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The temperature, stress, and environmental conditions of many gas turbine, hypersonic, 
and even nuclear applications make the use of woven SiC/SiC composites an attractive 

enabling material system. The development in SiC/SiC composites over the past few 
years has resulted in significant advances in high temperature performance so that now

these materials are being pursued for several turbine airfoil and reusable 
hypersonic applications. The keys to maximizing stress capability and maximizing 

temperature capability will be outlined for SiC/SiC. These include the type of SiC fiber, 
the fiber-architecture, and the matrix processing approach which leads to a variety 

of matrix compositions and structure. It will also be shown that a range of mechanical, 
thermal, and permeability properties can be attained and tailored depending on the 

needs of an application. Finally, some of the remaining challenges will be discussed in 
order for the use of these composite systems to be fully realized. 
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The Need for High Temperature Load-Bearing CMC

• Current SOA is Sylramic-iBN 
reinforced Melt (Si) -Infiltrated CMC 
NASA N24A
– 1315oC use-temperature for ~ 1000 

hours and 100 MPa – would like higher 
stress capability for turbine components

• Higher temperature applications for 
advanced turbine and scramjet 
engines, TPS structures, leading edge 
applications, and even nuclear 
applications prohibit the use of free 
matrices with free Si

• Therefore, need for higher stress 
capability (e.g., blades) and higher 
temperature capability CMC (e.g., 
leading edge and TPS structures)
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Outline

• The best fiber: Sylramic-iBN for > 1300oC 
applications
– As the fiber goes, so goes the composite

• Fiber architectures that enable
– Understanding the effect of fiber architecture in 

order to fabricate the best combination of 
composite properties

• SiC matrices for higher temperatures
– Increasing temperature requirements prohibit free 

Si
• Implications and Conclusions
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Fiber Comparison
1000 hr Use Temperature (σf = 500 MPa)

From, J.A. DiCarlo and H.M. Yun, Handbook of Ceramic Composites, Chapter 2 (Kluwer: NY, 2005)

Oxides SiC-based
Best of small 
diameter = Syl-iBN

Sylramic-iBN:
Polycrystalline B-
containing SiC 
fiber (Sylramic, 
processed by 
COIC) subjected 
to post-process 
nitrogen 
containing heat 
treatment at high 
temperature (> 
1700oC).

Removes B and 
improves creep-
rupture properties
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Sylramic-iBN Based Composites for Applications > 1300oC
• Sylramic-iBN = NASA derived heat treatments of Sylramic fiber
• Excellent creep resistance and thermal stability (up to 1800oC)

– Best mechanical performance at high temperatures
– In-situ grown (tailorable) BN-based interphase composition
– Enables high temp processing routes not possible with other fiber-types, 

usually at temperatures well above the application use temperature!
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Fiber Architectures that Enable Processing and 
Properties for Desired Components

Approach Process a wide variety of fiber-architectures 
in order to (1) determine the effect of architecture on 
composite properties for the purpose of tailoring 
properties in desired directions and (2) determine if these 
architectures could be successfully fabricated in order to 
anticipate processing further architecture modifications.
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Sylramic
Fiber 
(COI)

Fabric

Low Temp. 
CVI Si-BN
Interphase
Infiltration

CVI SiC
Matrix

Infiltration

MI SiC/SiC

Weaving

Reactor

Reactor

Silicon Melt
Infiltration

Furnace

CVI Preform

Slurry Cast SiC MatrixSiC/SiC 
preform

Standard Slurry Cast Melt-Infiltrated (MI) 2D&3D 
Woven Composites (GEPSC, Newark Delaware)

For Syl-iBN, 
special treatment 
prior to CVI Si-BN
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Tailoring Cracking Behavior with Fiber Architecture
(Syl-BN MI Composites)

• A variety of architectures are being studied for the 
Syl-iBN MI system to determine effect of fiber 
architecture and fiber content on matrix cracking
– 2D five harness satin with different tow ends per inch

• Standard composite (N24A) = 8 layers of balanced 7.9 epcm
(20 epi)

– 2D five harness satin with different tow sizes
– 3D orthogonal with different Z fibers – balanced and 

unbalanced in X and Y direction
– Layer to layer angle interlock
– Through the thickness angle interlock (with low Y fiber 

content) ≅ Unidirectional composite
– 2D five harness satin with high tow ends per inch in X 

direction and rayon in Y direction ≅ Unidirectional 
composite
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Determination of Fiber Volume Fraction
fo = fraction of fibers that bridge a matrix crack 

(0 = loading direction), including fibers at 
an angle, e.g., a braided architecture
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Nf = total number of fibers in 
the cross-section of the tensile 
specimen, 

Af = area of a fiber

Ac = cross-sectional area of 
the tensile specimen (tw) 

