txt
Include MDS2:WDHA. hdr
include MDS2:WDHAPS.hdr
include MDS2:WOHATC. hdr
Inciuge MOS2WDHAFC.hdr
Includs MDS2:WODHASCS!.hdr

xdef MakeMenus
xdef MenuHandies
xge! MenuBar

AppisMenu B 1
Aboutltem BQL 1
menuapple equ 0 ;menuhandle offset

FilaMenu == 4} 2
Quitltern [=o U
menufile equ 4 ;menuhandle offset

*; Now the aid menus. All have a 'new program’ entry, and a blank line.
NewProgitem BEU 1

AidBlank BOU 2
Aid12iD BJ .12 , program version id
Aid12Menu By 5
Setitam =@ ¥ 3

Testltem By 4
menuaidl2 equ 8 ;menuhandie offset

Aid131D EQU -13 ; program version id
Aid13Menu W 8
FCllemEQU 5

menuaid!3 aqu 12 ;menuhandle offset

Aid14ID By -14 ; program version id
Aid14Menu B 7
menuaidiad equ 16 ;menuhandle offset ‘

SS18ID e] -100
SSt15Menu BV 8

Loadltem BEU 3

menussts aqu 20

NoneMenu BEx 9
menunons aqu 24

53

REERTSVET " I

Vo dmeamy b

-

55

. Name: MaksMenus

5,724,433

. Function: MakeMenus creates and displays the menu bar,

; Input: None

; Quiput: None

MakeMenus:

.Clear menu bar
_ClearMenuBar

lea MenuHand!es,ad
;First add Apple Menu
‘Make it

cir.! -{sp)

move.w¥AppleMenu,-(sp)
pea AppisName
_NewMenu
move.l (sp)+ menuapple(ad)
[Add entries
move.l menuapple(ad),-{sp)
paa ‘About WDHA(-'
_ApoandMenu
move.| menuapple(a4),-(sp)
move.| #DRAVR',-(sp}
_AddResMenu
Insert it in the menu bar.
move.! menuappie(ad),-(sp)
move.w#0,-(sp)
_lnsertMenu

) . Now add File Menu

;Make it
elr.l -{sp)
move.w#FileMenu,-(sp)
pea ‘File’
_NewMenu
move.] (sp)+ menufile{ad)
;Add antries
move.| menufile(ad),-(sp)
pea 'Quit’
_ _AppendMenu
insert it in the manu bar.
mova.l menufile(ad),-(sp)
move. w#0, -(sp)
_InsertMenu

:Now creats the WOHA program menus.

; none
cird -(sp)
meve.w#NoneManu,-(sp)
pea 'WOHA Disconnected’
_NewMenu
move.! (sp}+,menunona(a4d)
;Add entries.
move.i menunone(as),-(sp)

ispace for function result
first menu

;apple character

;store handle

;push handle again
;push manu item

ipush handle again

Joad all drivers

;push handie again
;insert at eng

;space for function result
;second menu

;menu title

;store handle

‘push handle again

;push menu item

push bandie again
insart at end

;space for function result
;menu title
istore handle

;push handle

pea ‘New WDHA Program;(-' ;menu items.

5

56

5.724,433
57 58

_AppendMenu

o aid12
cle.l -(sp) ;space for function result
move.w#Aid1 2Manu,-(sp}
pea ‘Aid12' imanu titie
_NewMenu
move.l (sp)+,menuaid12(ad4) ;stors handle
;Add entries.
move.l menuaid12(ad),-(sp) ;push handle
pea 'New WDHA Program;(-;4 Channel Parameters;Test Calibrate’ ;menu items.
_AppendMenu

. aid13

cir.d -(sp) ;space for function result

move.w#Aid13Menu,-(sp)

pea 'Aid13’ ;meny litle

_NewMenu

move.l (sp)+ manuaid13(ad) ;store handle
;Add entries.

move.l menuaidi3d{ad),-(sp) ;push handle

pea ‘New WDHA Program;(-;4 Channel Parameters;Test Calibrate:32 Tap Filter Load’
;menu items.

_AppendMenu
; aid14
cir.l «{sp) ;space for function result
move.w#Aid14Menu,-(sp)
pea 'Aid14’ ;manu title
_NewMenu

move.! (sp)+.menuaidid(a4) ;store handie
;Add entries,

move.l menuaidi4{ad),-(sp) ;push handle

pea ‘New WDHA Program:(-;4 Channel Parameters;Test Calibrate;31 Tap Filter Load’
:menu items.

_AppendMenu

; $S158
clr.l -(sp) :space for function resuit
move.w#SS15Menu,-(sp)
pea 'SS15' ;menu title
_NawMenu
mave.l (sp)+ menussiS(ad) :store handle
;Add entries.
move.l manussiS5(a4),-(sp) ;push handfe
pea ‘New WDHA Program:(-;Parameter Load’ ;menu items.

_AppendMenu

Insert one in the menu bar since SetProgMenu dsistes one.
maove.l menunone(ad),-(sp} :push handle again
move.w#0,-(sp) ;insert at end
_InsartMenu

. Set the proper WOHA program menu

55

59

bsr
ris

SatProgMenu

; Name: SetProgMenu
. Function: This routine interrogates the hearing aid to determine which

; program it is currently running, then places the appropriats menu
: in the menu bar.

. Input: None
; Quiput: None
SetProgMenu:

5.724,433

: Close windows so that no inappropriate windows remain.

bsr
bsr

WDHAPSHids

WDHATCHide

. Delete the aid manu (whichever it is)
move.w#Aid12Menu,-(sp)

_DeleteMenu

movae.w#Aid13Menu,-(sp)

_DeleteMenu

move.w#Aid14Manu,-(sp)

_DeleatoMenu
move.w#SS15Menu,-(sp)
_DelateMenu
move.w#NaneMenu,-(sp)
_DelsteMenu

; Default to NoneMenu

lea

MenuHandles,a4
move.l menunone(ad),-(sp)

move.w#0C,-(sp)

_InsertMenu
redraw the bar
_DrawMenuBar
move.w#(,-(sp)
_HiliteMenu
; Now check what it is
clr.w -(sp)
bsr SCSlinterrogate
move.w(sp)+,d0
lea MenuHandles, a4
cmp.w #4aid121D,d0
bne NotAid12
move.l menuaidi12(ad),ald
bra AddProghMenu
NotAid12:
cmp.w #Aid13ID,dC
bne NotAid13
move.| menuaidi13(ad),ad
bra AddProgMenu
NotAid13:
cmp.w #Aid14(D,d0
bne NotAid14
move.} menuaidi4(a4),a3
bra AddProgMenu
NotAid14:
cmp.w #3S51510,40

;clear any highlighting.

:gat handie

:got handie

g6t handte

Sk

5,724,433
61

bne NotSS15

movse.l menussiS(ad),al :get handle
bra AddProgMenu
NotSS15:

move.| menunone({a4),a3
move.w#20,-(sp)
_SysBaep

AddProgMenu:
move.w #NansMenu,-(8p)
_DeleteMenu
move.l al,-(sp)
mave.w#0,-(sp)
_lnsertMenu
sredraw the bar
_DrawMenuBar
ClearReturn:
mave.w#0,-(sp) ;clear any highlighting.
_HiliteMenu
rts

. Name: MenuBar
; Function: This routine should be called when the mouse is clicked in the

: menu bar.

; input: None

. Qutput: Nana

MenuBar:

. clr.t -(sp) ;space for rasult
move.l whera,-(sp)} ;location of mouse
_MenuSeisct
mova.l (sp)+,d0 ;get resuit {menu id, item #)
swap d0 :get menu id in low word

Choicas:
cmp.w #0,d0 ‘Was it in any menu?
beq @ no menu id

cmp.w #AppleMenu,d0 ;Was it in the appie menu?
beq InAppieMenu
cmp.w #FileMenu,d0 Was it in the fite menu?
beqg InFiieMenu
cmp.w #NoneMenu,d0
beq InSSManu
cmp.w #Aid12Menu,d0
beq inAidMenu
cmp.w #Aid13Manu,d0
beq InAidMenu
cmp.w #Aid14Menu,dO
beq InAidMenu
cmp.w #SS15Menu,.d0
beq inSSMenu
@1 bra ClearReaturn

InAppleMenu:
; Getltem

=y

5,724,433

swap d0O ; get item # in low word
cmp.w #Aboutltem,d0
bne NotAbaut

. Open About dialog window.

; FUNCTION NewWindow (wStorage: Pir; boundsRect: Rect;

: title: Str2s5; visibie: BOOLEAN;

; proclD: INTEGER; behind: WindowPtr;
: goAwayFlag: BOOLEAN;

B refCon: Laongint) : WindowPtr,

SUBQ #4,SP ; Space for function resuit

CLRL -(SP) ; Storage for window (Heap)

PEA AboutBounds ; Window position

PEA ‘Abaut WDHA' ; Window title

MOVEB #255,-(SP) ; Make window visible

MOVE #dBoxProc,-(SP) . Standard document window

MOVEL #-1,-(SP) :Make il the front window

move.B #-1,-(SP} ; Window has goAway button

CLAL -(SP) ; Window refCon

_NewWindow ; Creats and draw window

lsa AboutPtr,ad

MOVE.L (SP)+,(ad) . Save handle far later

MOVEL {a4),-(SP) ; Make sura the new window is the port
(PROCEDURE SetPort (gp: GratPort)

_SatPort ; Make it the current port

move.w #0,-(sp)

_YextFant ; Make sure it's the system font

move.w#1, -(sp) ; Bold

_TextFace

DispString #20,#16 Wearable Digitat Hearing Aid Fitting Procedure V. 1.0

move.w#0,-(sp) ; Plain Text

_TextFace

DispString #200,#32,Central Institute For The Deafl
DispString #200,#48,818 South Euclid Ave.
DispString #200,2#64 St. Louis Mo. 63110
DispString #200,#80,Phona: 314-652-3200

move . w#1,-(sp) ; Bold

_TextFace

DispString #20,#96,Supported in part by:
~move.w#0, -(sp) ; Plain Text

_TextFace

DispString #40,#112,The Rebhabilitation Research And Deveicpmaent Service

DispString #40,#128,Dept. of Medicine and Surgery: Velerans Administration
; Print the big “CID"
move.w#36,-(sp)
_TextSize
move.w#17,-(sp) ; Bold+Shadow
TextFace
. DispString #44 %64 CID
; Set taxt characteristics back to normai
move.w#12,-(sp)
_TextSize
move.w#0,-(sp) ; Plain Text
_TexiFacs
; Wait for an event

358

65

5.724,433

move.| #30000FFFF,d0

_FlushEvents

EviWait:

; FUNCTION GetNextEvant(eventMask: INTEGER;

; VAR theEvent: EventRecord) : BOOLEAN
ClR -(SP) ; Clear space for result
MOVE #8000F,-(SP) » Allow 12 low evenis
PEA EventRecord ; Place 1o return results
_GetNextEvent ; Look for an event
MOVE (SP)+.00 ; Get result cods
BEQ EviWait : No event... Keep waiting

; Dispose Window

move.! AboutPtr.-(sp)

_DispasWindow
bra

NotAbout:
lea

move.wd0,-(sp)
pea DeskMName
_Getitem

: OpenDeskAcc
cir.w «{sp)
pea DeskNama
_OpenDeskAcc
maove.w(sp)+,d0

ClearReturn

MeanuHandles,a4
mave.l menuapplie(ad),-(sp)

; Lock in Apple Menu
; what item #
; got item name

; space for result
: open DeskName acc

. pop result

; get item # in low word
s it quit?
; i not forget it
; dispose of the parameter settings window
; dispase of the test/calibrate window
; leave application

; get item # in low word

bra ClearReturn
InFileManu:
swap dO
cmp.w #Quitltem,dC
bne DoneFile
bsr WDHAPSClose
bsr WODHATCClase
_ExitToSheil
DoneFile:
bra ClearReturn
InAidManu;
swap do
cmp.w #NewProgitem,d0
bne @9
bsr SetProgMenu
bra WhDone
@9
cmp.w #Setitem,d0
bne 1
bsr WOHAPSShow
bra WMDone
@1 cmp.w #Testitem,d0
bre @2
bsr WDHATCShow
bra WMDone
@2 cmp.w #FCltem,d0

59

67
bne @4
bsr WDHAFCSet
bra WMDane
@4
WMDcre bra CtearReturn
InSSMenu:
swap ¢0
cmp.w #NewProgltem,d0
bne @
bsr SetProgMenu
bra SSDone
@1 cemp.w #Loaditem,d0
bne @2
bsr WDHASetFileParams
bra SSOone
@2
S$S0cne bra

MenuHandles:

AppieName:
DeskName:

AbautPtr
AbouiBounds:

ClearReturn

------ Data
de.! 0
dc.d 0
de.{ Q
de.! 0
de.! 0
de.! L]
de.l 0
dc.b 1,$14
dch.w 16,0
de.! 0
de.w 100
de.w S0
dew 232
dc.w 472

5,724,433

; get item # in Jow ward

RBrB--evcocncmnmicnosnacanacannann

:handie to apple menu
;handle to file menu

;handle to aid12 menu
;handie to aid13 menu
;handle to aid14 menu
shandle to ss15 manu
;handle tc none menu

. A string cantaining the apple symbol
;desk accessories name

. the About dialog window pointer
» upper
; left

;. lower
. right

0

5,724,433
69

‘WDHAMeru header file

; This file must be included if any routines in WDHAMenu are used.
xra! MaksMenus
xrei MenuHandles
xre! MenuBar

bl

70

5.724,433
71 72

. file WOHAPS. Asm

include MacTraps.D

Inciuge TociEqu.D

Inciude SysEquX.D

Include QuickEquX.D

inciude SANEMags.txt
include MDS2:WDHA.har
include MDS2:WDHASCS).hdr

: WDHA Paramater Settings Window Manager

B This package contains routines to manipulate the WOHA Paramneter

; Settings window. This window contains an interface which controls the

; gain and limit of sach channel of the WOHA by ailowing the user to move

bars on a graph of Fregusncy versus dB SPL (execute the program for a batter
. understanding), this controi is referred to as the "PSGraph® in the program

; documentation. Next to this graph is a charl {the “PSChart") containing the
numeric values of sach channel's gain and limit.

; It also contains contral buttons to specify if the WDHA should be in
Hearing aid mode, if the input attenuation should be off or on, and whether

: the aid should use the probe mike or the field mike. The output attenuation

is automaticaily turned on ar off by the program, it's control being used

. as an indicator of this status.

; Wherever the documentation refers to the term “theta”, it is refering
1o the height of the lower bar of the bar graph, and wherever the documaentation
;. uses "phi®, it refars to tha haight of the upper bar.

e External Definilions---ccceccmeraaccccaciaanns

XDEF WDHAPSOpen
XOEF WDHAPSClose
XDEF WDHAPSShow
XDEF WDHAPSHIide
XDEF WOHAPSDraw
XDEF WDHAPSControi
XDEF WODHAPSIS

XDEF WDHAPSSetParam

| ammemmoeeesancanas Constant Definitions ---cecmcermcioaiinnes
CHANNELS [=e] 4 ; There are four channels

. PSG = The Parameter Settings Graph

PSGHeight EQU 120 , Graph height in pixels
PSGChanWidth EQU 20 ; each bar is PSGChanWidth pixeis wide.
PSGWidth B CHANNELS*PSGChanWidth ;, Graph width in pixels
PSGInitX B 30 ; initial X coord {local) of ul corner of graph
PSGlnitY U 20 ; Iinitigd Y coord (local) of ul corner of graph

; PSC = The Parameter Settings Chart

PSCFwidth = 8] 46 ; channel, gain and limit field width
PSCFHeight B PSGHeight/(CHANNELS+1) ; height of bex in chart
PSCWidth B 3°PSCFWwidth

PSClnitX e V) PSGInitX+PSGWidth i X coord {local) of ut comer of chart

b

73

PSCinitY B

5,724,433

PSGInity . Y coord {local) of ul corner of chart

. PS = The Parameter Seftings Window

PSInitX BQU €0
PSinity BQU 80
PSRightEQU
PSTxtSize =e ¥}

; initial X coord (global} of upper left corner
; initial Y coord (global) of upper laft corner

PSinitX+PSGWidth+PSCWidth+2'PSGInitX+140

12

; PSCt = The Control Buttons

PSCInitX e V]

PSGInitX+PSGWidth+PSCWidth+10

PSCtinitY B PSGInitY+S
PSCHFHeight ECUJ PSCFHeight
--------------------- Subroutine Declarations-----seeecnnracccnanacnes

Name: WOHAPSOpen

. Funetion: Call this routine to create and display the PS Window.

