

#### Advanced Woven SiC/SiC Composites for High Temperature Applications

Gregory N. Morscher Ohio Aerospace Institute/NASA Glenn Research Center Cleveland, OH

The temperature, stress, and environmental conditions of many gas turbine, hypersonic, and even nuclear applications make the use of woven SiC/SiC composites an attractive enabling material system. The development in SiC/SiC composites over the past few years has resulted in significant advances in high temperature performance so that now these materials are being pursued for several turbine airfoil and reusable hypersonic applications. The keys to maximizing stress capability and maximizing temperature capability will be outlined for SiC/SiC. These include the type of SiC fiber, the fiber-architecture, and the matrix processing approach which leads to a variety of matrix compositions and structure. It will also be shown that a range of mechanical, thermal, and permeability properties can be attained and tailored depending on the needs of an application. Finally, some of the remaining challenges will be discussed in order for the use of these composite systems to be fully realized.

> Composites at Lake Louise Canada October 28th to November 2nd, 2007



# Advanced Woven SiC/SiC Composites for High Temperature Applications

Gregory N. Morscher, Ohio Aerospace Institute

Special Acknowledgement: Hee Man Yun, Matech/GSM James A. DiCarlo and James D. Kiser, NASA Glenn Research Center Ram Bhatt, US Army

> Composites at Lake Louise Canada October 28th to November 2nd, 2007



#### The Need for High Temperature Load-Bearing CMC

- Current SOA is Sylramic-iBN reinforced Melt (Si) -Infiltrated CMC → NASA N24A
  - 1315°C use-temperature for ~ 1000 hours and 100 MPa – would like higher stress capability for turbine components
- Higher temperature applications for advanced turbine and scramjet engines, TPS structures, leading edge applications, and even nuclear applications prohibit the use of free matrices with free Si
- Therefore, need for *higher stress* capability (e.g., blades) and *higher* temperature capability CMC (e.g., leading edge and TPS structures)



Inlet Turbine Vane



Thin-cooled structure





# Outline

- The best fiber: Sylramic-iBN for > 1300°C applications
  - As the fiber goes, so goes the composite
- Fiber architectures that enable
  - Understanding the effect of fiber architecture in order to fabricate the best combination of composite properties
- SiC matrices for higher temperatures
  - Increasing temperature requirements prohibit free Si
- Implications and Conclusions



# Fiber Comparison

#### 1000 hr Use Temperature ( $\sigma_f$ = 500 MPa)



Sylramic-iBN:

Polycrystalline Bcontaining SiC fiber (Sylramic, processed by COIC) subjected to post-process nitrogen containing heat treatment at high temperature (> 1700°C).

Removes B and improves creeprupture properties

From, J.A. DiCarlo and H.M. Yun, Handbook of Ceramic Composites, Chapter 2 (Kluwer: NY, 2005)

www.nasa.gov



#### Sylramic-iBN Based Composites for Applications > 1300°C

- Sylramic-iBN = NASA derived heat treatments of Sylramic fiber
- Excellent creep resistance and thermal stability (up to 1800°C)
  - Best mechanical performance at high temperatures
  - In-situ grown (tailorable) BN-based interphase composition
  - Enables high temp processing routes not possible with other fiber-types, usually at temperatures well above the application use temperature!





# Fiber Architectures that Enable Processing and Properties for Desired Components

Approach  $\rightarrow$  Process a wide variety of fiber-architectures in order to (1) determine the effect of architecture on composite properties for the purpose of tailoring properties in desired directions and (2) determine if these architectures could be successfully fabricated in order to anticipate processing further architecture modifications.