Nply = # of plys or layers 
through the thickness, 

Nf/tow = # of fibers per tow (800 
for Syl-iBN), 

Ntows/ply = number of tows per 
ply or layer

Rf is the fiber radius (5 mm or 
0.005 mm for Syl-iBN). 

epcm = tow ends per cm

wepcmN plytows 10/ =
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3222050.182Same as 3DO-Bal-Z except oriented in the X (fill) direction (7 layer)3DO-Bal-Z-X 
[7]

3172480.172.05Nearly balanced 3D orthogonal; Y (loading) direction = Sylramic
single tow at 7.1 epcm,8 layer; X direction = Sylramic double tow at 
3.9 epcm; Z fiber = ZMI

3DO-Bal-Z-Y 
[7]

3362380.201.95Nearly balanced 3D orthogonal; Y (loading) direction = Sylramic
single tow at 7.9 epcm,8 layer; X direction = Sylramic double tow at 
3.9 epcm; Z fiber = Rayon 

3DO-Bal-R-Y 
[7]

3522500.26Triaxial braid; double tow; -67/0/67 – tested in hoop orientation so 
fibers are oriented + 23o to testing axis, 4 layers

Braid [8]

4801970.192.1Balanced 2D five-harness satin ply lay up; two tows woven together at 
3.9 epcm, 8 plys.

2D 5HS [6] 
(double tow)

See [6]220 to 
290

0.12 to 0.21.5 to 2.2Standard balanced 2D five-harness satin; ply lay up; number of plys
varied from 4 to 8; epcm varied from 4.9 to 8.7.

2D 5HS [6]

2041250.100.96Layer-to-layer angle interlock; 5.5 epcm, 3 layersLTLAI (1)

596262 + 90.271.58Unbalanced 3D orthogonal; Y (loading) direction = Sylramic at 9.8 
epcm, 7 layers; X direction = Sylramic at 3.9 epcm; Z direction = ZMI

3DO-Un-Z 
(2)

>575275 + 90.281.53Unbalanced 3D orthogonal; Y (loading) direction = Sylramic at 9.8 
epcm, 7 layers; X direction = Sylramic at 3.9 epcm; Z direction = 
Rayon

3DO-Un-R 
(2)

>472305 + 40.232.0Unbalanced through-the-thickness angle interlock; fill direction = 
Sylramic at 11 epcm, 7 layers; warp direction = low epcm ZMI and 
rayon

AI UNI (2)

>8183350.502.17Unbalanced five-harness satin; fill direction = Sylramic at 17 epcm; 
warp direction = low epcm rayon 

5HS UNI (1)

UTS 
(MPa)

E 
(GPa)

Fiber fraction, fo,
in load direction

Thickness 
(mm)

DescriptionComposite
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Modal Acoustic Emission of CMCs
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•Locate damage events and failure events Δt
•Monitor stress(or time)-dependent matrix cracking Cumulative AE Energy
•Identify damage sources, e.g. matrix cracks, fiber breaks Frequency
•Measure stress(or time) dependent Elastic Modulus Speed of sound
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RT 0o σ/ε of Different Architecture
Syl-iBN MI Composites
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0o AE of Different Architecture Syl-iBN MI 
Composites
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Calculating the unbridged ⊥ tow area
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y = 231.07x + 36.034

y = 242.14x + 89.015
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1315oC Creep-Rupture of Different Architecture Composites
• Significant improvement (~ 100 MPa) in creep-rupture properties 

for unbalanced fiber architectures with high fiber fraction in loading 
direction over standard 2D five-harness composites
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Sylramic-iBN Reinforced SiC-based Matrix 
Composites

Fabricate different matrix composites with the 
same architecture: 8 ply, 7.9 epcm five-
harness satin 2D weave composites
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Sylramic-iBN Composites: Processing Approaches

Woven Sylramic Preform

CVI Interphase

CVI SiC Partial Infiltration

SiC Slurry Infiltration

Si Melt Infiltration (MI)

Full CVI SiC

CVI Si3N4 (thin)

PIP SiC or SiNC

Various fiber, 
interphase, and 

matrix treatments 
to form iBN fiber 

and improve 
strength, creep, 
cracking, and 

thermal properties
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CVI SiC CVI SiC 
CompositeComposite

MI SiC MI SiC 
CompositeComposite

PIP PIP 
CompositeComposite

CVI PIP SiC CVI PIP SiC 
CompositeComposite
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RT 0o σ/ε behavior of Syl-iBN Composites
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Ultimate Properties: Fiber Strength After Processing
Degradation in PIP Composites

For the best PIP:
σfibers ~ 1600 MPa
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to inadequate 
protection of fibers 
during processing
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Matrix Cracking (Acoustic Emission) of Syl-iBN 
Composites