; Input: None

: Output: None

WDHAPSOpen:
movem.!|

d0-d2sa0-a6.-(sp) . save ragisters

: Set up document window.

74

; FUNCTION NewWindow (wStorage: Pir; boundsRect: Rect;
; title: Str2ss; visibie: BOOLEAN;
; proelD: INTEGER; behind: WindowPtr:
: goAwayFlag: BOOLEAN;
; refCon: Longint} : WindowPtr;
suBRQ #4,5P ; Space for function resuit
CLRL -(SP) ; Storage for window (Heap)
PEA WDHAPSBourds ; Window position
PEA ‘WDHA Parameter Settings’ ; Window title
MCVE.B #255,-(SP) : Make window visible
MCOVE #rDocProc,-(SP) ; Standard document window
MOVEL #-1,-(SP) :Make it the front window
move.B #-1,-(SP) ;. Window has goAway button
CLR.L -(SP) . Window refCon
_NewWindow ; Create and draw window
lea WDHAPSPIr,a4
MOVEL (SP)+,(ad) ; Save handle for later
MOVE.L (ad},-(SP) : Make sure the new windcw is the port

;PROCEDURE SetPort (gp: GrafPort)
_SetPort ; Maks it the current port

, Add the control buttons
bsr PSAddControls
bsr WODHAPSDraw
movem.i (sp)+.d0-d2/a0-aé . Rastore ragistars
RTS

; Name: WDHAPSClose

: Function: Call this routine ta destroy the PS Window and remove it from

; the screen.

; Input. None

; Output: None

WOHAPSClose:
movem.}

d0-d7/a0-a6,.-{sp)

; save registers

63

5,724,433
75

move.! WDHAPSPtr,-(sp)
_KillCantrols

;. Dispose Window
mave.l WOHAPSP!r,-(sp)
_DisposWindow

movem.| {sp)+,d0-d7/a0-a6 . restore registers
ris

; Name: WDHAPSShow
; Function: This routine makes the PS window visible and frontmost.
; Input: Nane
; Qutput: None
WDHAPSShow:
maveam.| d0-d7/a0-a6,-{sp) ; save registers
; Bring it ta the front
move.l WOHAPSPtr,-(sp)
_BringToFront
; Show Window
move,] WDHAPSP1r,-(sp)
_ShowWindow
move.l WDHAPSPIr,-(sp)
_SelectWindow ; So select it.
movem.| (sp)+,d0-d7/a0-a6 ; restore registers
ris

: Name: WDHAPSHide

: Function: This routine makes the PS window invisible, removing it from the

+; screen (but not destroying it).

; Input: None

; Quiput: None

WDHAPSHide:
movem.| dQ-d7/a0-a6,-(sp) ; sava registers

: Hide Window
move.| WOHAPSPtr,-(sp)
_HideWindow

movem.} (sp)+,d0-d7/a0-a6 ; restore registers
rts

; Name: WDHAPSDraw
. Function: This routine draws the PS window’s contents.

; input: None

; Qutput: None

WDHAPSDraw:
movem.] d0-d7/a0-a6,-{sp) . save registers
lea WDHAPSPtr,a4 ; Pointer on stack

MOVEL (a4),-(SP)
:PROCEDURE SetPort (gp: GrafPon)
_SetPort ; Make it the currant port
, First draw the graph
pea WOHAPSGraph

_EraseRact ; clear it
pea WDHAPSGraph
_FrameRact ; Frame it

move.w #patCr,-{sp)

o4

76

5,724,433

77 78
_PenMode ; change to Cr pant moda.
move.w#0,d4 ; count thru channels
DrawChans: ; draw each channel
cmp.w #CHANNELS d4 ; done ye1?
beg DoneDC
; Draw Theta Bar
pea ThetaPat
_PenPat ; set pen pattern to ThetaPat
move.wd4,-(sp)
bsr CalThetaRect ; Calculate theta rectangle
pea TRact
_PaintRect ; Fill with pattern
; Draw Phi Bar
pea PhiPat
_PenPat ; sat pen pattern to PhiPat

move.wd4, -(sp)
bsr CalPhiRect
pea TRect
_PaintRect ; Fill with pattern
add.w #1,d4
bra DrawChans
DoneDC:
_PenNormal ; Reset Pen o original settings
move.wi#PSTxtSize,-(sp) b
_TextSize
move.w#PSGInitX+0*PSGChanWidth+PS GChanWidth/2,-(sp)
move.w#PSGInitY +PSGHaeight+PSTxtSize,-(sp)
_MoveTo
move.w#'1°,-(sp)
_DrawChar :
move.w#PSGInitX+1"PSGChanWidth+PSGChanWidth/2,-(sp)
move.w#PSGInitY +PSGHeight+PSTxtSize,-(sp)
_MoveTo
mova.w#'2’,-(sp)
_DrawChar
move. w#PSGInitX+2*PSGChanWidth+PSGChanWidth/2,-(sp)
move.w#PSGInitY+PSGHeight+PSTxtSize,-(sp)
MaveTe
move wi#'3’,-(sp)
_DrawChar
move. w#PSGinitX+3*PSGChanWidth+PSGChanWidth/2,-{sp)
move.w#PSGInitY +PSGHeight+PSTxtSize.-(sp)
_MoveTe
move.w#'4’ -(sp)
_OrawChar
move.w#PSGinitX+(CHANNELS/2)"PSGChanWidth-25,-(sp)
. move.w#PSGInitY+PSGHeight+2°PSTx1iSize,-(sp)
_MoveTo
pea ‘Channal’
_DrawString
mova.w#PSGinitX-20,-(sp)
move. w#PSGIinitY +PSGHeight'2-PSTxtSize,-(5p}
_MoveTo

-

e

5,724,433
79

pea 'dB’

_DrawString
move.w#PSGInitX-24,-(sp)
move.w#PSGInitY +PSGHeight/2,-(sp}
_MoveTo

pea 'SPL

_DrawString

move.w#8 -(sp)

_TextSize

move. w#PSGInitX-9,-(sp)
move.wi#PSGInitY +PSGHaeight,-(3p)
_MoveTo

move w#'0' -(sp)

_DrawChar

move. wi#PSGinitX-20,-(sp)

move. Ww#PSGInitY +9,-(sp)

_MoveTe

pea 120"

_DrawString

: Now draw the chart.

_PenNarmal

pea WDHAPSChart

_FrameRact

move.w¥PSCinitX,-(sp)
move.w#PSCInitY+1*PSCFHeight,-(sp)
_MoveTa
move.wRPSClnitX+PSCWidth,-(sp})
move.w#PSCinitY+1"PSCFHeight,-(sp)
_LineTo

move.w#PSClnitX,-(sp)

move w#PS3CInitY+2°PSCFHeight,-(3p)
_MaveTo
move.w#PSCInitX+PSCWidth,-(sp)
move.w#PSCinitY+2*PSCFHeight,-(sp)
_LinaTo

move.w#PSCInitX,-{sp)
move.w#PSCinitY+3*PSCFHaeight,-(sp)
_MoveTa
_.move. Ww#PSCInitX+PSCWidth,-(sp)
move.w#PSClnitY+3°PSCFHeight,-(sp}
_LineTo

move. w#PSCinitX,-(sp)

maove. w#PSCinitY +4"PSCFHeight,-(sp)
_MoveTo

move.w #PSClnitX+PSCWidth,-(sp)
move wiPSClnitY+4*PSCFHeight,-(sp)
_LineTo
move.w#PSCinitX+PSCFWidth,-(sp)
move. . w#PSCInitY,-(sp)

_MoveTo

move.w#PSClnitX+P SCFWidth,-(sp)
move.wR#PSCInitY +PSGHeight,-(sp)
_LineTo
move.w#PSCIinitX+2°PSCFWidth,-(sp)

Ll

5.724.433
81

move.w#PSCInitY,-(sp)
_MoveTo
mova. wH#PSCinitX+2"PSCFWidth,-(sp)
move.w#PSClnitY +PSGHeight,-(sp)
_LineTo
move. w#PSCInitX+6,-(sp)
move.w#PSCinitY+PSCFHeight-6,-(sp)
_MoveTo
poa '‘Channei’
_DrawString
mava.w#PSClnitX+«PSCFWidth+11,-(sp)
mave.w#PSClnitY +PSCFHeight-6,-{sp)
_MoveTo
pea ‘Gain’
_DrawString
move.w#PSCInitX+2*PSCFWIidth+10,-{sp)
move.w #P SCInitY «PSCFHaight-&,-(sp)
_MoveTa
pea ‘Limit’
_DrawString
move.w 2CHANNELS d4 ; Now draw the chart data with PrintVal
jea Thetald,a0 . will draw the gains and fimits too
DrChartNums:
; Draw channei #
mave . w#0,-(sp) ; Column 0
move.wd4,-(sp) : Row is same as channsi
move.wd4,-{sp) ; value is channel
. bsr PrintVal
. Draw gain
move.w#1, -(sp) ; now do gain
move.wd4,-(sp) ; Row is same as channel
move.w(ad),-(sp) ; Show the theta value as gain
bsr PrintVal
; Draw limit
meve w#2,-(sp) ; now do limit
move.wd4,-(sp) ; How is same as channel
move.w2(aod},-(sp) ; Show the Phi value as limit
bsr PrintVai
_lea -4{aQ),al
sub.w #1,d4
bne DrChartNums
. Draw the cantrol buttons.
move.l WDHAPSPtr,-(sp) ; the window ptr
_DrawCaontrals
bsr WOHAPSSetParam ; update the WOHA,
movem.| {sp)+,d0-d7/a0-aé . resiore registers
its

. Name: PSAddControis
. Function: This routine adds the PS window's controls.
; Input: None
; Output: None
PSAddContrais:
movem.| d0-d7/al-a6,-(sp) ; 8ave regisiers

L

82

5.724,433
83 84

; Sat up the controis bounding rectangle.

lea TRect,a4
move.w#PSCillnitY +0*PSCtIFHeight,{ad) . stors y coord
move.w#PSCtiinitx,2(a4) ; siore x ceord
move.w #PSCtlnitY +0°PSCtIFHeight+20,4(a4d) . store y coord
move.w¥PSRight,6(a4) ; store x caord
. Push paramsters for NewControl
clr.l -{sp) . NawControl returns a handle
move.l WOHAPSPtr,-(sp) ; the window ptr
pea TRect ; the rectangla baunding the control
pea 'Hearing Aid On’ ; litle
move.b $TRUE,-(sp) ; visible
move.w#0.-(sp) ; value
move.w#C,-{sp) ; min
move.w#1,-{sp) 3 max
move.w#1,-(sp) ; check box proc id
move.l #0,-(sp) ; rafcon not used
; Call NewContral
_NewControl
lea AidControl.a3
meve.i (sp}+,(ad) ;. store the result
; Set up the controls bounding rectangle.
lea TRact, a4
move.w#PSCtiinitY + 1 "PSCiFHeight,(a4) ; store y coord
move.w#PSCtinitX,2{a4d) ; store x coord
move. w#PSCtlinitY «1°PSCtIFHeight+20,4(ad) ; store y coord
move.w #PSRight,6{a4) ; store x coord
.; Push parameters for NewControl
clr.l -{sp) ; NawControl returns a handle
move.l WDHAPSP!r,-(sp) ; the window ptr
pea TRect ; the rectangle bounding the control
pea ‘Input Attenuation’ ; title
move.b #TRUE,-(sp) : visible
move.w#0,-(sp) . value
move.w#0,-(sp) . min
move.w#1,-(sp) . max

move.w#1,-(sp)
movs.l #0,-(sp)
; Call NewControl

check box proc id
rafcon not used

_NewControi
lea IACantrol,ad
maove.l {sp)+.(ad) ; stora the resuit

; Set up the cantrols bounding rectangie.
lea TReact,a4
move.w#PSCtilnitY +2"PSCHFHeight,(a4) ; store y coord
move.w#PSCtlinitX,2(ad) , store x coord
move.w#PSCtinitY+2°PSCiIFHeight+20,4(a4) . store y coard
move.w#PSRight,6(ad) ; store x coord

. Push paramesters for NewCantrol
cir.) -{sp) . NewControl returns a handle
move.! WDHAPSPtr,-(sp) ; the windaw pir
pea TRec! ; the ractangie bounding the contral
pea ‘Qutput Attenuation’ L title
move.b #TRUE,-(sp) ; visible

¥

5,724,433
85 86

move.w#0,-(sp} ; value
move.w#0.-(sp} ; min
move.w#1,-(sp) ; max
move.w#1,-(sp) ; check box proc id
mava.! #0,-(sp) . refcon not used
; Cali NewControi
_NewContral
lea QAControl,a3
move.! (sp)+,(a3) . store the result
. Set up the controls bounding rectangle.
lea TRact,a4
move.w #PSCHlinilY +3"PSCtIFHeight,(ad) ; store y coord
move.w #PSCtlinitX,2(ad) . store x coord
move.w#PSClinitY +3"PSCtIFHeight+20,4(ad) ; store y coord
move.w#PSRight,6(a4) ; store x coord
: Push parameters for NewContro!
cir.i -{sp) : NewControl returns a handle
mova.l WDHAPSPtr,-(sp) ; the window ptr
pea TRect ; the rectangle bounding the control
pea ‘Field Miks' ; title
move.b #TRUE,-(sp) ;. visible
move.w#1,-{sp) ; make Fieid mika on as the default
move.w#0, -{sp} . min
move.w#1,-(sp) . max
move.w#2 -(5p} ; radio button proc id
move.! #0,-(sp) ; refcon not used
; Call NewCantrol
_NewControl
lea FisidCantral,a3
move.l (sp)+.(a3) ; store the resuit
: Sat up the controls bounding rectangle.
lea TRact,a4
move.w#PSCHlinitY +4*PSCiiFHaight,(a4) ; store y coard
mave. w#PSCtiInitX,2{a4d) ; store x coord
move.w#PSCHInitY +4*PSCtiFHaight+20,4(a4) ; store y cocerd
move.w#PSRight,6(a4) ; store x coord
: Push paramsters for NewControl
clr.t -(sp) ; NewContral returns a handle
_mava.l WDHAPSP1r,-(sp) ; the window ptr
pea TRect ; the rectangle bounding the control
pea ‘Probe Mike' ; title
move.b #TRUE.-(sp) . visibie
move.w#0,-(sp) : value
move. w#0,-(sp) ; min
move.w#1,-(sp) . max
move.w#2,-(sp) ; radio button proc id
mava.l #0,-{sp) ; refeon not used
. Call NewCantrol
T _NewControl
lea ProbeControl,a3
movae.l {sp)+.(a3) ; store the resuit
movem.| (sp)+,d0-d7/a0-a6
rts

69

5,724,433
87

. CalThetaRect clculates the rectangle surrounding the control bar for the
. given channel.

; Input: the channel # (a word) is passad on the stack.

; Output: the rect THect is filled.

CaiThetaRact:
movern.! d0-d7/a0-a6,-(sp)
lea TRect, a4 ; get address of TRect
move.w#PSGInitY +PSGHeight,d4 ; bottom of graph
move.wd4, 4{ad) ; store it in TRect
lea Theta0,ad . Gat theta
move.w64(sp},d3 ; Get channal number
asl.w #2,d3 M
sub.w (a3,d3.w),d4 ; compute top of bar y coord
move.wdd, (ad) ; store it in THect
move.wf4(sp),d3 ; Get channel numbar

mulu #PSGChanWidth,dd ; channel # * ChanWidth
add.w #PSGInitX,d3 ; move over

move.wd3,2(ad) . store left side
add.w #PSGChanWidth,d3 ; add wigth
move.wdJd, 6{a4) ; store right sice
pea TRec!

move.w#1 -(sp)
move.w#1, -(sp)

_insetRect ; make it a tad smaller
sub.w #1,{a4) ; not the top level though
movem.| (sp)+,d0-d7/a0-a6

move.|l (sp).2(sp) . move return address over param
tst.w (sp)+ ; get rid of paramater

rts ; and return

. CalPhiRect ciculates the rectangle surrcunding the control bar for the
; given channet.

; input: the channe! # (a word) is passed on the stack,

; Qutput: the rect TRaect is filled.