#### Standard Slurry Cast Melt-Infiltrated (MI) 2D&3D Woven Composites (GEPSC, Newark Delaware)







Tailoring Cracking Behavior with Fiber Architecture (Syl-BN MI Composites)

- A variety of architectures are being studied for the Syl-iBN MI system to determine effect of fiber architecture and fiber content on matrix cracking
  - 2D five harness satin with different tow ends per inch
    - Standard composite (N24A) = 8 layers of balanced 7.9 epcm (20 epi)
  - 2D five harness satin with different tow sizes
  - 3D orthogonal with different Z fibers balanced and unbalanced in X and Y direction
  - Layer to layer angle interlock
  - Through the thickness angle interlock (with low Y fiber content)  *⊆ Unidirectional composite*
  - 2D five harness satin with high tow ends per inch in X direction and rayon in Y direction *≅* Unidirectional composite

National Aeronautics and Space Admini

# Some Cross-Sections



**Braid AI UNI** 3DO-R 3DO-Z LTL AI www.nasa.gov

2D 5HS

N24A

**5HS UNI** 



## **Determination of Fiber Volume Fraction**

 $f_o$  = fraction of fibers that bridge a matrix crack (0 = loading direction), including fibers at an angle, e.g., a braided architecture

$$f_o = \frac{N_f A_f}{A_c} = \frac{N_{ply} N_{f/tow} N_{tows/ply} \pi R_f^2}{tw}$$

$$N_{tows/ply} = \frac{epcm}{10} w$$

$$f_o = \frac{N_{ply} N_{f/tow} epcm\pi R_f^2}{10t}$$

N<sub>f</sub> = total number of fibers in the cross-section of the tensile specimen,

A<sub>f</sub> = area of a fiber

A<sub>c</sub> = cross-sectional area of the tensile specimen (tw)

N<sub>ply</sub> = # of plys or layers through the thickness,

N<sub>f/tow</sub> = # of fibers per tow (800 for Syl-iBN),

N<sub>tows/ply</sub> = number of tows per ply or layer

R<sub>f</sub> is the fiber radius (5 mm or 0.005 mm for Syl-iBN).

epcm = tow ends per cm



| Composite                  | Description                                                                                                                                                          | Thickness<br>(mm) | Fiber fraction, f <sub>o,</sub><br>in load direction | E<br>(GPa)     | UTS<br>(MPa) |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------|----------------|--------------|
| 5HS UNI (1)                | Unbalanced five-harness satin; fill direction = Sylramic at 17 epcm;<br>warp direction = low epcm rayon                                                              | 2.17              | 0.50                                                 | 335            | >818         |
| AI UNI (2)                 | Unbalanced through-the-thickness angle interlock; fill direction =<br>Sylramic at 11 epcm, 7 layers; warp direction = low epcm ZMI and<br>rayon                      |                   | 0.23                                                 | 305 <u>+</u> 4 | >472         |
| 3DO-Un-R<br>(2)            | Unbalanced 3D orthogonal; Y (loading) direction = Sylramic at 9.8<br>epcm, 7 layers; X direction = Sylramic at 3.9 epcm; Z direction =<br>Rayon                      |                   | 0.28                                                 | 275 <u>+</u> 9 | >575         |
| 3DO-Un-Z<br>(2)            | Unbalanced 3D orthogonal; Y (loading) direction = Sylramic at 9.8<br>epcm, 7 layers; X direction = Sylramic at 3.9 epcm; Z direction = ZMI                           | 1.58              | 0.27                                                 | 262 <u>+</u> 9 | 596          |
| LTLAI (1)                  | Layer-to-layer angle interlock; 5.5 epcm, 3 layers                                                                                                                   | 0.96              | 0.10                                                 | 125            | 204          |
| 2D 5HS [6]                 | Standard balanced 2D five-harness satin; ply lay up; number of plys varied from 4 to 8; epcm varied from 4.9 to 8.7.                                                 | 1.5 to 2.2        | 0.12 to 0.2                                          | 220 to<br>290  | See [6]      |
| 2D 5HS [6]<br>(double tow) | Balanced 2D five-harness satin ply lay up; two tows woven together at 3.9 epcm, 8 plys.                                                                              | 2.1               | 0.19                                                 | 197            | 480          |
| Braid [8]                  | Triaxial braid; double tow; $-67/0/67$ – tested in hoop orientation so fibers are oriented $\pm 23^{\circ}$ to testing axis, 4 layers                                |                   | 0.26                                                 | 250            | 352          |
| 3DO-Bal-R-Y<br>[7]         | Nearly balanced 3D orthogonal; Y (loading) direction = Sylramic<br>single tow at 7.9 epcm,8 layer; X direction = Sylramic double tow at<br>3.9 epcm; Z fiber = Rayon | 1.95              | 0.20                                                 | 238            | 336          |
| 3DO-Bal-Z-Y<br>[7]         | Nearly balanced 3D orthogonal; Y (loading) direction = Sylramic<br>single tow at 7.1 epcm,8 layer; X direction = Sylramic double tow at<br>3.9 epcm; Z fiber = ZMI   | 2.05              | 0.17                                                 | 248            | 317          |
| 3DO-Bal-Z-X<br>[7]         | Same as 3DO-Bal-Z except oriented in the X (fill) direction (7 layer)                                                                                                | 2                 | 0.18                                                 | 205            | 322          |