• For PIP (fiber dominated), very little AE activity and very little evidence of 
stress-induced cracks – significant processing induced shrinkage cracks

• For MI, CVI, and CVI-PIP (matrix dominated), significant matrix cracking 
MI superior because pores are filled with silicon (removes stress 
concentrators at tow intersections and induces  residual compressive 
stress in matrix)
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Physical Properties of  2D-Woven Sylramic-iBN Panels

800 to 1600 
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(Starfire 
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High Temperature 0o Creep Rupture Behavior

-Si containing MI matrix composites begin to 
degrade due to Si diffusion and attack of CVI SiC 
and fibers above 1350oC
-Therefore, tensile creep rupture tests were 
performed between 1315oC and 1450oC in air to 
show effects above and below Si melting point
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Creep Rupture of Syl-iBN/SiC CMCs

1450oC Creep

-At 1315C, all composites survive 103 MPa (15ksi) for hundreds of
hours
-At 1450C, CVI, PIP and CVI-PIP composites survive 69 MPa 
(10ksi) for hundreds of hours
-PIP composites rupture at the highest composite stresses 
because they have the highest volume fraction of fibers

1315oC Creep

“Equivalent” is based 
on fo = 0.2
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0o Creep Rupture Dictated by Fiber Rupture 
Properties at High Temperatures (1315oC)

0

50

100

150

200

250

300

0 200 400 600 800 1000
Time, hr

R
up

tu
re

 S
tr

es
s,

 M
Pa

Syl-iBN MI
Syl-iBN CVI
Syl-iBN CVI-PIP
Syl-iBN PIP

PIP

CVI SiC-Based

0

200

400

600

800

1000

0 200 400 600 800 1000
Time, hr

St
re

ss
 o

n 
fib

er
s 

if 
fu

lly
 lo

ad
ed

, M
Pa

Syl-iBN MI
Syl-iBN CVI
Syl-iBN CVI-PIP
Syl-iBN PIP

1315oC Creep Rupture

• Composite creep-rupture at 1315oC appears to be dependent on stress on 
fibers for the three composite systems

• Starting strength of fibers in PIP matrix ranged from 1300 to 1600 MPa
compared to ~2400 MPa for other systems. Starting strength of fibers 
not a great factor for high temperature creep rupture
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0o Creep Rupture Dictated by Fiber Rupture 
Properties at High Temperatures (1450oC)

• Composite creep-rupture at 1450oC appears to be dependent on stress on fibers for 
CVI and PIP composite systems; however, MI creep-rupture significantly lower

• Starting strength of fibers in PIP matrix ranged from 1300 to 1600 MPa compared to 
~2400 MPa for other systems. Starting strength of fibers not a great factor for high 
temperature creep rupture
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0o Creep Rupture of Composites are Comparable to 
Fiber Rupture Properties at High Temperatures

• Creep rupture life generally greater than comparable fiber-only 
data, but follow same general trend
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Out of Plane Properties for 2D-Woven Panels

1200150200025Permeability, 
mtorr/m**

4105 {8}--K33 
(1400oC), 
W/mK

82818 {28}25K33 (25oC), 
W/mK

23107 {5}*17ILT strength, 
MPa

Syl-iBN 
PIP

Syl-iBN 
CVI-PIP

Syl-iBN 
CVI

Syl-iBN 
MI

*{ } indicates after a special annealing treatment

** Vacuum permeability measured using Veeco leak detector at 25oC
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Implications and Conclusions
• A plethora of properties (strength, thermal conductivity, permeability, 

etc…) can be tailored with the different SiC matrix processing routes 
available

– Further refinement and optimization can be made with architectures and heat 
treatments (not discussed in this presentation)

• High temperature creep rupture properties appear to be controlled by 
fiber creep rupture properties

– Starting strength of fibers not a factor at higher temperatures
– Nature of crack growth and fiber creep-rupture properties needs to be better 

understood to quantify life-degrading mechanism(s) 
• High temperature (1400C+), highest stress capability is with PIP matrix 

composites because higher fiber volume fractions are attainable
– However, for high thermal conductivity, high off axis in-plane strength, and 

low permeability applications, CVI or CVI-PIP will be required – Fiber 
fraction in desired directions could be increased with modified 
architectures to enhance properties

– The ability to better protect the fibers during PIP processing may result in 
higher use-stress capability or at least retained strengths

• Sylramic-iBN fiber-types are necessary to achieve maximum properties 
– Other fiber types degrade with advanced processing temperatures and/or 

lack creep resistance 
– Newer advances to Sylramic-iBN types (“Super Sylramic”) of fibers should 

increase high temperature performance