CaiPhiRect:
movem.| d0-d7/a0-a6,-{sp)}
lea TRect,a4 ; get address of TRect

move.w#PSGInitY,d4 ; top of graph
_move.wdd (a4); store it in TRect

lea Phi0,a3 ; Get Phi
move.w84(sp),d3 ; Get channe! number
asl.w #2,d3 i 4

move.w#120,d5
sub.w (a23.d3.w),dS ; compule bottom of bar y coord

add.w ds,d4

move.wd4, 4(ad) . stora it in TRect
move . w64(sp),dl : Get channel number

muiy #PSGChanWidth,d3 ; channel # * ChanWidth
add.w #PSGInitX,d3 ; move over

move.wd3,2(a4d) ;. store lelt side

add.w #PSGChanWidth,d3 ;. add width
move.wd3,6(ad) ; store right side

pea TRect

move.w#1,-(sp)

70

5,724,433
89

mave.w#1,.(sp)

_InsstRact ' ; make it a tad smalier
add.w #1 4(ad) ; not the betftom though
movem.{ (sp)+,d0-d7/a0-a6

move.l (sp).2(sp) ; move raturn address over param
tst.w {sp}+ ; get rid of parameter

ris ; and return

; Name: PrintVai

: Function: This routine prints the given value al the specified row and
; column of the PSChart,

; Input: d3 (word) = value, d4 = row, d5 = column

; Output: None

PrintVal:
movem.t d0-d7/ag-aé,-(sp) ; save registers
move.wB4{sp),d3 ; d3 = value ‘o be printed
move.w66(sp},d4 ; d4 = Row in chart
move.w68(sp),dS ; d5 = column in chart

; compute x coord
mulu #PSCFWidih,d5; column * width of each fieid
add.w #PSClnitX+24,d5 ; shift over

; compute y coord
addw #1,d4 ; add 1 to row
mulu #PSCFHeight,d4 ; * height of sach field
add.w #PSClnity-6,d4 ; shift down and than up a little

. arase whatever is there already.
lea TRact,a2 ; we'll put it in Trect
move.wd5,2{(a2)} s our x is the left x
mave.wds,6(a2) ; then computa the right
add.w #20,6(a2) ; as 20 over from the left
move.wd4,4(a2) ; aur v is the bottom y
mova.wd4,{a2) ; then compute the lop
sub.w #PSTxiSize,(a2) . as TxtSize up from bottom
pea TReact ; now erase it
_ErasaRect

; move there

move.wdS, -{sp)
move.wdd,-(sp)

-MoveTo

. convert value to siring
move.wd3,80 ; NumToString expects val in dO
lea NumBuf,a0 ; address of NumBuf in a0
move.w#0,-(SP) ; Select NumToString
_Pack?
pea NumBuf
_DrawString
movem.| {sp)+.d0-d7/a0-ab6
move.l (sp),6(sp) ; move return address over parameters
add.! #6,5p ; get rid of parametars
rts

. Name: WDHAFPSIS
; Fuaction: This routine returns a Boolean teliing whether or mot
; the given window pointer is the PS window's pointer.

Ti

5,724,433

91

: input; A window pointer {passed on the stack)

92

: Output: a werd, TRUE or FALSE (defined in WDHA hdr) returned an the stack.
. **Note: You do not have 10 push a word for the result of this routine.

WDHAPSIS:
mavam.| a4/d4,-(sp)
mave.| 8(sp).a4
move.] 12{sp),d4
cmp.| WOHAPSPtr,dé
beq iS10
move.w #FALSE,14(sp)
bra 1S20
IS10: move.w #TRUE,14(sp)
1S20: move.) a4,10(sp)
movem.i {sp)+,a4/d4
tst.w (sp)+
res

: Name: WDHAPSControl

; save registars
; get return address in a4
; got WindowP1r in d4

. Was it our window?

s ltis

; save resuit

i put return address back
; restore registers
; get rid of sxtra two bytes
. raturn

« Function: This routine should be called whanever a mousadown evant occurs
; within the contents of the PS Window. It handles the hilighting of the

; proper controi buttons, and sends the proper records to the WOHA.

; Input: The mouse location {on the stack), from the avent's where fieid.

. Qutput: None
WDODHAPSControl:
mavem.i d0-d7/a0-a6,-{sp)
move.. WOHAPSP!r,-(sp)
;PROCEDURE SetPort {gp: GrafPort)
) _SetPort
port

pea 84(sp)
_GiobalTolecal
. Was it in a contral bution?
ButtonChack:
. call FindControt
clr.w -(sp)
move.l 66(sp),-(sp)
move.l WOHAPSPtr,-(sp)

pea WhichControl
_FindContrai

tst.w (sp)+

lea WhichCantrol,a4
tst.l (ad)

beq ChanChack

. it it was in a cantroi, call TrackControl
clrw -{sp)
move.! WhichCaontroi,-(sp)
move.l 70(sp),-{sp)
move.l #0,-(sp)
_TrackControl
tst.w (sp)+

NoChan

; Was it the output Attenuation button?

lea WhichControl,a4

T

; WDHAPSP!r on stack

; Make sure it's the current

: push address of point
. convert it to the window's coords

, returns a long
; push point in local coords
. WDHAPSPtr on stack

. which one?

. pop result

; Was it in any of them?
. if not try the graph

; retums a word
. WhichControl now has the handle
; starting point

; no action proc

; did they change the button?
. if nat then leave

5,724,433
93 94

move.l OAControi,d4
cmp. (a4).d4
bne NotOA ; if not then was it the A button?

. It was the output attenuation button so adjust the bar heights.
cir.w d3 ; usa d3 as a channsi counter
lea Theta0,ad
CGloopl:
cmp.w #CHANNELS,d3
beqg InvBut
clr.w -(sp)
bsr
move.w{a3),d0 ; get Theta in d0
sub.w (sp).d0 : subtract the old GOUT from Theta
move.wd0,(a3) : store Thetla
move.w2{a3)},d1 ; get phi in d1
sub.w (sp)+,d1 : subtract the old GOUT from Phi
move.wd1,2{a3) ; store phi
lea 4(a3),ad
add.w #1,d3
bra CGloopt1

InvBut:
clr.w -(sp) ; GetCtiValue retums a word
move.] OAControl,-(sp)
_GetCtValue
move.w(sp)+,d3 ; now valus is in d3
not.w d3
andw #1.d3 ; invert the status,
move.l WhichControl,-(sp)
move.wd3.-(sp) ; sel it to the new vaiue.
_SetCtivaiue

clr.w d3 ; usa d3 as a channel counter
lea Theta0,al
CGLoopi2:
cmp.w #CHANNELS,d3
beq UDScreen
clr.w -{sp)
bsr
move.w(a3},d0 . get Theta in dO
add.w {sp},d0 ; add the new GOUT
move.wd3,-(sp) ; now clip the gain as necassary
move.wd0,-(sp)} ; the new gain
bsr ValidGain
move.w{sp)+.(a3) . store it
move.w2(a3),dl ; gat phi in d1
add.w (sp)+,d1 ; add the new GOUT to Phi
move.wd3,-(sp) ; naw ciip the limit as necessary
move.wd1,-{sp) ; the new limit
bsr ValidLimit
move.w(sp}+,2(ad) ; stora phi
lea 4(a3),a3
add.w #1,d3

13

95

5,724,433

; it not then forget it.

;. use d3 as a channel counter

bra CGloop12
NatQA:

move.! IAControl,d4

lea WhichContral,a4

cmp.l (a4),d4

bne OtherBut
: ft was the input aftenuation button sc adjust the bar heights.

clr.w d3

lea Thetal,a3
CGLoop21:

cmp.w #CHANNELS,d3

beqg invBut2

cirw -(sp)

bsr GIN

; the gain (the limit is not affected)
move.w(a3),d0
sub.w (sp)+.d0
move.wd0,(a3)

; go to the next channel

lea 4(a3},a3

add.w #1,d3

bra CGloop21t
InvBut2:

clr.w -(sp)

mova.l 1AControl,-(sp)

_GetCtiValue

mave.w(3p)+,d3

notw d3

and.w #1,d3

move.! WhichControl,-(sp)
move.wd3l,-(sp)

_SeiCtivalue

cir.w d3

lea Theta0.a3
CGloop22:

cmp.w #CHANNELS,d3

UDScreen

cir.w -(sp)

bsr

mova.w(ald),do

add.w (sp)+,d0

move.wd3,-(sp)
move.wd0,-(sp)
bsr ValidGain
move.w(sp)+,(a3)

; go 1o the next channel

lea 4{a3),al

add.w #1,d3

bra CGloop22
UDScreen

bsr WDHAPSDraw

; get theta

; subtract the oid GIN

; stora it back

; GelCtiValue retums a ward

; now value is in d3

. invert the status.

. set it to the new vaiue.

; use d3 as a channel counter

; get theta

add the new GIN
now clip the gain as necessary
the new gain

; store it

¢

97

bra NoChan

; invert the controi value
OtherBut:
cir.w -(sp)
move.! WhichCantrol,-(sp}
_GetCtiValue
move.w{sp)+,d3
not.w d3
and.w #1,d3
mave.l WhichControl,-{sp)
move.wd3,-(sp)
_SetCiiValue
;. Was it the Field button?
move.| FieidControl,d4

lea WhichControl,
cmp.l (a4).d4
bne NotField

. Ctherwise invert off the Probe mike
cir.w -(sp)
move.l ProbeControl,-(sp)
_GetCtlVaiue
move.w(sp)+,d43
not.w d3
andw #1,d3
move. ProbeControl,-(sp)
move.wd3,-{sp}

_SetCtlValus
bra NeChan
: Was it the Probe button?

NotField:
move.l ProbeControl.d4

5,724,433
98

. GetCliVaiue retums a word

; now value is in d3
; invert the status.

; set it to the new valua.

a4
. if not then forget it

; GetCtiValue retumns a word

; now value s in ¢3
; invert the status

; turn off Probe button

lea WhichControi,a4

cmp.l (ad),d4
bne NoChan

. Otherwise invert the Field mika
clr.w -(sp)
move.} FieldControl,-(sp)
_GetCtlValue
move.w(sp)+.d3
notw d3
and.w #1.d3
mova.l FialdControl,-(sp)
move.wd3,-{sp)
_SetCtiValue
bra NoChan

ChanCheck:
move.w#0,d4
lea Theta0,a4

FindChan:
cmp.w #CHANNELS d4
beq NoChan

. Is it a theta bar?

. if not then forget it

; GatCtiValue returns a word

: now value is in d3
. invert the status

: turn off Probe button

: count thru channels

; draw sach channel
: dona yet?

75

99

mave.wd4, -(sp)

bsr CalThetaRect
clr.w -(8p)

move.l 86(sp).-{sp)
pea TRect

_PtinRect

s ita

tst.w (sp)+

bne FoundTheta
phi bar?

lea 2(ad),ad
move.wd4,-(sp)
bsr CalPhiRact

clr.w -{sp)

move.l 66(sp),-(8p}
pea TRect
_PtinRect

tst.w {sp)+

bne FoundPhi

lea 2(ad), a4
addw #1,04

bra FingChan

5.724.433

100

; Caiculate theta rectangle
; make room lor result

. push mousae point

; theta rect in TRect

; Caiculate theta rectangle
. maka room for resuit
; push mouse point

; ad points 10 Theta, d4 contains the channsl number.
FoundTheta:

FTLoop:

pea ThetaPat
_Penfat
move.w{ad),d3

clr.w -(sp)
_StillDown
tst.w (sp)+
beq NoChan

: Get the point

pea TPoint
_GetMouse

. First Erase Oid Bar

move.w#patBic,-(sp)
_PsnMode
move.wd4,-(sp)

bsr CalThetaRact
pea TRect

_PaintRect

; hold onto original theta

. Make room for result

" While the button is down move the bar around, changing theta

; Is the button still down?

; If not then exit ctharwise...

; Gat mouse location

; Now change the theta parameter

move.wB4(sp),dS
subw TPoint.dS

move.wd3,{ad)
add.w d5.(a4)

;s it OK?

mova.wd4,-(sp)
move.w{ad),-(sp)

;. the vertical coordinate of start point
, original y - current y
; this will be a negative value if they move down

; restore original theta
; change theta

; ¢hannel #

; gain

bsr ValidGain

move.w(sp}+,{ad)

T

; make sure gain is in range

5,724,433
101

; Now draw the new bar
ThOrBar:
move. w#patOr,-(sp)
_PenModa
movae.wd4,-(sp)
bsr CalThetaRact
pea TRect
_PaintRect
; Now update the chart value.
cmp.w {a4),d3; is there any dilference?

beq FTloop ; If nat then don't bother
move.w#1,-(sp) ; gain column in chart
move.wd4, -(sp) ; row is channel #
add.w #1,(sp}; + 1
move.w({a4),-{sp} ; value
bsr PrintVat
bra FTloop
; ad points ta Phi, d4 contains the channel number.
FoundPhi:
pea PhiPat
_PenPat
move.w({ad4),d3 ; store old Phi

. While the button is down mova the bar around, changing theta
FPLoop:

clr.w -(sp) ; Make room for result

_StiliDown ; Is the button still down?

tst.w (sp)+

beq NoChan ; If not then exit ctherwise...
; Get the poaint

pea TPoint

_GetMouse ; Get mouss location

; First Erase Old Bar
move.w#patBic,-(sp)
_PenMods
move.wd4,-{sp)
bsr CalPhiRect

pea TRect
_PaintRect
; Now change the Phi parameter
mave.wb4{sp).d5 : the vertical cocrdinate of start point
sub.w TPoint,d5 ; onginal y - current y
; this will be a negative vaiue if they move down
move.wd3, (ad) ; restore original Phi
add.w d5,(ad) ; change Phi
s it OK? '
mave.wd4,-(sp) ; channsl #
move.w(ad),-(sp) i limit
bsr VaiidLimit ; make sure limit in range

mova.w(sp)+,{a4)
; Mcw draw the new bar
PhiDrBar:
; Now draw the new bar
move.wi#palCr,-(sp)

1

102

5,724,433
103 104

_PenMode
move.wd4,-(sp)
bsr CalPhiRect
pea TRect
_PaintRect
; Now update the chart value.
cmp.w (a4),d3; is there any diflerence?

beq FPLoop ; if not then don't bother
move.w#2,-(sp) ; limit column in chart
mave.wd4,-(sp) . row is channel #
add.w #1,(sp); + 1
move.w(ad),-(sp) ; valua
bsr PrintVai
bra FPLoop
NoChan:
_Pentormal ’
bsr WOHAPSSetParam ; update any changes mads 1o the WDHA.
movem.| {sp)+,d0-d7/a0-a8
move.l {sp)+,(3p) ; get rid of param
rts

; Name: WOHAPSSatParam
. Function: This routine sets the WDHA 1o the paramsters set in the WDHA
. window.

; imput: None
; Output: None
WDHAPSSetParam:
movem.| d0-d7/a0-a8,-(sp} . save registars
*; Fill all flelds of the paramrec except the gain/input select word.
bsr CalcGainsLimits; caiculate the gains and limits.
; Now caiculate the select waord by looking at the control buttons.
lea paramrec.a4 ; get the gain/input salect ward
mova.w16(a4d),dd ; get the gain input setect word
SPIA: ; set input attenuation bit
clr.w -(sp) ;. GetCtiValue retums a word
move.! |AControl,-(sp) ; the handie
GetCliVajue
tst.w (sp)+
SPNolA
SPDelA:
bset.! #INPUT,d4
bra SPOA
SPNolA:
belr.l #INPUT.G4
SPOA: ; set output attenuation bit
cir.w -(sp) ; GetCliValue returmns a word
move.! OAControl,-(sp) ; the handle
_GetCtiVaiue
tst.w {sp)+
SPNoOA
SPDoOA;
bset.l #QUTPUT,d4
bra SPFiald
SPNoCA:

8

105

belr.l #OUTPUT d4

SPField:

cle.w -(sp)

maovae.! FieldControl,-{sp)

_GetCliValue

tst.w (sp)+

peq SPNoFisid
SPDofieid:

bset.! #FIELD,d4

bra SPProbe
SPNofield:

belir! #FIELD,g4
SPProbe:

clr.w -{sp)
move.l ProbeControi,-(sp)
_GetCtivalue
tst.w (sp)+

beq SPNoProbe
SPDcoProhe:

bsat.l #PRCBE.d4

bra SPSendParams
SPNoProbs:

beir.l #PROBE,d4
SPSsndParams:

move.wd4,16(a4d)

; Now send the parameters o the WOHA

lea paramrec,al
bsr SetParam

5,724,433
106

; set the field mike bit
; GetCtlVaiue ratums a word
: the handle

; set the probe mike bit
; GetCtiValue retums a word
; the handle

; store the modified select word.