Modal Acoustic Emission of CMCs



•Locate damage events and failure events  $\rightarrow \Delta t$ 

•Monitor stress(or time)-dependent matrix cracking → Cumulative AE Energy
•Identify damage sources, e.g. matrix cracks, fiber breaks → Frequency
•Measure stress(or time) dependent Elastic Modulus → Speed of sound



#### RT 0° σ/ε of Different Architecture Syl-iBN MI Composites





#### 0° AE of Different Architecture Syl-iBN MI Composites





# Effect of f<sub>o</sub> on Matrix Cracking Stress





## Calculating the unbridged $\perp$ tow area





Effect of  $f_o$  and max  $\perp$  tow size on Matrix Cracking Stress





#### **1315°C Creep-Rupture of Different Architecture Composites**

 Significant improvement (~ 100 MPa) in creep-rupture properties for unbalanced fiber architectures with high fiber fraction in loading direction over standard 2D five-harness composites





# Sylramic-iBN Reinforced SiC-based Matrix Composites

Fabricate different matrix composites with the same architecture: 8 ply, 7.9 epcm fiveharness satin 2D weave composites

# Sylramic-iBN Composites: Processing Approaches







# RT 0° σ/ε behavior of Syl-iBN Composites500MATRIXSyl-iBN MI Sic





#### <u>Ultimate Properties</u>: Fiber Strength After Processing **Degradation in PIP Composites**





## Matrix Cracking (Acoustic Emission) of Syl-iBN Composites

- For PIP (fiber dominated), very little AE activity and very little evidence of stress-induced cracks significant processing induced shrinkage cracks
- For MI, CVI, and CVI-PIP (matrix dominated), significant matrix cracking → MI superior because pores are filled with silicon (removes stress concentrators at tow intersections and induces residual compressive stress in matrix)





#### Physical Properties of 2D-Woven Sylramic-iBN Panels

|                                        | Syl-iBN MI        | Syl-iBN CVI              | Syl-iBN<br>CVI-PIP                       | Syl-iBN PIP                            |
|----------------------------------------|-------------------|--------------------------|------------------------------------------|----------------------------------------|
| Density,<br>g/cc                       | ~2.75             | ~2.65                    | ~2.70                                    | ~ 2.65                                 |
| f                                      | ~0.38             | ~0.38                    | ~0.38                                    | ~ 0.50                                 |
| E, GPa                                 | ~ 250             | ~250                     | ~ 210                                    | ~ 160                                  |
| UTS, MPa                               | ~ 450             | ~ 450                    | ~ 400                                    | Up to ~ 400                            |
| Stress on<br>fibers at<br>failure, MPa | ~ 2400            | ~ 2400                   | 2100 to<br>2400<br>(process)             | 800 to 1600<br>(process<br>and filler) |
| Composite<br>Vendors                   | GEPSC<br>Goodrich | GEPSC<br>Hyper-<br>Therm | GEPSC +<br>COIC<br>(Starfire<br>polymer) | COIC<br>(Starfire<br>polymer)          |