; now wait a little while the WOHA does it's thing.

move.t #10000,d1
SPWait:

sub.| #1,d1

bne SPWait

; Now put the WDHA in either hearing aid state or idie state depending on
. the status of the "Hearing Aid On” button.

clr.w -(sp) ; GetCtiVaiue retums a word

mova.! AidControl,-{sp) : the handle

_GetCtiVaiue

tst.w (sp)+

SPAIdOff

move.w#-1,d0 ; 9o to hearing aid mode

bra SPSetMode
SPAIdOH:

move.w#-100,4d0 . go to idle mode
SPSetMode:

jsr scsiwr ;send mode code to WDHA
SPDone:

mavem.] (sp)+,d0-d7/a0-a6 . rastore ragisters

ris

; Name: CalcGainsLimits

: Function: Compute the gains ang limits fields of the paramrec from

14

10

5,724,433
7 108

; the heights of the theta and phi bars of the bar graph, and the status of
: the attenuation cantrol buttons.

: Input: None
: Output: None

It any of the gains or limits produce an out of range value the

variable cailed "Clipped’ will have a non-zero value upon retum.

baicGainsLimtts:

movem.| a0-a6/d0-d7,-{sp)
lea Clipped,atl
clr.w (at)
lea Theta0,a4 - . thetaQ here
lea paramrec,a2 ; gain0 here
laa He,a3
move.w #CHANNELS,d6 ; loop through four channels
OCLoop:
move.w(ad),d4 ; g8t thetal (= S0)
sub.w (a3),d4 . subtract He
sub.w 8(al),d4 ; subtract Hr
sub.w #80,d4
cir.w <(sp) ; subtract GIN
bsr GIN
sub.w (sp)+.d4
clr.w +(sp} ; subtract GOUT
bsr GOUT
sub.w (sp)+,d4
; Now cailcuiate the limit
DolLimit:
move.w2{ad),d5 . ; Get height (=Sa lim) in d5
sub.w d4,d5 ; Subtract Gd
sub.w 8(a3),d5 ; subtract Hr
cirw -(sp) ; subtract GOUT
bsr GOUT
sub.w (sp)+,d5

. Now convert bath to linear.

; First the gain
ToLinear:

; but first store Gd and Ld

move.w
move. . w
lea
move.w
pea

pea
Fl2x
pea

pea
fdivx

d4,(as) ; store Gd
d5.2{a6) . store Ld
argt,al
d4,(aD) ; store gain {dB) in argl
arg! ;dB gain
argé fpdB gain
;convert from integer to extended fp
{p20dBe ;20 * log base 10 of e = B.685889638
arg4 #pdB gain
;db/fp20dbe (result in argd)
arg4
;base & axponential (db ratio in arg4)
twoex14 iscale it “2E16 ta convent it to fixed point
arg4
arg4
arg1

80

5,724,433

109
fx2i convert extended to integer
move.wargl!,{a2) . sicre the gain
move. warg1,d1 ; get the gain
cmp.w #16384.d1
bis DCDolimit
move.w#16384,(a2) ; store tha gain
tea Clipped.al
addw #£1,{(a1)
; Now the limit
DCDolLimit:
lea arg1,al
move.w d5,(al) ; store limit (dB) in arg1
pea argt ;dB limit
pea arg4 fodB limit
F12X ;convert from integer to axtended fp
pea {p20dBe ;20 * log basa 10 of e = 8.585889638
pea arg4 JipdB limit
fdivx ;db/fp20cbe (result in argd)
pea argd
fexpx ;base e exponential (db ratio in arg4)
pea arg4
pea argl
pea twoex14 ;scale it *2E16 to convent it to fixed point
pea arg4
fmuix
fx2i ;convert extended to integer
move.warg1,2{a2) ; store the limit
bpt DCFinLoop
mova. w#32767,2(a2)
; Store them in the paramrec
DCFinLocp:
lea 4{ad),ad : go to next thata/phi pair.
lea 4(a2),a2 ; go to next gain/limit pair
lea 2{a3),a3 . 90 o next He and Hr
subgq.b #1,d6
bne DClocp
movem.| {sp)+,a0-ab/d0-d7
rts
: Name: GIN

; Function: This routine returns the input gain as determined by the
; input attenuation control button, either +0 (on), or +18 {off).

. Input: None)
: Qutput: A word on the stack is filled with the result (the user pushes this)
GIN: movem.l a0-a6/d0-d7,-(sp)
. if input attenuation is an then return 0 otherwise 18
clr.w -(sp) ; make room for result
move.! 1AContral,-(sp)
_GetCtiVaiue
tst.w (sp)+
bne
move.w#18,64(sp}
bra GinDone
GinOn

31

110

5,724,433
111

movae.w#0,84(sp)

GinDore
movem.| {sp)+.a0-a6/d0-d7
rts

: Name: GOUT
: Functign: This routine returns the output gain as determined by the
output attenuation control button, sither -34 (on), or -8 (off).
; Input: None
: Output: A word on the stack is filled with the result (the user pushes this)

GOUT: movem.| a0-a6/d0-d7,-(sp)

. it output gain is on then retum -34 otherwise -9
clr.w -{sp} ; make room for result
move.i OAContral,«(sp)

_GetCtiValue

tst.w (sp}+

bre GoutOn
move.w#-3,64(sp)

bra GoutDone

GoutOn
move.w#-34,64({sp}

GoutCone
movam.| (sp)+,a0-a6/d0-d7
rts

s Name: GMAX

.; Function: This routine retums the maximum gain for the given channel.

; Input: The channel number is passed on the stack as a word (0-3).
; Qutput: The rasult is on the stack upon retum.
; *"*Mote: You do not have to make room for the resuit on the stack.
GMAX:
movem.| a0-a6/d0-d7,-(sp)
move.w#60,d0 ; hoid resuit in d0
clt.w -{sp)

bsr GIN

addw {sp)+,d0 ; add GIN
clr.w -(sp)

bsr GouT

add.w (sp)+,c0 ; add GOUT

lea He,a0

move. w84 (sp),d1 ; get channel #

asiw #1,d1 ; *2 for words
addw {(a0,d1.w),d0 ;addHe
add.w 8(a0,d1.w),d0 ; add Hr

move . wd@,64(sp) ; write the resuit over the parameter
movem.! (sp)+,a0-a6/d0-d7
rts

. Name: VaiidGain

; Function: This routine clips the given gain (bar height) as needed for the
given channel.

: Input: The channel number and gain passed on the stack as words.

; Output: The result is on top of the stack upon return. ’

; *=*Note: You do not have to make room for the result on the stack.

g4

112

5,724,433

113 114

ValidGain:

movem.| a0-a6/d0-d7,-(sp)

move.wB8{sp),d0 ; get the channel #

maove.w64(sp),d1 ; get the unciipped gain

cmp.w #2,d1 . 18 it bigger than the minimum height?

bge GainOK1

move.w#2,d1 ; make it bigger

bra VGDonre
GainOK1:

move.wd0,-(sp) ; gat GMAX

bsr GMAX

cmp.w (8p)+,d1

ble VGDone

mova.w-2(sp),d1 ; make it GMAX
VGDane:

move.wd1,66(sp)

movem.| (sp)+,a0-a6/d0-d7

move.l (sp),2(sp) ; move return address

tst.w {sp)+ , get rid of exira word

rts
; Name: LMAX

; Function: This routine returns the maximum limit for the given channel.
; Input: The channel number is passed on the stack as a word [0-3).

; Output: The result is on the stack upon return.

; ***Note: You do not have io make room for the rasult on the stack.
LMAX:

movem.| a0-a6/d0-d7,-(sp)
eir.w -{sp)

bsr GOUT
move.w{sp)+,d0 ; add GOUT

iea Hr,a0
move.wB4(sp),d1 ; get channel #

asl.w #1,d1 ; *2 for words
add.w {(a0,dt.w),dC | add Hr

move.wd0,684(sp) ; writa tha result over the parameter
movem.| (sp)+,a0-a6/d0-d7
rts

; Name: ValidLimit

; Function: This routine clips the given limit (bar height) as needed for the
given channel.

; Input: The channel number and gain passad on the stack as words.

, Qutput: The result is on top of the stack upon return.

; ***Note: You do not have to make rcom for the resuit on the stack.

ValidLimit:

movem.| a0-a6/d0-d7,-(sp)
move.wE6(sp),d0 ; get the channel #
move.wB4(sp),d1 ; get the unclipped fimit
cmp.w #2,d1 ;IS it bigger than the minimum height?
bge LimitOK1
move.w#2,d1 ; make it bigger
bra Vi Done

LimitOK1:

&3

115

move.wdd,-(sp)

bsr

cmp.w (5p)+,ad1

ble

VLDone

move . w-2{sp),dl

‘VlDone:

move.wd 1, 66(sp)
movem.!
mava.! (5g),2(sp)

tst.w
rts

WDHAPSP1r:
AidControl:
IAContral:
QACantrol:
FigldControl:

ProbeControl:

.align 2

ThetaC:DCW
Phio: DCW
Thetat:DCW
Phil: OCW
Theta2: DCW

‘Phi2: DCW

Theta3: DC.W
Phi3: OCW

paramrec:

He:

(sp)+

5,724,433
116

; get LMAX

; make it LMAX

(sp)+,a0-a6/d0-d7

; move return address
; get rid of extra word

WDHAPS data declaraligns--r----co-ememncamacanonaceoe
; align to long word boundary

oC.L
DC.L
oCL
DCL
bCcl
oC.L

00000

; WOHAPS WindowPir

; Hearing Aid On Control

; Input Attenuation Control
; Output Aftenuation

; Fiald Mike Contral

; Probe Mike Control

; align to word boundary

de.w
de.w
do.w
de.w
de.w
de.w
dc.w
de.w
de.w

do.w
de.w
de.w
de.w

16384
32787
16384
2767
16384
32767
16384
32787
4224

-100
-95
-80
-84

;WOHA parameter recorg
;channel 0 gain

:channel 0 limit

;channel 1 gain

;channel 1 limit

ichannel 2 gain

;channel 2 limit

;channel 3 gain

;channel 3 limit
gainfinput select word

ichannel 0
schannel 1
:channel 2
ichannel 3

; The He table must(!) foilow the He tabie.

Hr:

dec.w
dc.w
de.w

121
117
127

;channei 0
«channel 1
ichannel 2

&4

117

de.w

WDHAPSBounds:
oc.wW
oCcwW
DCW
pCcw

WDHAPSGraph:

WDHAPSChart:

TRect:
DC.L
pcL

TPoint: pc.L
WhichControl: DC.L

ThetaPat: pCc.B
PhiPat: 0Cc.B

NumBuf: DCB.B

arg?
arg2
arg3
argé
args
twoex14
fp20aBe

Clipped de.w

5.724,433
118

120 ;channel 3

. Bounding rect for window
PSinity
PSinitX
PSinitY +PSGHeight+PSGinitY +2°PSTx1Size+4
PSRight

; bounding rectangle for graph
PSGlnitY
PSGInitX
PSGInitY +PSGHaight
PSGInitX+PSGWidth

; bounding rectangle for chart
PSClnity
PSClnitX
PSCinitY +PSGHeight
PSCinitX+PSCWidth

0

3] ;For calculating various rectangles.

[¢] :For caiculating mouse change.

1} . A contral handle, for tamporary storags.

$AA 855,5AA, 855 5AA 855 5AA 855
$55.5AA, $55,5AA $55,8AA, 555, 5AA

64,0 ; Buffer for numbar conversion
dcb.w 8, integer buffer
dcb.w 8, ;extended floating paint butfer

8,0

8.0
dcb.w 8,0 axtsnded floaling point butfer
dcb.w 8,0 :exiended floating point buffer
dcb.w 8,0 ;extended floating point buffer
dc.w $400d,$8000,$0000,50000,50000
dcw $4002,38af9,3db22,50005,56042

0

85

5,724,433
119 120

; WDHAPS. har
. This file must be included if your program uses the
. WDHA Paramater Settings window.
XREF WDHAPSOpen
XREF WODHAPSClose
XREF WODHAPSShow
XREF WDHAPSHide
XREF WODHAPSDraw
XREF WDHAPSControl
YREF WDHAPSIS
XREF WDHAPSSelParam

b

5.724,433
121

; file WOHATC. Asm

Include MacTraps.D

Include ToolEqu.D

include SysEquX.D

Inciude QuickEquX.D

Include SANEMacs.txt
include MDS2:WOHA.hdr
Include MDS2:WDHAMac.txt
include MDS2:WDHASCSLhdr

. WOHA Test/Calibrate Window Manager

; This package contains routines 1o manipulate the WDHA Test/Calibrate
: window, which aliows you 1o do pure tons audiometry via the WOHA.

. The window contains text boxes which allow the user to change the

. parameters to the test procedure, as well as the control boxes (as in the

; paramaeter setlings window) to datermine the gain/select input word and

; the an/off status of the hearing aid.

§ ewwmmecessecnaaaaan External Definitions--sescecsseammccemcocrvennnes

XDEF WODHATCOpen
XOEF WDHATCClose
XDEF WDHATCShow
XDEF WDHATCHide
XOEF WDHATCDraw
XDEF WDHATCCantrol
XDEF WDHATCldle
XDEF WDHATCKey
XDEF WDHATCIS
XDEF WDHATCDoTest

AL EELEES Constant Definitions ceeesmovecssecoccnocacnn

; TC = The Test/Calibrate Window

TCIntX BEEU 30 ; initial X coord (giobal) of upper left corner
TClnitY U 50 ; initial Y coord (giobal) of upper lelt corner
TCRightEQU 448

TCTxtSize =0 3] 12

; TCCHl = The Control Buttons
TCCtinitX Ze V] 258
TCCtllnitY Ze 1] 15
TCCHFHeight BIJ 24

: Text Edit Box Constanis
ToneBursis EQU o©

RisaCount el 1
OnCount BEU 2
FallCount Ze ¥} 3
OffCount By 4
Frequency [=» VI
Attanuate EQU 6

37

122

5.724.433
123 124

TextBoxss ECU 7 ; There ars seven boxes

feetememareareenoaaann Subroutine Declarations.-cceaccoocmaecnaneanae
: Name: WOHATCOpen
: Function: Call this routine to create and display the TC Window.
7 input: None
; Output: None
WDHATCOpen:
movem.| d0-d2/a0-a6,-(sp) , save registers
; Sat up document window,
: FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rsct;
: title: Str255; visibia: BOOLEAN;
prociD: INTEGER; behind: WindowPtr:
: goAwayFiag: BOOLEAN;
; retCon: Longint) : WindowPtr;

suUBQ #4,SP ; Space for function resuit
CLARL -{SP) ;. Storage for window (Heap)
PEA WDHATCBounds ;. Window position
PEA 'WDHA Test/Caiibrate' ; Window litla
MOVESB #255,-{SP) + Make window visible
MOVE #rDocProc,-{SP) ; Standard documant window
MOVEL #-1,-(SP) ;Make 4 the front windaw
move.B #-1,-(SP) ; Window has goAway bution
CLR.L -(SP) ; Window refCon
_NewWindow ; Create and draw window
lea WOHATCP1r, a4
MOVE.L (SP})+,(a4) ; Save handle for later
MOVEL (a4),-(SP) ; Make sure the new window is the part
“PROCEDURE SetPart (gp: GrafPort)
_SetPaort . Make it the current port
. Add the text boxes.
bsr TCAddBoxes
; Add the control buttons.
bsr TCAddCantrols
; Draw the content region
bsr WOHATCOraw
movem.} {sp}+.d0-d2/a0-a6 ; Restore registers
RTS

; Nams: WOHATCClase
. Function: Call this routine to destroy the TC Window and removae it from
: the screen.
; input: None
, Quiput: Nane
WDHATCClose:
movem.} d0-d7/a0-a6,-(sp) . save registers
move.! WDHATCPYr,-(sp)
_KiliControls
; Disposa Window
move.! WOHATCP!r,-(sp)
_DisposWindow
movem.! {sp)+,60-d7/a0-aé . restora registers
rts

58

5,724,433
125 126

. Name: WOHATCShew
: Function: This routine makes the TC window visibia and frentmost.
; Input: None
;. Cutput: None
WDHATCShow:
movem.| dQ-d7/a0-a6,-(sp) . save ragisters
; Bring it to the front
movea.! WOHATCPYr,-(sp)
_BringToFront
; Show Window
move.l WDHATCPtr.-(sp)
_ShowWindow
move.l WDHATCPIr,-(sp)
_SalectWindow
movem.| {sp)+.d0-d7/a0-a6 ; restore registars
s

; Name: WDHATCHide
; Function: This routine makes the TC window invisible, removing it from the
;. screen {but not dastroying it).
: input: Nene
; Output: None
WDHATCHide:
mavam.] d0-d7/a0-a6,-(sp) . Save registers
; Hide Windaw
move.| WDHATCPtr,-(sp)
_HideWindow
movem.i (sp)+,d0-d7/a0-a6 , restore registaers
rts

; Name: WDHATCDraw
; Function: This routine draws the TC window's contents.

; Input: Nene

; Output: None

WDHATCDOraw:
mavem.| d0-d7/a0-a6,-(sp) ; save registers
iea WOHATCPYr,a4 ; Painter on stack

MOVEL (ad},-(SP)
;PROCEDURE SetPort (gp: GrafPort)
_SetPon ; Make it the current port
. Draw the text buttans.
bsr TCDrawBoxes
. Draw the control buttons.
move.l WDOHATCPtr,-(sp) ; the window ptr
_DrawControis
movem.! (sp)+,d0-d7/a0-a6 ; restore registers
rts

; Name: TCAddContrals
: Eunction; This routine adds the TC window's controls.
; Input: None
; Qutput: None
TCAddControls:
movem.| do-d7/aD-a8,-(sp) . save registers

£9

5.724.433
127 128

; Set up the controls bounding rectangle.

lea TRect,a4
move.w#TCCtlnitY +0*TCClUFHeight,(ad) ; store y coord
move.w#TCCtlInitX,2{a4d) ; stors x coord
move. wETCCHinitY+0* TCClIFHeight+20,4(ad) ; store y coord
move. w#TCRight,6(a4d) ; store x coord

; Push parameters for NewConirol
cird -(sp) ; NewControl returns a handle
move.! WDHATCPtr,-{sp) ; the window ptr
pea TRect ; the ractangle bounding the control
pea ‘Hearing Aid On’ ; litle
move.b #TRUE,-(sp) ; visible
move.w#0,-(sp) ; value
move.w#0,-(sp) min
move.w#1,-(sp) ; max
move.w#1,-{sp) ; check box proc id
move.! #0,-(sp) ; refcon not used

. Call NewControl
_NewControl
lea AidControl,a3
move.! (sp}+.(a3) ; store the resuit

. Set up the controis bounding rectangie.
lea TRect, a4
mave.w#TCCinitY+1*TCCtIFHaight, (a4) . store y coord
move.w#TCCtlnitX,2(ad) ; Stara x coard
move.w2TCCtlnitY+1*TCCtIFHeight+20,4(ad) ; store y coord
move. w#TCRight,6(ad) ; store x coord

. Push parameters for NewControl

) cir.d -{sp) : NewControl returns a handle

move.l WDHATCPtr,-(sp) ; the window ptr
pea TRect ; the ractangle bounding tha controi
pea ‘Input Attenuation’ ; title
move.b #TRUE,-(sp) ; visible
move.w#0,-(sp) ; value
move.w#0,-(sp) , min
move.w#1,+(sp) ; max
move.w#1,-(3p) ; check box proc id
move.l #0,-(sp) . refcon not used

; Call NewControt
_NewControl
lea IACantrol,ad
move.! (sp)+.(a3} ; store the result

; Set up the controls bounding rectangie.
Jea TRect a4
move. w#TCCtinitY+2°TCCHIF Height, (ad) . store y coord
move.w#TCCtlinitX,2(a4) ; store x coord
move. w#TCCHInitY+2*TCCHIFHeight+20,4(a4) ; store y coerd
move.w#TCRight,6(a4) ; store x coord

; Push paramaters for NewControi
cir.l -{sp) : NewControl returns a handie
move.l WOHATCP!r,-(sp) . the window ptr
pea TRect ; the rectangle bounding the controf
pea ‘Output Attenuation” ; title
move.b #TRUE,-(sp) . visible

90

5,724,433

129 130
move.w#0,-(sp) ; value
move.w#0,-(sp) . ; min
move.w#1,-(5p) : max
move.w#1,-(sp) ; check box proc id
move.l #0,-(sp) . refcon nat used
; Call NewContrai
_NewCanirol
lea OAControi,al
move.l (sp)+.[ad) ; store the resuit
; Set up the conrtrols bounding rectangte.
LY TReact,ad
move. weTCCHinitY +3°TCCUFHaight,(a4) ; stora y coord
move, w#TCCtnitX,2(ad) ; store x coord
move.w2TCClinitY+3*TCCtiFHaight+20,4{ad) ; store y coord
move.w#TCRight,6(a4) ; stare x coord
: Push parameters for NewCantrol
clr.l -(sp) ; NewControl returns a handle
mova.l WDHATCPtr,~(sp) ; the window ptr
pea TRect ; the rectangle bounding the control
pea ‘Field Mike' ; title
mave.b #TRUE,-(sp) ; visibie .
move.w#1,-(sp) . make Field miks on as the default
move.w#0,-(sp} ; min
move.w#1,-(sp) ; max
move.w#2,-(sp) ; radio button prac id
move.l #0,-(3p) ; rafcon not used
; Cail NewControl
_NewControl
iea FieldControi,a3
move.! (sp)+,(a3) . store the result
; Set up the controis bounding rectangle.
lea TRect, a4
mave.w#TCCtinitY+4*TCCtiIFHeight,{a4) ; store y ccord
move.w#TCCilinitX,2(a4) ; store x coord
move.w#TCCUInitY+4*TCCtIFHeight+20,4(ad) ; store y coord
mova.w#TCRight,6(ad) ; store x coord
; Push paramaters {for NewControi
clr.l -(sp) . NewContral returns a handle
_move.l WOHATCP!r,-(sp) ; the window pir
pea TRect ; the rectangle bounding the control
pea ‘Probe Mike' ; title
move.b #TAUE,-(sp) . visible
move. w#0,-(sp) . vaiue
mova.w#0,-(sp) . min
mave.w#1,-{sp) . max
move.w#2, -(sp) ; radio button proc id
move.! #0,-(sp) ; refcon not used
; Call NewCentrol
_NewContro!
lea ProbeControl,a3
move.l (sp)+,(ad} ; store the result
; Set up the controls bounding rectangie.
lea TRect,a4

move weTCCtlnitY+S*TCCtiFHeight, (a4} ; store y coord

i

131

mave. w#TCCUInitX 2(ad)

5.724.433

132

; store x coord

move.w#TCCHInitY+5° TCCtHiFHeight+24,4(a4) ; store y coord

move. w#TCClInitX+40,6(a4d)
; Push paramsters for NewControl

. store x coord

clr.l -(sp) : NewControl returns a handla
move.l WOHATCP1r,-(sp) ; the window ptr
pea TRect . the rectangia bounding the contral
pea ‘Start’ ; title
move.b #TRUE,-(sp) ; vigibie
mova.w#0,-(sp) ; value
move.w#0, -{sp) ; min
move. w#Q,-(sp) . max
move.w#0,-{sp) ; simple button proc id
move.l #0,-(sp) ; refcon not used
; Call NewCaontrol
_NewCantrol
lea StartControl,a3
move.l (sp)+,{a3) ; store the result
mavem.| (sp}+,d0-d7/a0-ab
rts
TCAddBoxes:
movem.| d0-d7/a0-a6,-(sp)
lea TextHandles,ad
lea TextRects,ad
move.w#ToneBursts,d4
TCABLoop:
cmp.w #TextBoxes,d4
TCABDone
; TENew
; Get Deastination Rect in TRect
lea TRect,a2

move.] (a4},{a2)
move.l 4{ad),4(a2)
it a little smaller

pea TRect
move.w#1,-{sp)
move.w#1,-(sp)

; Make

_lInsetRact
; Call TENew

elr.d -(sp)

pea TRect

pea TRect

_TENew

move.! (sp)+.(ad)+

lea 8(a4),a4

add.w #1.d4

. bra TCABLoop

TCABDone:

jea TextHandles,a4
; Default Tone Burst Is 3

pea '3

add.i #1,(sp)

mova.l #1,-{sp)

92

; make room for handle result
. dest rect
; view rect

; incorparate the text
; move past the length
; t's 1 character long

133

mova.! (ad)+,-(sp)

_TEinsert

; Default Risa Tima is 309
pea ‘309
add.| #1,(sp)

move.! #3,-(sp)
move.l {a4)+,-(sp)

_TEinsart

; Default Signal On is 2455
pea ‘2455
add.! #1,(sp)

move.! #4,-(sp)
move.l (ad)+,-(sp)

_TEInsert

; Default Fall Time is 309
pea ‘309’
add.l #1,(sp)

move.l #3,-(sp)
move.l (a4d)+,-(sp)

_TEinsert

; Dafault Signal Off is 3069
pea '3069'
add.l #1,(sp)

move,| #4,-(sp)
move.| (a4)+,-(sp)

_TEinsert

; Defauit Frequency s 2000
pea ‘2000'
add.| #1,(sp)

move.| #4 .(sp)
move.l (a4)+,-(sp)

_TEinsert

. Dafault Attenuation is 20
pea 20
add.! #1.(sp}

move.l #2,-(sp)
mave.l (ad)+,-(sp)
_TEinsert

5,724,433
134

; incorporate the text
; move past the langth
; It's 3 characters long

; incorporate the text
; move past the langth
; I's 4 characters fong

; incorporate the text
; move past the length
; 's 3 characters long

. incorporate the text
; move past the length
; it's 4 characters long

; incorparata the text
; move past the length
. t's 4 characters long

; incorporats the text
; move past the length
. It's 2 characters long

movem.| {sp)+,d0-d7/a0-a6

ris

. Name: WDHATCldle

. Function: This routine blinks the caret of the active text box, It should be
; called each time through your main event locp.

; Input: None

; Qutput: Nane

WDHATCldla:
movem.| a0-aé/d0-d7,-(sp)
lea TextHandles,ad
move.wWActive,d4 ; which one is active?
bmi TCINoneActive ; -1 means none
aslw #2,d4 ; *4 for long offset

move.l (ad,dd.w),-(sp)

_TEIdls

g3

5,724,433
135 136

TCINoneActive:
movem.| {sp)+,a0-a6/d0-d7
rs

; Name:WDHATCKey

. Function: Call WOHATCKey when the TC window is active and a keypress
. avent is active.

. Input: The char (from the avent's message field) as a word.

, Output: None

WOHATCKey:
movem.| a0-a6/d0-d7,-(sp)
lea TextHandies, a4
move.wWActive,d4 ; which one is active?
bmi TCKNoneActive ; -1 means none
aslw #2.44 . *4 for Jong ofiset
move.w84(sp),-{sp) ; push the char
move.l {ad4,dd.w),-(sp)
_TEKsy

TCKNconeActive:
movem.| (sp)+,a0-a6/d0-d7

. remcove parameter from stack
move.l (sp).2{sp) ; mave return addrass
clr.w (sp)+ , remove extra space
rts

; Name: WOHATCIS

; Function: This routine returns a Boclean telling whather or not

; the given window pointer is the TC window's pointer.

. Input: A window pointer (passed on the stack)

; Quiput: a word, TRUE or FALSE (defined in WOHA hdr) ratumed on the stack.
; *"Note: You do not hava to push a werd for the result of this routine.
WDHATCIS:

N

movem.| ad/d4,-(sp) , save registers
mave.| 8(sp),ad . get return address in a4
move.| 12(sp).d4 ; get WindowPtr in d4
cmp.| WOHATCPtr,d4 ; Was it our window?
beq 1S10 s tis
move.w #FALSE, 14(sp) ; save result
bra 1S20

1S10:
move.w $TRUE,14{sp)

1520:
move.| ad.10(sp) . put return address back
movem.| (sp)+.ad/d4 , restore registers
tst.w (sp)+ ; get rid of extra two bytes
rts ; return

; Name: WOHATCControl

; Function: This routine should be cailed whenever a mousedown event occurs
; within the contents of the TC Window. it handles the hilighting of the

. proper contral buttons, and sands the proper records 10 the WDHA,

. Input: The mause location (on the stack), from the event's where field.

, Qutput: None

WDHATCControi:

a1

137

movem.|
mave.! WDHATCPtr,-{sp)
\PROCEDURE SetPort {gp: GrafPor)

_SetPort
port
pea 64(sp}
_GicbalTolLocal
. Was it in a control button?
ButtonCheck:
; call FindCantrol
clr.w -(sp)

move.| 66(sp),-{sp)
mave.! WDHATCP!r,-(sp)

pea WhichCantrol
_FindControl

tst.w (sp)+

lea whichCantrol,ad
tst.! {ad)

beg TBCheck

; it it was in a control, call TrackControl
cir.w -(sp)
maove.. WhichControl,-{sp)
move.l 70(sp).-(3p)
move.! #0,-(sp)

_TrackControl
ist.w (sp)+
beq

' ; Was it the Start Button?
move,l StartControi,d4

Isa WhichCantrof, a4
cmp.! (a4),d4
bne InvControf
bsr WDHATCDoTest
bra NoChan
. invert the controi value
tnvControl:
cle.w -(sp)
move.l WhichControl,-(sp}
T _GetClUValue
move.w(sp)+.d3
notw d3
andw #1,d3

move.l WhichCantrol,-{sp)
mave.wd3,-(sp)
_SetCllValue

; Was it the Field button?
move.| FieldControl,d4

lea WhichControl,a4
cmp.l (a4),d4
bne NotField

; Otherwise invert the Probe mike
clr.w -(sp)
move.! ProbeControi,-(sp)

d0-d7/a0-a6,-(sp)

5.724,433

138

; WOHATCP!r on stack
; Make sure it's the current

; push address of paint
; convart it 1o the window's caords

; retums a long
; push point in local coords
; WOHATCPYr on stack
; which one?
; pop result

; Was it in any of them?
; il not try the text boxes

; returns a word

. WhichContrsl now has the handle
. starting point

; no action proc

; did they change the button?
; it not then leave

; if not then forget it
, otherwise do the test
; and ieave

; GetCtiValua returns a word

; now value is in d3
. invert the status

. se! button

1 it not then forget it

; GetCtiVaiue retums a word

139

_GetCtiValue
move.w{sp)+,d3

not.w d3

andw #1.d3

move.l ProbeControl,-(sp)
mova.wd3,-(5p)

5,724,433

_SeiCiiValue
bra NoChan
; Was it the Probe button?
NotField:
move.l ProbeControl,d4
fea WhichControl, a4
cmp.l (a4),d4
bne NoChan
; Otherwise invert the Field mike
clr.w -{sp)
move.! FieldControl,-(sp)
_GatCtiValue
move.w(sp)+,d3
not.w d3
andw #1,d3

move.| FieidControl,-(sp)
move.wdd,-{sp)

_SetCtivaiue
bra NoChan
TBCheck:

lea TextRects,ad

move.w#ToneBursts,d4
*TBCLoop:

cmp.w #TextBoxes,d4

beq NoChan

clr.w -{sp)

move.l 6B(sp),-(sp)
move.! a4,-(sp)

_PtinRect
tst.w (sp)+
bne TBFound
lea 8(ad),ad
add.w #1,d4
bra TBCLoop
T8Found:
; Deactivate old active box
fea TextHandles, a3
lea WActive, a4
move.w(ad),d3
bmi TBNoneActive

asi.w #2,d3

move.! (a3,d3.w),-(sp)
. _TEDeactivate

TBNoneActive

move.wd4,(as)

asi.w #2,d4

move.| {a3,d4.w),-{sp)
_TEActivate

96

+

.

+

140

; now valua is in 43

; invert the status

: turn off Probe button

; it not then forget it

GetCtiValue raturns a word

i now value is in 43

, invert the status

; turn off Probe button

make room for rasuft.

, push the mousse poaint.

'

; the text boxes rectangle.
; is the paint inside.
It so we've found the right one.

; Otherwise move !0 next rect.

; increment the counter

: Get old active ane

i 4 for long words

. store new active one
. counter * 4 since long wards.

; push the TEHandle

5,724,433

141
move.l 84{sp}.-(sp) ; push the paint
clr.w -(sp) ; don't extend
move.! (a3,d4.w),-{sp) : push the TEHandle
_TEC!ick
NoChan:
~PenNormal
movem.| (sp)+.d0-d7/a0-a6
move.l (sp)+.(sp) ; get rid of param
rts

; Name: TCDrawBoxes
: Function: TCDrawBoxas draws the lax! box portion of the TC window,
; including the headings and the text boxes themseives.