# High Temperature 0° Creep Rupture Behavior

-Si containing MI matrix composites begin to degrade due to Si diffusion and attack of CVI SiC and fibers above 1350°C

-Therefore, tensile creep rupture tests were performed between 1315°C and 1450°C in air to show effects above and below Si melting point



# Creep Rupture of Syl-iBN/SiC CMCs

-At 1315C, all composites survive 103 MPa (15ksi) for hundreds of hours

-At 1450C, CVI, PIP and CVI-PIP composites survive 69 MPa (10ksi) for hundreds of hours

-PIP composites rupture at the highest composite stresses because they have the highest volume fraction of fibers





## 0° Creep Rupture Dictated by Fiber Rupture Properties at High Temperatures (1315°C)

- Composite creep-rupture at 1315°C appears to be dependent on stress on fibers for the three composite systems
- Starting strength of fibers in PIP matrix ranged from 1300 to 1600 MPa compared to ~2400 MPa for other systems. → <u>Starting strength of fibers</u> not a great factor for high temperature creep rupture





## 0° Creep Rupture Dictated by Fiber Rupture Properties at High Temperatures (1450°C)

- Composite creep-rupture at 1450°C appears to be dependent on stress on fibers for CVI and PIP composite systems; however, MI creep-rupture significantly lower
- Starting strength of fibers in PIP matrix ranged from 1300 to 1600 MPa compared to ~2400 MPa for other systems. → <u>Starting strength of fibers not a great factor for high</u> <u>temperature creep rupture</u>





0° Creep Rupture of Composites are Comparable to Fiber Rupture Properties at High Temperatures

• Creep rupture life generally greater than comparable fiber-only data, but follow same general trend





#### Out of Plane Properties for 2D-Woven Panels

|                            | Syl-iBN<br>MI | Syl-iBN<br>CVI | Syl-iBN<br>CVI-PIP | Syl-iBN<br>PIP |
|----------------------------|---------------|----------------|--------------------|----------------|
| ILT strength,<br>MPa       | 17            | 7 {5}*         | 10                 | 23             |
| K33 (25°C),<br>W/mK        | 25            | 18 {28}        | 28                 | 8              |
| K33<br>(1400°C),<br>W/mK   |               | 5 {8}          | 10                 | 4              |
| Permeability,<br>mtorr/m** | 25            | 2000           | 150                | 1200           |

\*{ } indicates after a special annealing treatment

\*\* Vacuum permeability measured using Veeco leak detector at 25°C



# **Implications and Conclusions**

- A plethora of properties (strength, thermal conductivity, permeability, etc...) can be tailored with the different SiC matrix processing routes available
  - Further refinement and optimization can be made with architectures and heat treatments (not discussed in this presentation)
- High temperature creep rupture properties appear to be controlled by fiber creep rupture properties
  - Starting strength of fibers not a factor at higher temperatures
  - Nature of crack growth and fiber creep-rupture properties needs to be better understood to quantify life-degrading mechanism(s)
- High temperature (1400C+), highest stress capability is with PIP matrix composites *because higher fiber volume fractions are attainable* 
  - However, for high thermal conductivity, high off axis in-plane strength, and low permeability applications, CVI or <u>CVI-PIP</u> will be required – Fiber fraction in desired directions could be increased with modified architectures to enhance properties
  - The ability to better protect the fibers during PIP processing <u>may</u> result in higher use-stress capability or at least retained strengths
- Sylramic-iBN fiber-types are necessary to achieve maximum properties
  - Other fiber types degrade with advanced processing temperatures and/or lack creep resistance
  - Newer advances to Sylramic-iBN types ("Super Sylramic") of fibers should increase high temperature performance