: Input: Nons
; Qutput: None
TCDrawBoxes:
movem.| d0-d7/a0-a6,-(sp)
pea ERect , erase the input particn of the window
_EraseRect
lea TextRects,ad
lea TextHandles,a3
move. w#TCCtlnitY+16,d3 ; initial y coord
DispString #10,d3,Tone burst count?
pea 0(ad)
FrameRect
ped ERect
move.l 0(a3),-(sp)
_TEUpdate
addw #20,d3 ; move down
DispString #10,d3,Risa time sample count?
pea B(a4)
_FrameRact
pea ERect
move.l 4{a3),-(sp)
_TEUpdata
add.w #20,d3 ; move down
DispString #10,d3,Signal on sample count?
pea 16(a4)
_FrameRect
pea ERect
move.! 8({a3),-(sp)
_TEUpdate
add.w #20,d3 , move down
DispString #10,d3,Fall time sampla count?
poa 24(ad)
_FrameRect
pea ERect
meve.l 12{al),-(sp)
_TEUpdate
add.w #20,d3 ; move down
DispString #10,03,Signal off sample count?
pea J2(a4)
_FrameRact
pea ERect

142

5.724.433
143 144

move.l 16(a3),-(sp)

_TEUpdats

add.w #20,d3 ; move down
DispString #10,d3,Frequency?

pea 4C{a4)

_FramaRect

pea ERect

move.l 20(a3).-{sp)

_TEUpdate

add.w #20,d3 , move down
DispString #10,d3,Atten re max out (4B)?
pea 48(a4d)

_FrameRect

pea ERect

move.l 24(al),-(sp)

_TEUpcats

addw #20,d3 , move down
DispValue #10,d3,Power a PDecimal
pea

_DrawString

lea KeyBuf,a0

move.! PFract,d0

move.w#0,-(SP) :Select NumToString
_Pack?

pea KeyBuf

_DrawString

movem.| {sp)+,d0-d7/a0-aé

rts

; Name: WDHATCDoTest

. Function: WOHATCDoTast fills the paramrac with tha proper vaiues
. initiates the WOHA test by sending the paramrec oul via the routine
; wahatest.

. Input: None
: Cutput: None
WDHATCDoTest
moavem.| d0-d7/a0-a6,.-(sp) . Save registers
lea paramrec,a4d ; gat the gain/input select word
: generate the gainvinput select word
move.w14({a4d},d4 ; gel the gain input select word in dC
TClA: ; set input attenuation bit
clr.w -(sp) ; GetCtlValue returns a word
mave.| |AControl,-(sp) ; the handle
_GetCtivValue
tst.w (sp)+
beq TCNolA
TCDolA:
bset.l #INPUT, d4
bra TCOA
TCNalA:
belr. #INPUT,d4
TCOA: ; set output attenuation bit
cir.w -(sp) ; GetCliValue returns a word
move.! OACantrol,-(sp) ; the handle

9

5,724,433

99

146

145
_GetCtiValue
tst.w (sp)+
TCNoOA
TCDeOA:
bset.i #OUTPUT,d4
bra TCField
TCNeQOA:
beirl #OUTPUT.d4
TCField: ; set the field mike bit
cir.w -(sp) : GetCtlValue retumns a word
move.l FieldControl,-{sp) ; the handle
_GetCtiValue
tst.w (sp)+
beq TCNoFieid
TCDoField:
bset.! #FIELD,d4
bra TCProbe
TCNoFisid:
belr.l #FIELD,.d4
TCProbe: ; set the probe mike bit
cir.w -{sp) ; GetCtlValua retums a word
move.l ProbeCaontroi,-(sp} ; the handle
_GetCliValue
tst.w (Sp)+
beq TCNcProbe
TCDcProbe:
bset.| #PROBE.d4
bra TCSendParams
* TCNoProbe:
belr.l #PROBE.d4
TCSendParams:
move.wd4,14(a4) ; store the modified gain/input selact word.
lea paramrec,a0
bsr TCCviBoxes
bsr wdhatest
lea argl,ad
mova.l d6,(ad) ; put MS in arg?
pea arg!
. pea arg2
fL2x ; convert MS to extended in arg2
mave.l d7,(ad) ; put SMS in arg1
pea argl
pea arg3
nax ; convert SMS te extended in arg3
move.! #8388608,{a4d) ; 223
pea argt
pea argd4
fL2x ; convert 2°23 to extended in arg4
pea arg4
pea arg2
tdivx ; divide MS by 2423 to move decimal paint
pea arg4
pea arg3

5.724.433

147
fdivx . divide SMS by 2423 to move decimal point
pea two
pea argl
fdivx ; SMS/2
pea arg2
pea arg2
fmutx ; MS~2
poa arg2
pea argld
fsubx ; E in argd
lea argl,a0
move.! #4342944,(a0)
pea arg?
pea arg2
fLax ; gat 1000000°10/tog base e of 10 in arg2
pea thousand
pea arg2
fdivx ; get three decimal piaces
paa thousand
pea arg2
fdivx ; now six decimal placas
pea arg3
finx ; take log base 8 of E
pea arg2
pea arg3
fmulx ; now Powar = {10 * log basa e of E)/{log base e of 10) in arg3
pea arg3
pea arg2
fx2x ; copy argd (Pawer) to arg2
pea arg2
ftintx . Truncate resutt
pea arg2
pea arg3
fsubx ; Now integer part in arg2, fractional par in argd
pea thousand
pea argld
frulx , get thrae decimal places
pea thousand
pea argd
“fmulx . now six decimal placas
pea arg2
pea arg!
fx2l . convert decimal part fo long integer
lea PDecimal,a0
move.l argl,(al)
pea argld
pea argt
fx2l . convert fractional part to long integer

lea PFract,at
move.l argt,(al)

bpt PResuit
tst.| (a0)
beq PResult
neg.| (a1)

100

5,724,433

149 150

; Print Rasult
PResult: .

bsr WDHATCDraw
. Now put the WDHA in either hearing aid state or idle state

cir.w -(sp) ; GetCtiValue retums a word

move.l AidControl,-{sp) ; the handie

_GetCtiiValue

tst.w (sp)+

TCAIdOff

move.w#-1,d0 1 g0 to hearing aid mode

bra TCSetMode
TCAIdOff:

move.w#-100,d0 1 go 1o idls mode
TCSetMode:

jsr scsiwr ;send mode code to WDHA

movem.| (sp)+,d0-d7/a0-ab ; restore registers

rts

; Name: TCCviBoxes

; Function: TCCviBoxes actually does the work of filling the paramrec by
. converting the text of the taxt boxes 10 their appropriate values, and by
; calculating the sine and cosine factors from the specified frequency.

; Input: None

; Output: None

TCCvitBoxes:

maovem.! d0-d7/a0-a6,-(sp)

lea TextHandles,ad

move.wi#ToneBursts,d4

"TCCBLoop:

cmp.w #TextBoxaes,d4

beq TCCBDane

move.wd4,d5

asl.w #2,d5 ;"4 for langs

move.! (ad4,d5.w),a0 ; get the text handle

_Hlock ; Lock the handle

move.l (a0),a2 ; Derafarence the handle
move.w60(a2),d6 i get telength

lea NumBuf.a6

move.b d6,(as) ; store the length of the string
-etr.l -(sp) ; maka room for the result.
move.|l al,-(sp) : get the taxt

_TEGstText

move.l (sp)+.ad ;getitin a3

move.! a3,a0

_HLock ; lock the handie

mova.l (a0),ad s Derefarence the handle, move src in a0
lea NumBufT,a1 ; Dastination is NumBufT
move.wdé,d0 ; BlockMove expects length in dC
axtl do ; expacts a long
_BlockMave

lea NumBut,a0

move.w#1,-(SP)

_Pack7 ; StringToNum puts result in d0
lea offsets,al ’

1o}

5,724,433
151 152

move.n {a1,d4 w),d1 ; gel offset in paramrec of this entry

ext.w d1 ; maka it a worg,
lea paramrac,a0 ; get paramrec base address
move.wd0,{a0,d1.w) ; store ths vaive.
move.} a3, ad ; Uniock the text handle
_HUniock
move.l (a4 d5.w),a0 ; Unlock the TEHandle
_Huniock
add.w #1,d4 1 go 10 next box.
bra TCCBLoop
TCCBDone:
. Now compute the slcpe delta vaiues which are 16384/sample count
lea paramrec,ad
move.l #16384,d0
move.w2{ad) d1 , first do the rise time siope deita
beq RTSZero
divu d1,d0
move.wd0,4(a4)
bra FTSDeita
RTSZero:
move. w#S7FFF 4{ad}
FTSDela:
move.[#18384,d0
move.wB(a4),di ; now do the fall time slope delta
beq FT5Zaro
divu d1,do
mave.wd0,10{a4d)
bra TCCaleTrig
‘FTSZero:
mave. W#S7FFF.10(a4)
TCCalcTrig:

; Now send the parameters to the WOHA
move.wFreq,d0

lea argi.at
move.wd0,{a1)
pea argt
pea argd ; arg3 will hold fp frequency
Fi2X ;convert from integer to extended fp
. Compute burst amplitude
move.w Atten,do
opl AttenOK
clr.w do
AttenOK:
neg.w do
lea arg1,a0
move.w do,(a0) ; store Attan from max output (dB) in arg1
pea argi B gain
pea argé :fpdB gain
Fli2x ;convert from integer to extended fp
pea fp20cBe ;20 * log base 10 of e = 8.685889638
pea argé ApcB gain
{divx :dbifp20dbe (result in arg4)
pea arg4
fexpx ;base e expanential (db ratio in arg4)

foZ

153

pea twoax14

5,724,433
154

;scale it *2E14 1o convert it 1o fixed point

pea arg4

fmuix

pea arg4

pea argl

fx2i ;convert extended 1o integar
isa paramrec,a4

move.warg!,20{ad)
. compute sine and cosine faciors
. first get 2'pi*lMs in argS

pea argd
pea args
fx2x
pea twopi
pea args
tmulx
pea {p12277
pea args
fdivx

. Now get cos factor
pea args
pea cosreg
fx2x
pea casreg
fcosx

pea twoex15
pea cosreg

frulx

pea cosreg
pea arg1
fx2i

lea paramrec,.a4
mave.warg1,16{a4)

. Now do sine
pea args
pea sinreg
fx2x
pea sinreg
fsinx
‘pea {p1p95S
pea sinreg
fmulx

pea twoex14
pea sinreg

{fmuix

pea sinreg

pea arg2

fx2i

lea paramrec,ad
move.warg2,18(a4)
movem.|

ris

[EETPRRSESN WDHATC data

. store the burst factor

;frequency

;move arg3 to argS (frequency)
2 pi

;multiply 2 pi times [(result in argS5)
. ;sampling frequency is 12277 Hz

.divide by fs {resuilt in argS)

;move argS 1o cosreg

:také cosine of cosreg
;2818

;multiply by 2415

;convert extended io inleger

;store cosine factor

;move args to sinreg

stake sine of sinreg
:1.95

:multiply by 1.95
;2rte

imultiply by 2414

;convert extended to integer

spush sine factor
(sp)+.d0-d7/a0-aé

dOCIAration S - v creeemcsmssmenecrancscancan

/103

155
WOHATCPr: DCL
AidControi: DCL
lAControl: DC.L
CAControl; DCL
FiesldContrel: DCL
ProbeControl: DCL
StartControl: DCL

5.724,433
156

1] ; WDHATC WindawP?r

0 ; Hearing Aid On Control

[} ; Input Alttenuation Cantrol
(v} ; Quiput Afttenuation

o] . Fieid Mike Control

0 : Probe Mike Control

0 ; Start Button Cantrol

; Which Text Edit Recard is activa?

WAcgtive:

TextHandles:

paramrec:

deb.|

doc.w
de.w
de.w
de.w
dc.w
do.w
de.w
de.w
de.w
de.w
do.w
de.w
dc.w

dcw -1 ;-1 means ncne are active

TextBoxes,0

‘WOHA parametar record for testcalibrate
stone burst count
rise time sample count
irse time siope deita
6384 ;signal on sampie count
fall time sample count
fall time slope deita
16384 ;signal off sample count
4224 gain/input select word
;cosine factor

00 -0 0 =

0 :sine factor

32000 :burst amplitude

512 ;probe sample count {currently a constant)

32 orobe sample multipliar (currently a constant)

. The {ollawing are not really a part of the paramrac, but currantly must
. {ollow it for the routine TCCviBoxas to work praparly

Freq:
Atten: de.w

; Power
PDeacimal:
PFract: de.l

offsets:

TextRects:

dc.w
Q

de.!
1]

dc.b
de.b
de.b
dc.b
de.b
de.b
de.b

de.w
de.w
de.w
de.w

dec.w

o

0

[+] itone burst count is first entry

2 inise is second

8 on count is fourth

8 fall count is next

12 ;off count is saventh

26 Arequency is 14th (not reaily a paramater)
28 ;attent is 15th (not really a parameter)

TCCtiinitY +ToneBursts*20

TCCtilnitX-88

TCCtinitY+ToneBursts*20+20
TCCtilnitX-20

TCCtinitY+RiseCount*20

104

5,724,433
157 158

de.w TCCHInitX-88
de.w TCClUlnitY+RiseCount*204+20
de.w TCCHlnitX-20

de.w TCCUlnitY+OnCount*20
dc.w TCCtlinitX-88

de.w TCCUINLY +OnCount™20+20
de.w TCCtllnitX-20

de.w TCCtinitY+FaliCount*20
de.w TCCHUlnitX-38

de.w TCCtlnitY+FaliCount*20+20
de.w TCCHinitX-20

dc.w TCCtnitY+OffCaunt*20
de.w TCCtlinitx.88

dc.w TCCHinitYy +OffCount*20+20
de.w TCCilinitX-20

de.w TCCtilnitY +Fraguency*20
dc.w TCCHInitX-88

de.w TCCllnitY+Frequancy 20420
dc.w TCCtlInitX-20

de.w TCCtinity +Attenuate™20
dc.w TCCtlnitxX-88

de.w TCCtlinitY+Attanuate~20+20
dc.w TCClUlnitX-20

WDOHATCBounds: ; Bounding rect for window
DCW TClnity
DCW TCnitx
DCW TClnitY+200
DCW TCRight

ERect: ; Bounding rectangie for part to erase
DCwW TCCtlnity-8

DCW o

OCW TCCtllnitY+7*TCCUFHeight

DCW TCCtinitX

TRect:

DL o

ocL o ;For calculating various rectangies.
TPoint: DCL 0 :For caleulating mouse change.
WhichControl: DCL 0 . A control handia, for temporary storags.
NumBuf: bpcB 0 ; Buffar for number conversion (length here)
NumBufT: DCB.B8 79,0 ; Text hers
KeyBut: OCB.B 80,0

jo5

arg
arg2
arg3d
argé
args
cosreg
sinreg
xage
txrag

pi

twopi
2810

one
fp1p8s
two
twoex14
twoex1!5
twoex16
ten
hundred
thousand
fp12500
fp12277
fp20dBe

159

deb.w
deb.w
deb.w
deb.w
deb.w
deb.w
decb.w
dcb.w
deb.w
dew
de.w
de.w
de.w
dc.w
de.w

dc.w
de.w
de.w

5,724,433
160

ipteger buffer

.extended flpating point buffer
;extended floating point buffer
‘extended floating point butfer
;extended floating point butfer
;room for cosine lactor

iroom for sina factor

. ;extended accumuiator

8, ilemporary extended register
$4000,5¢900,55604,$1893,874bc
$4001,%¢900,55604,8$18923,574b¢
$0000,$0000,$0000,30000,$0000
$311£,$8000,30000,$0000,50000
$3111,519996,$9999,55999,3399%a
$4000,58000,$0000,$0000,30000

de.w $400d,$8000,$0000,$0000,$0000
de.w $400e,$8000,50000,$0000,$0000
dc.w $400f,$8000,30000,50000,$0000
$4002,%a000,50000,30000,80000
$4005,%c800,50000,80000,$0000
$4008,$f200,50000,30000,$0000

dc.w $400c,$c350,50000,$0000,$0000
dc.w $400¢,$bfd4,30000,50000,50000
dc.w $4002,$8af9,5db22,5d0e5,$6042

mmo_cnmmwm
[~ =Nl loNoWole]

/06

5,724,433
161

; WOHATC.hdr

: This file must be included if your program uses the

; WDHA Test/Calibrate window.
XREF WOHATCOpen
XREF WDHATCClose
XREF WOHATCShow
XREF WDHATCHide
XREF WDHATCDraw
XREF WDHATCControl
XREF WDHATCidle
XREF WDHATCKey
XREF WDHATCIS
XREF WDHATCDoTest

107

162

n——_

5.724.433
163 164

; fila WDGHAFC.Asm

; This file contains two routines which read text files centaining

;. numeric expressions, and downioad the numbers to the digitai hearing

; aid. The routing WDHAFCSet is used in the Aid13 pregram to downicad

; filter tap coefficiants to the hearing aid. The routine WOHASetFileParams

; is used to dawnload parameters for the SS15 spectral shaping program.

. The text files accessed by these routines must contain integer aumbers

. seperatad by any chracter which is nonnumeric and not "’ (generally spaces,
; tabs, or carriage returns). The text files accassed by WOHAFCSet can also
; contain simple numeric exprassions of the ‘orm A/B, where A and B are

;. integers.

Include MacTraps.D

Include ToolEquX.D

include SysEquX.D

Inciude QuickEquX.0D

Include FSEqu.D

Include MDS2:WDHADisk.hdr

include MDS2:WDHASCS1.hdr

XDEF WDHAFCSet
XDEF WODHASetFileParams

; Constants for division

NoDiv B [o] ; Haven't seen a '/
ReadOne ECU 1 ; Read first operand
DoDiv BQAU 2 ; Read second operand, so dan't division.

; Name: WDHAFCSet

" Function: This routine uses the SFGetFile dialog to get the name of the file
: from the user, then opens the file, converts it's contents from text form
: to binary integer form, then dewnioads it to the hearing aid.

; Input: None
; Output: None
WOHAFCSet:
movam.! d0-d7/a0-a6,-(sp)
: Do SFGetFile
! move.| #300480048,-(sp) , whare
: pea "Which Filter Coefficient File?' ; prompt
move.i #0,-(sp) . fileFilter procedure
move.w#-3,-(sp) ; display all types of files
pea FTypes . typelist
i mova.l #0.-(sp) ; digHook
pea Reply . SFReply
mova.w#2,-(8p) : ; trap to SFGetFiie
_Pack3
; Did they chooss a fiis?
lea good,ad
tst.w {(a3)
beq DoneFCSet
;. Yes, apen it.
lea fNames,at ; file name pointer
bsr DiskOpen
tst.w di ; test ioResult
bne DoneFCSet

108

5,724,433
165 166

; Now d2 has ioRefNum
move.w#1,d1 ; read one sector

lea myBufier,al
bsr DiskRead
bsr DiskClosa

: Now convert text buffer to words
move w#64,d3 ; d3 will be a countar

move.w#NeDiv,dé , d6 tsils if we should divide or not

lea myBuffer,al

lea numRec,a2
FCloop:

lea numBuffer,a0
; Convert from text buffer to a siring

clr.w d4 ; count length of string
FCSLoop:

move.b (a1)+,d5

cmp.b #'/',d5

bne FCSNotDiv

move.w #ReadOne,dé

bra FCSDone
FCSNotDiv

cmp.b #'.',dS

beq FCSGo

cmpb #'0'.d5

blo FCSOone

cmpb #°9'.d5

bhi FCSDone
FCSGo:

addw #1,d4

mova.b d5,{a0}+

bra FCSLoop
FCSDone:

isa numString,a0

mova.b d4,(ad)
move.w#1,-(SP)

_Pack7 ;StringToNum - evt numString to word in d0
cmp.w #NoDiv,d6é ; Ara we dividing?
beq FCSDone2
cmp.w #ReadOne,ds ; Have we read one?
- bne FCSDonet
addw #1,d3 ; This one won't really count
move.w#DoDiv,d8 ; Next time we'll divide
bra FCSDane2
FCSDaonat:
cmp.w #DoDiv,dé : Shauid be dividing if we reach here
bne FCSDone2
move.wd0,d1 ; get the divisor in d1
lea -2{a2),a2 ; back up the pointer to the first operand
move.w(a2),d0 ; get the first operand
ext.l d0 ; extend daest of divs to long
divs dt,do
move.w#NoDiv,d6 : finished this divide
bra FCSDone2
FCSDone2:

109

5,724,433

167

move.wd0,(a2)+ ;store result

sub.w #1,d3

bne FClocp
; Send the coefficients to the WDHA

lea numRec,a0

bsr SetCaafficients
DoneFCSat:

movem.| (sp)+.dD-d7/a0-aé

rts

; Name: WDHASatFileParams
. Function: This routine uses the WDHAGetFile dialog to get the file name
from the usar, than opens the file, converts it's contents from text farm
; 1o binary integer form, then downloads it to the hearing aid.
; Input: None
; Output: None
WDHASaetFileParams:

movem.! d0-d7/a0-a8,-(sp)

: Do SFQetFile
move.l #300480048,-(sp) ; where
pea ‘Which Set Params Filg?’ ; prompt
move.l #0,-(sp) ; fileFilter procedure
move. w#-1,-(sp) ; display all typas of files
pea FTypes ; typelist
mova.l #0,-(sp) ; digHook
pea Reply ; SFReply
mave.w#2,-(sp) ; trap to SFGetFile
_Pack3

*, Did they choase a file?
laa good,a3
tst.w (ad)
beqg DoneFileSet

» Yes, open it.
lea fName.a1 ; file nama pointer
bsr DiskOpen
tst.w d1 ; 1est ioResuit
bne DonefileSat

; Now d2 has ioRefNum
move.w#3,d1 ; read three sectors

lsa myBufter.al
bsr DiskRead
bsr DiskClose
. Now convert text buffer to words
mave.w#320,d3 » d3 will be a counter
lea myBufler,al
iea numiRec,a2
FileQutarLoop:
lea numBuffer,ad
. Convert from text buffer to a string
clr.w dd ; count length of string
FileLoop:
move.b (al)+,d5
cmp.b #°-' dS
beq FileGo

HO

168

169

cmpb #°0',dS

blo

cmp.b #'9'.dS

bhi
FileGo:

add.w #1,d4

FileDone

FileDone

move.b d5,{a0)+

bra
FilaDana:
lea

mova.b d4,(al)

FilaLoop

numSiring,a0

move.w#1,-(SP)

_Pack?

move.wd0,(a2)+

subw #1,d3

bne

FileQute

;StringToNum - cvt numString to ward in d0

;store

rLoop

; Send the coefficients to the WDHA

lea
bsr
DoneFileSet:

movem.}

rts

Raply:

good: dew O
copy: dew O
{Type: dew 0

vRefNum
‘version:
{Name: dcb.b

FTypas:

numString:
numBuifer:

numRec:
myBuifer:

de.w
de.w
64,0

deb
decb.b

numRec

,a0

SetFileParams

5,724,433

esult

(sp)+,d0-d7/a0-a6

oo

TEXT

63,0

dcb.w
deb.b

0
; text

320,0
1536,0

; length

T

170

5,724,433
171 172

» WDHAFC.har
: This file must be included if your program uses the
;. Set Filter Coeflicients function.

XREF WDHAFCSst

XREF WDHASetFileParams

J1A

5,724,433

173 174

; WDHASCS!.Asm
; This fila contains routines for sanding racords back and forth
; betwsen the Mac and the WDHA via the SCS| bus interface.

Include MacTraps.D
Inciude SysEquX.D
Inciude ToolEquX.D
Inciude MDS2:WDHA.hdr

XDEF SetParam

XDEF SaetCoalficients
XDEF SetFileParams
XDEF wdhatest

XDEF SCSlintarrogate
XDEF SCSIWr

XDEF SCSIRe

XDEF SCSIBTst

;scsi bus bit assignments

abs equ 1 ;asser! data bus

dbs equ 0 ,deassert data bus

ack, e8qu 0 ;assert ackrnowledge line
dek squ 16 ;deassart acknowledge line
atn equ Q ;assert attention line

dtn equ 2 ;deassert attention line

.;Set WDHA parameters subroutine
;calling protocal

lea paramrec,a0 ;set pointer to set parametsr record
: jsr SetParam
SetParam:

movem.! a0-a6/d0-47,-{sp) ;save registers

cir.w -(sp)
bsr SCSlinterrogats
mova. w(sp)+,d0

beq @4
cmp.w #-100,d0 ;881510
beq @4

move.l #8-1,d1
move.w#-2,d0

;set loop counter
;get -2 mode code (set aid paramaters)

jsr scsiwr ;send mode code v WDHA
@1 jsr ScsiBTst est for WDHA
beq @1 ;ready
@2 move.w{a0)+,d0 get parameater
isr scsiwr ;send parameter to WDHA
@3 jsr ScsiBTst Aest for WDHA,
beq @3 sready
dhbra d1,@2 ;check end of loop
move.w(a0)+.d0 ;get last parameter
isr scsiwe :send last parameter 1o WDHA
@4
movem.} {sp)+,aD-a6/d0-d7 ;restora registers

rts

113

5,724,433
175 176

:Set WDHA filter coafficients subroutine
;calling protocol

; lea carac,al

; jsr SetCoefficients
SetCoefficiants:

:sat pointer to array of coefficients

movem.| a0-a6/d0-d7,-(sp) ;save registers

move.w#-4,d0

;get -4 mode code (sat aid coefficients)

jsr SCSiwr ;58nd mode code to WOHA
@1 jsr ScsiBTst stest for WDHA
beq @1 ;ready
move.l #63,d1 58t loop counter
@2 move.w(at)+.d0 g8t parameter
jsr sCSiwr ;send parameter to WDHA
@3 isr ScsiBTst itest for WDHA
beq @3 iready
sub.w #1.d1 icheck end af loop
bne @2
move.w{a0)+,d0 ;get last parameter
jsr scsiwr isend iast parameter 1o WDHA
movem.| (sp)+,a0-a6/d0-d7 ;restore registars
rts

:Set file parameters subroutine

;calling protocol

H lea filerec,a0 :sel pointer to array of 320 coefficients
: jsr SetfileParams

SetFileParams:

) movem.| a0-a6/d0-d7,-(sp) ;save registers

move w#-5,80

;get -5 mode code (set aid coefficients)

jsr scsiwr send mode code to WDHA
@1 isr ScsiBTst itest tor WDHA

beq @1 ;ready

move.! #319,d1 ;set loop counter
@2 move.w{a0}+,d0 ;get parameter

isr scsiwr send parametar to WDHA
@3 jsr ScsiBTst test for WDHA

beq @3 ready

sub.w #t,d1 ;check and of locp

-bne

move.w{a0}+,d0
jsr scsiwr
move . w#-1,d0
isr scsiwr

g8t last parameter

send last parameter to WOHA

;get -1 mode code {(hearing aid mode)}
;send mode code to WDHA

movem.| {sp}+.a0-26/d0-d7 restora registers

rts

; WDHA test subroutine
;calling protocol

i laa paramrec,a0 ;se! pointer to set parametsr record
i isr wdhates!
; upon exit:

; d6 has the mean sum

Jid

-t

@2

@4

177

; 47 has the square mean sum

wdhatast:
movem.|
move.w#-3,d0
isr SCsiwr
@ jsr ScsiBTst
beq @1

a0-a6/40-d5,-(sp)

5,724,433
178

save registers
:get -3 mode code (lesvcalibrate)
;send mode code to WDHA

test for WDHA

;ready

mave,! #13,d1 ;set loop counter {do all but last)

move.w(ald)+,d0

isr scsiwr
subgd #1.d1
bne @2

; read probe sample

isr ScsiBTst

;got paramster
:send parameter to WOHA

:check end of loop

beq @4 stest for WDHA bit
; read mean sum

clr.l d0

isr scsiwr wwrite dummy to wdha

isr scsird ;read high 16 bits

move.wd0,dé ;store in d6

swap dé6 iget it in high word

cir.d do

isr scsiwr writa dummy to wdha

isr scsird ;read low 9 bits

move.wd0,dé ;stors in d6

asi.w #7,d6 ;ahift it left to the most sig word.
. asr.l #7.d6 ;shift the whole thing right.
; read the mean square sum

clr.l d0

jsr scsiwr write dummy to wdha

jsr scsird ;read high 16 bits

move. wd0,d7 ;stors in d7

swap d7 ;get it in most sig word.

clr.l do

jsr scsiwr write dummy to wdha

isr scsird read low 9 bits

move.wd0,d7 :stora in d7

aslw #7.d7 ;shift it left to the most sig word.

-asr.l #7,d7 ;shift the whole thing right.

mavam.! {sp}+,20-26/d0-d5 resicre registers
; Name: SCSIwr

. Function: Saend the 16 bit integer in d0 o the hearing aid via the SCSI bus.
: Input: d0 contains the word to write.
; Ouiput: None
SCSIWr:
movem.| d0-¢3,-(SP)

move.b #abs+dck+din, 3580011 ;assen data bus

» LIPS TIN5 8 LTI e

@1

move. w#1,42
roxr.w #1,d2
move.w#17.1,d2
roxl.w #1,40
mova.wd0,d1

set the

;axtend bit

;8at loop counter
smove in next bit
copy &0

/s

5,724433

179 180
and.w #1,d1 ;mask Is bit
move.b d1,5$580001 . wnite to output data bus
move.b #abs+ack+dtn,$580011 ;assert acknowledge {clock into wdha)
move.b #abs+dck+«dtn, $580011 deassert acknowledge (clock into wdha)
dbra d2.@1 Joop counter
move.w#1000,d3 write deiay
@2 dbra d3,.@2
move.b #dbs+dck+din,$580011 ;deassert data bus and all
movem.| (SP}+,d0-d3
ris
; Nama: SCSIRd
; Function; Read a word from the SCSI bus in register dO.
; input; None
; Qutput: d0 contains the ward red
SCSIRd: movem.} d1.d3,-(SP)
move #16-1,d2 ;set loop counter
move.b #dbs+dck+dtn,$580011 ;deassert data bus and all
@1: ast.w #1,d0 :shift
move.b $580000,d1 read data bus
move.b #dbs+atn+dck,$580011 ;assert attention {(clock out wdha)
andw #2.d1 :mask input bit (bit 1)
asrw #1.d1 ;put in position 0
add.w d1,d0 ;add bit to data
move.b #dbs+dtn+dck,$580011 ;deassert attention {ciock out wdha)
move.w#250,d3 .deassert-assert delay
@2 dbra d3.@2
dbra d2,@1 Jloop counter
' movem.| (SP)+.d1-d3
rts

;Tast SCSI read bit (Bit 1). Returns with d0 = 0 or 2
SCsiBist:
; If the mouse button is pressed then stop communication

movem.| 20-a1/d0-d2,-(sp) . save registers

clr.w -(sp)

_Button

tst.w (sp}+

bne StopCom

mavem.| (sp)+,a0-a1/d0-d2

mave.b #dbs+dck+dtn,$580Q11 ,deassert data bus and all
move.b $580000,d0 iread SCS! bus

and.w #2,d0 ;mask position 1

rts

, If the button is pressed during communication we set the hearing aid
; to idle and return to the main loop. Note that extra parameters may
; be left on the stack from the routines which cailed SCSIBtst.
StopCom:

move.w#-5,d0
bsr SCSIwr
bsr SCSiwr
movem.| {sp)+,a0-at/d0-d2 ; Restore registers

clr.l (sp)+ ; Pop SCSIBtst return address

11

5,724.433
181 182

bra EventLocp

; Name; SCSlinterrogate
; Function; Inlerrogate the hearing aid to determina which program it is running,
; returning the program identifier code that the hearing aid sends back.
H if the hearing aid does nol respond within a certain timeout periad, the
; routine ratumns with 2ers as the rasull.
; Input: None
; Qutput: The program code {on tha stack)
;***Note: The user shouid push a word for the resuit,
SCSlinterrogats:
movem.| d0-d7/a0-a8,-{sp)
move.w#-10,d0 interrogate WDHA for program type
bsr SCSIwr
cirw do
move. w#20000,d7
@1 sub.w 31,47

beq @2
jsr ScsiBTst stest for WOHA
beq @ ;ready
@2 isr scsird ;read high 16 bits into dO
move.wd0,64(sp)
move.w#-1,480 :set hearing aid mode
bsr SCSiwr
movem.| {sp)+,d0-d7/a0-a6
rts

Crom oy,

/17

5,724,433

183

; WOHASCSLhdr

PRCBE BEQU
FELD B
INPUT EUJ

SetParam
SetCosfficients
SetFileParams
SCSlinterrogate
wdhatest

SCSwr
SCSIRd
SCSIBTst

12
7
=o 1} 10

1y

184

e

g

5,724,433
185 186

‘WDHADisk.asm file

Include
Include
Include
Include
Include

FSEqu.D

MacTraps.D : Use Systeam and ToolBox traps
ToqlEqQuX.D ; Use ToolBox equates
SysEqux.D
QuickEquX.D

XDEF DiskCreate
XDEF DiskRead

XDEF DiskWrite
XDEF DiskEject
XDEF DiskOpen

XDEF DiskClose
XDEF DiskSetFPos
XDEF DiskSetEQF
XDEF DiskSetFinfo

ioNameptr equ 18 :not included in .4 files
ioFVersNum aqu 26 ;not inciudad in .d files
ioMisc oqu ioRefNum+4 inot inciuded in .d filas

DiskRead:

;assumes d2 contains ioRefNum

;assumes d1 contains number of 512 byte sectors to read
;assumaes al points 1o the buffer 1o fill

;returns with a0 painting to parameter block on stack
:and with ioRasult in d0

the number of bytes actually read is raturned in d3 (long)

moveqg #ioVQE!Size/2 - 1,d0

@1 clr.w -(sp) :make room on stack for
dbra d0,@1 for paramaeter block
maove.|l sp.ald iset AQ for file manager call
move.wd2,ioRefNum(al) ;and to access parameters in block
mulu #512,d1 ;muitiply number of sactors by 512
move.| d1,icReqCount(ad)} seclors raquired
divu #512.d1 irastore dt
move.i ail,ioBuffer(aQ)
_Reac
move.! icActCount{al),d3
add #ioVQEISize, 5P
rts

DiskWrite:

assumes d2 contains ioRefNum

;assumes di contains number of 512 byte sectors to write
;assumes al points o the buffer 1o write

sreturns with icResult in d0

;and a0 pointing to parameter biock on stack

14q

5,724,433
187 188

moveq #ioVQEISize/2 - 1,d0

@1 clr.w ~(sp) ;make room on siack for
dbra dO.@1 ;for parameter block
move.! sp.al ;sat A0 for file manager call
move.wd2,ioRefNum(a0} ;and to access parameters in black
mulu #512.d1 ;sectors 1o write * 512 w bytes
mava.l d1,ioReqCount(a0) ;blocks of 512 bytes required
divu #512,dt restore d1
mave.l at,ioBuffer(al)
Write
add #ioVQE!Size,SP
rts
DiskSetFPos:
.assumaes d2 contains ioRefNum
;assumes d1 contains sector number to position at.
returns with ioResult in dO
:and a0 pointing o parameter biock on stack
moveq #ioVQE!ISize/2 - 1,d0
@1 cle.w -(sp) :make room on stack for
dbra do,@1 for parameter biock
move.! sp,a0 ;set AO for file manager call
move.wd2,ioRaefNum{a0) :and to access paramaters in block
move.w#1 ioPosMode{a0) ;0 at currant position
;1 relative to beginning of media
;3 relative to current position
mulu #512,d1
mova.! d1,ioPosOffsel(a0) blocks of 512 bytes required
divu #512.d1
_SelFPos
add #ioVQEISize,SP
rts
DiskClose:
;assumes d2 contains ioRefNum
;relurns with ioResult in d0
. and a0 paointing to parameter block on stack
moveq #ioVQE!Size/2 - 1,d0
@1: cirw -(spj ;make room on stack for
dbra d0,@7 for parameter block
move.l sp,al ;set AQ for file manager call
:and to access parameter block
move.wd2,icRefNum(a0) ;icRefNum in d2 from open routine
close

- add #ioVQEISize, SP

rts

; d3 cantains the drive number o ejsct
DiskEject:

| 20

5.724.433
189

moveq # ioVQEISize/2 - 1,40

@1: cir.w -(3p)
dbra d0.@1
move.! sp,al
move.w#-5,ioRefNum{a0)
move.wd3,ioDrvNum({a0)
move.w #ejectCode,csCodn(al)
_Ejact
add #ioVQEISize,SP
rts
DiskCreata:
;assumes al pointing to fila name buffer
returns with a0 pointing to parameter biock on stack
:dd cantains the drive number 10 create the file on.
moveq #ioVQEISize/2 - 1,d0
@1: cir.w -(sp)
dbra d0.@1
mova.l sp,a0d ;sat AD for file manager call
;and to access parameter biock
move.| ai,ioNamePtr{ad)} put name pointer in parameter block

move.b #0,ioFVersNum(aQ) version number, always use zero
;par page (l-81, inside mac

move. wd3,ioVRe/Num(a0) ;drive #

_Create

add #ioVQEISize, SP

rts

DiskQpen:

@1:

;assumes al pointed to file name butfar

sreturns with a0 poinling to parameter block on stack
;ioRefNum in d2 and ioResult in d1

;upon return d3 contains the drive numbaer the fila was found on

movaq #ioVQEISize/2 - 1,d0

clr.w +(sp)
dbra dO.@1
“move.l sp.a0 ;set AC for file manager call
;and 10 access parameter block
move.l al,ioNamePtr(al) ;put name pointer in parameter biock

move.b #0,ioFVersNum(a0) wversion number. always use zero
iper page 1I-81, inside mac

move.w#2.ioVRefNum(aQ) ;axternal drive

_Open

move.wi#2,d3 ;externai drive
move.wioRefNum{a0),d2 :save ioRefNum of file in d2
move . wioResult{ag},d1 ;get io resuit

beq

move.w#1,i0VReINum(a0) internal drive

move.w#1,d3 internal drive

121

190

5,724,433

191

move.wicRefNum(a0),d2 ;save ioReMNum of file in d2
move.wioRasull{a0),d1 ;get o result

DOpenGood:
add.| #ioVQEISize,SP
ris

DiskSetEOF:
;assumaes d2 contains ioRefNum
;assumes d1 contains position to position at (a long).
;returns with ioResuilt in dO
;and a0 pointing to parameter block on stack
moveq #ioVQEISize/2 - 1,d0

@1 cir.w -(spj} ;maka room on stack for
dbra d0.@1 for parameter block
movse.l sp,a0 ;3at AO for file manager call
move. wd2 ioRefNum({aQ) :and {o access parameters in biock
move.w#1 ioPosMode(al) ;0 at current position

i1 relative to beginning of media
;3 reiative to current position

move.l d1,ioMisc(a0) blocks of 512 bytes required
_SetECF
move.wioResult{a0),d0 get io result
add.l #ioVQEISize,SP
rts

DiskSetFinto:

' ;assumes al painting to file name buffer
;assumes d6 contains fila creator
;assumes d7 contains file type
:d3 contains the drive number to create the file on.
returns with aG pointing to parameter block on stack
mavem.| d0-d7/a0-a6,-(sp)
moveq #ioVQEISizes2 - 1.d0

@1: clrw -(sp)

dbra d0,@1
mave.l sp,a0 .set AO for file manager cail
) ;and to access parameter block
_move.l sp,a4
move.! al,ioNamePtr(ad) :put name pointar in parameter block
move.b #0,joFVersNum(a0) ;version numbaer. always use zero
per page |1-81, inside mac

move.wd3,ioVRefNum(a0) ;drive #

_GaetFileinfo ;get file info

mave.l a4,al

move.l d7,32({a0)

move.! d6,36(a0)

_SaetFilelnfo

add.! #ioVQE!Size,SP

movem.| {sp)+.d3-d7/a0-26

rts

LS

192

5,724,433
193 194

; WOHADisk.hdr

: This file must be included if your program uses tha disk commands.
XREF DiskCreate
XREF DiskRead
XREF DiskWrita
XREF DiskEject
XREF DiskOpen
XREF DiskCiose
XREF DiskSetFPos
XREF DiskSetECF
XREF DiskSetFinfo

133

5,724,433

195
What is claimed is:
1. An adaptive gain amplifier circuit comprising:
an amplifier for receiving an input signal in the audible
frequency range and producing an output signal;
means for establishing a threshold level for the output
signal;
a comparator for producing a control signal as a function

of the level of the output signal being greater or less
than the threshold level;

a gain register for storing a gain setting;

an adder responsive to the control signal for increasing the
gain setting up to a predetermined limit when the
output signal falls below the threshold level and for
decreasing the gain setting when the output signal rises
above the threshold level; and

a preamplifier having a preset gain for amplifying the gain
setting to produce a gain signal;

wherein the amplifier is responsive to the preamplifier for
varying the gain of the amplifier as a function of the
gain signal,

wherein the output signal is adaptively compressed.

2. The circuit of claim 1 wherein the adder comprises

means for increasing the gain setting in increments having
a first preset magnitude and for decreasing the gain
setting in decrements having a second preset magni-
tude.

3. The circuit of claim 1 further comprising means for
producing a timing sequence wherein the gain register is
enabled in response to the timing sequence for receiving the
gain setting from the adder during a predetermined portion
of the timing sequence.

4. The circuit of claim 1 wherein the adder further
comprises a secondary register for storing a first and second
preset magnitude and wherein the adder is responsive to the
secondary register for increasing the gain setting in incre-
ments comresponding to the first preset magnitude and for
decreasing the gain setting in decrements corresponding to
the second preset magnitude.

5. The circuit of claim 1 further comprising means for
clipping the adaptively compressed output signal at a pre-
determined level and for producing an adaptively clipped
compressed output signal.

6. A programmable compressive gain amplifier circuit
comprising:

a first amplifier for receiving an input signal in the audible

frequency range and for producing an amplified signal;
means for establishing a threshold level for the amplified
signal;

a gain register for storing a gain value;

means, responsive to the amplified signal and the thresh-

old level. for increasing the gain value when the
amplified signal falls below the threshold level and for
decreasing the gain value when the amplified signal
rises above the threshold level;

wherein the first amplifier is responsive to the gain

register for varying the gain of the first amplifier as a
function of the gain value;

a second amplifier for receiving the input signal and for

producing an output signal; and

means for programming the gain of the second amplifier

as a function of the gain value,

wherein the output signal is programmably compressed.

7. The circuit of claim 6 wherein the increasing and
decreasing means comprises means for increasing the gain

10

15

20

25

30

35

40

45

50

55

65

196

value in increments having a first preset magnitude and for
decreasing the gain value in decrements having a second
preset magnitude.

8. The circuit of claim 7 wherein the increasing and
decreasing means further comprises:

a comparator for producing a control signal as a function
of the level of the amplified signal being greater or less
than the threshold level; and

an adder responsive to the control signal for increasing the
gain value by the first preset magnitude when the
amplified signal falls below the threshold level and for
decreasing the gain value by the second preset magni-
tude when the amplified signal rises above the thresh-
old level, wherein the first amplifier is responsive to the
gain register for varying the gain of the first amplifier
as a function of the gain value.

9. The circuit of claim 8 wherein the increasing and
decreasing means further comprises means for producing a
timing sequence wherein the gain register is enabled in
response to the timing sequence for receiving the gain value
from the adder during a predetermined portion of the timing
sequence.

10. The circuit of claim 8 wherein the increasing and
decreasing means further comprises a secondary register for
storing the first and second preset magnitudes and wherein
the adder is responsive to the secondary register for for
increasing the gain value in increments corresponding to the
first preset magnitude and for decreasing the gain value in
decrements corresponding to the second preset magnitude.

11. The circuit of claim 6 wherein the means for pro-
graming comprises means for varying the gain of the second
amplifier as a function of a power of the gain value.

12. The circuit of claim 11 wherein the means for pro-
graming further comprises a register for storing a power
value and wherein the programing means varies the gain of
the second amplifier as a function of the value derived by
raising the gain value to the power of the stored power value.

13. The circuit of claim 6 wherein the first and second
amplifiers each comprise a two stage amplifier, the first stage
having a variable gain and the second stage having a preset
gain.
14. The circuit of claim 6 further comprising means for
clipping the programmably compressed output signal at a
predetermined level and for producing a programmably
clipped and compressed output signal.

15. An adaptive gain amplifier circuit comprising:

an amplifier for receiving an input signal in the audible
frequency range and producing an output signal;

a gain register for storing a gain value;

a preamplifier having a preset gain for amplifying the gain
value to produce a gain signal;

wherein the amplifier is responsive to the preamplifier for
varying the gain of the amplifier as a function of the
gain signal;

means for establishing a threshold level for the output
signal; and

means, responsive to the output signal and the threshold
level. for increasing the gain value up to a predeter-
mined limit when the output signal falls below the
threshold level and for decreasing the gain value when
the output signal rises above the threshold level.

wherein the output signal is adaptively compressed.

16. The circuit of claim 15 wherein the increasing and

decreasing means comprises:

a comparator for producing a control signal as a function
of the level of the output signal being greater or less
than the threshold level; and

5,724,433

197

an adder responsive to the control signal for increasing the
gain value when the output signal falls below the
threshold level and for decreasing the gain value when
the output signal rises above the threshold level.

17. The circuit of claim 16 wherein the increasing and
decreasing means further comprises means for producing a
timing sequence, said increasing and decreasing means
being enabled in response to the timing sequence for
increasing or decreasing the gain value during a predeter-
mined portion of the timing sequence.

18. The circuit of claim 16 wherein the increasing and
decreasing means further comprises a secondary for storing
a first and second preset magnitude and wherein the adder is
responsive to said secondary register for receiving the first
and second preset magnitudes for increasing and decreasing
the gain value.

19. The circuit of claim 15 wherein the increasing and
decreasing means further comprises means for increasing
the gain value in increments having a first preset magnitude
and for decreasing the gain value in decrements having a
second preset magnitude.

20. The circuit of claim 15 further comprising means for
clipping the output signal at a predetermined level and for
producing an adaptively clipped compressed output signal.

21. An adaptive gain amplifier circuit comprising:

an amplifier for receiving an input signal in the audible

frequency range and producing an output signal;
means for establishing a threshold level for the output
signal;
a gain register for storing a gain value; and
means, responsive to the output signal and the threshold
level. for increasing the gain value in increments hav-
ing a first preset magnitude when the output signal falls
below the threshold level and for decreasing the gain
value in decrements having a second preset magnitude
when the output signal rises above the threshold level;

wherein the gain register stores the gain value as a first
plurality of least significant bits and as a second plu-
rality of most significant bits;

wherein the first preset magnitude comprises a number of

bits less than or equal to a total number of bits com-
prising the least significant bits;

wherein the gain register outputs the most significant bits

of the gain value to the amplifier for controlling the
gain of the amplifier; and

wherein the output signal is compressed as a function of

the ratio of the second preset magnitude over the first
preset magnitude to produce an adaptively compressed
output signal.

22. The circuit of claim 21 further comprising a register
for storing the first and second preset magnitudes, the
register having six bits of memory for storing the first preset
magnitude and six bits of memory for storing the second
preset magnitude.

23. The circuit of claim 21 further comprising a register
for storing the first and second preset magnitudes; wherein
the register stores both said magnitudes in logarithmic form.

24. The circuit of claim 23 further comprises a limiter for
limiting the adaptively compressed output signal; wherein
the limiter clips a constant percentage of the adaptively
compressed output signal.

25. The circuit of claim 21 wherein the gain register stores
the gain value in logarithmic form; and wherein the increas-

5

10

15

20

25

30

35

45

50

55

198

ing and decreasing means increases and decreases the gain
value in constant percentage amounts.

26. An adaptive gain amplifier circuit comprising a plu-
rality of channels connected to a common output, each
channel comprising:

a filter with preset parameters for receiving an input signal
in the audible frequency range for producing a filtered
signal;

a channel amplifier responsive to the filtered signal for
producing a channel output signal;

a channel gain register for storing a gain value;

a channel preamplifier having a preset gain for amplifying
the gain value to produce a gain signal;

wherein the channel amplifier is responsive to the channel
preamplifier for varying the gain of the channel ampli-
fier as a function of the gain signal;

means for establishing a channel threshold level for the
channel output signal; and

means, responsive to the channel output signal and the
channel threshold level. for increasing the gain value
up to a predetermined limit when the channel output
signal falls below the channel threshold level and for
decreasing the gain value when the channel output
signal rises above the channel threshold level;

wherein the channel output signals are combined to
produce an adaptively compressed and filtered output
signal.

27. An adaptive gain amplifier circuit comprising:

a plurality of channels connected to a common output,
each channel comprising:

a filter with preset parameters for receiving an input signal
in the audible frequency range and for producing a
filtered signal;

a channel amplifier responsive to the filtered signal for
producing a channel output signal;

means for establishing a channel threshold level for the
channel output signal;

a comparator for producing a control signal as a function
of the level of the channel output signal being greater
or less than the channel threshold level;

a channel gain register for storing a gain setting;

an adder responsive to the control signal for increasing the
gain setting by a first preset magnitude when the
channel output signal falls below the channel threshold
level and for decreasing the gain setting by a second
preset magnitude when the channel output signal rises
above the channel threshold level; and

a second channel gain register for storing a predetermined
channel gain value to define an operating range for the
channel as a function of a signal level of the input
signal;

wherein the channel amplifier is responsive to the gain
register and to the second channel gain register for
varying the gain of the channel amplifier as a function
of the gain setting and the predetermined channel gain
value; and

wherein the channel output signals are combined to
produce an adaptively compressed and filtered output
signal.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 5,724,433
DATED : March 3, 1998
INVENTOR(S) : A. Maynard Engebretson et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Colunn 196, claim 10, line 25, "register for for" should read
---register for---.

Colum 196, claim 12, line 34, "programing means"” should read
---means for programming---.

Column 197, claim 18, line 12, "secondary for storing” should read
---secondary register for storing---.

Signed and Sealed this
FourthDay of August, 1998

D uce Tedomn

BRUCE LEHMAN

Attest:

Attesting Oﬁicer Commissioner of Patents and Trademarks

