PARALLEL ACCESS ALIGNMENT NETWORK WITH BARREL SWITCH IMPLEMENTATION FOR D-ORDERED VECTOR ELEMENTS

Assignee
George H. Barnes, Wayne, Pa.
Burroughs Corporation, Detroit, Mich.
[21]
Appl. No.: 847,212
[22] Filed:
Oct. 31, 1977

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 820,234, Jul. 29, 1977, Pat. No. 4, 162,534.

Int. Cl. ${ }^{3}$ \qquad G06F 7/00
U.S. Cl. 364/900 Field of Search ... 364/900 MS File, 200 MS File

References Cited

U.S. PATENT DOCUMENTS

3,274,556	9/1966	Paul et al. 364/900
3,510,846	5/1970	Goldschmidt et al. 364/900
3,535,694	10/1970	Anacker et al. 364/200
3,582,899	6/1971	Semmelhaack 364/200
3,596,251	7/1971	Buchan et al. 364/900
3,610,903	10/1971	Stokes et al. 364/900 X
3,659,274	4/1972	Kyser 364/900
3,747,070	7/1973	Huttenhoff 364/900
3,790,960	2/1974	Amdahl et al. 364/900
3,812,467	5/1974	Batcher 364/900
3,934,132	1/1976	Desmonds 364/900 X

4,051,551 9/1977 Lawrie et al.
 \qquad 364/200

Primary Examiner-Melvin B. Chapnick Attorney, Agent, or Firm-Leonard C. Brenner; Edmund M. Chung; Kevin R. Peterson

ABSTRACT

An alignment network between N parallel data input ports and N parallel data outputs includes a first and a second barrel switch. The first barrel switch fed by the N parallel input ports shifts the N outputs thereof and in turn feeds the $\mathrm{N}-1$ input data paths of the second barrel switch according to the relationship $\mathrm{X}=\mathrm{k}^{y}$ modulo N wherein x represents the output data path ordering of the first barrel switch, y represents the input data path ordering of the second barrel switch, and k equals a primitive root of the number N . The zero (0) ordered output data path of the first barrel switch is fed directly to the zero ordered output port. The N-1 output data paths of the second barrel switch are connected to the N output ports in the reverse ordering of the connections between the output data paths of the first barrel switch and the input data paths of the second barrel switch. The second switch is controlled by a value m, which in the preferred embodiment is produced at the output of a ROM addressed by the value d wherein d represents the incremental spacing or distance between data elements to be accessed from the N input ports, and m is generated therefrom according to the relationship $\mathrm{d}=\mathrm{k}^{m}$ modulo N .

3 Claims, 11 Drawing Figures

Fig. 1

Fig. 5

Fig 3

Fig. 2

Fig. 4

d	m	d	m	d	m	
401	227	451	121	501	428	
402	458	452	478	502	431	
403	426	453	43	503	60	
404	36	454	399	504	447	
405	56	455	357	505	492	
406	9	456	86	506	313	
407	230	457	88	507	69	
408	102	458	273	508	34	
409	503	459	190	509	377	
410	193	460	385	510	38	
411	408	461	429	511	110	
412	123	462	108	512	262	
413	379	463	258	513	174	
414	17	464	432	514	271	
415	210	465	185	515	59	
416	324	466	90	516	312	
417	468	467	61	517	376	
418	267	468	412	518	261	
419	246	469	150	519	58	
420	180	470	448	520	260	
421	480	471	162			
422	40	472	282			
423	80	473	493			
424	66	474	338			
425	291	475	275			
426	483	476	314			
427	136	477	154			
428	393	478	455			
429	73	479	70			
430	45	480	83			
431	112	481	226			
432	235	482	35			
433	472	483	229			
434	461	484	192			
435	253	485	378			
436	499	486	323			
437	388	487	245			
438	418	488	39			
439	401	489	290			
440	264	490	392			FIGGA
441	24	491	111			FIG.6A
442	279	492	460			
443	353	493	387			
444	49	494	263			
445	27	495	352			FIG.6B
446	365	496	364			
447	510	497	175			
448	359	498	477			
449	176	499	356			FlG6C
450	424	500	272			FIG.6C

Fig. 6

Fig.6C

d	m	d	m	d	m	d	m
1	0	51	188	101	440	151	42
2	318	52	410	102	506	152	85
3	1	53	152	103	7	153	189
4	116	54	321	104	208	154	107
5	52	55	350	105	64	155	184
6	319	56	445	106	470	156	411
7	11	57	172	107	277	157	161
8	434	58	518	108	119	158	337
9	2	59	368	109	383	159	153
10	370	60	169	110	148	160	82
11	298	61	125	111	453	161	228
12	117	62	450	112	243	162	322
13	294	63	13	113	362	163	289
14	329	64	348	114	490	164	459
15	53	65	346	115	269	165	351
16	232	66	97	116	316	166	476
17	187	67	139	117	296	167	427
18	320	68	303	118	166	168	446
19	171	69	218	119	198	169	68
20	168	70	381	120	487	170	37
21	12	71	164	121	76	171	173
22	96	72	436	122	443	172	311
23	217	73	99	123	344	1.73	57
24	435	74	250	124	248	174	519
25	104	75	105	125	156	175	115
26	92	76	287	126	331	176	10
27	3	77	309	127	438	177	369
28	127	78	93	128	146	178	293
29	200	79	19	129	196	179	231
30	371	80	284	130	144	180	170
31	132	81	4	131	405	181	95
32	30	82	141	132	415	182	103
33	299	83	158	133	182	183	126
34	505	84	128	134	457	184	131
35	63	85	239	135	55	185	504
36	118	86	513	136	101	186	451
37	452	87	201	137	407	187	485
38	489	88	212	138	16	188	194
39	295	89	495	139	467	189	14
40	486	90	372	140	179	190	21
41	343	91	305	141	79	191	409
42	330	92	333	142	482	192	349
43	195	93	133	143	72	193	517
44	414	94	396	144	234	194	124
45	54	95	223	145	252	195	347
46	15	96	31	146	417	196	138
47	78	97	326	147	23	197	380
48	233	98	340	148	48	198	98
49	22	99	300	149	509	199	286
50	422	100	220	150	423	200	18

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline d \& m \& d \& m \& a \& m \& a \& m \\
\hline \({ }_{202}^{201}\) \& \begin{tabular}{l}
140 \\
\({ }_{238}\) \\
\hline 18
\end{tabular} \& \({ }_{251}^{252}\) \& \({ }^{1123}\) \& \begin{tabular}{l}
301 \\
302 \\
\hline 02
\end{tabular} \& \({ }^{206}\) \& 351 \& 29 \\
\hline -203 \& \begin{tabular}{l}
211 \\
\hline 204 \\
\hline 304
\end{tabular} \& \begin{tabular}{l}
253 \\
\\
254 \\
\hline 54
\end{tabular} \& \& \({ }^{303}\) \& \({ }_{441}^{4961}\) \& -353 \& \({ }^{186}\) \\
\hline \({ }^{205}\) \& -395 \& \({ }^{255}\) \& \({ }_{2}^{240}\) \& 305 \& 177 \& \({ }^{355}\) \& \({ }_{216}^{16}\) \\
\hline \({ }^{207}\) \& \({ }_{29} 29\) \& \({ }_{257}^{259}\) \& \({ }_{473}^{448}\) \& \({ }_{307}^{306}\) \& \({ }_{335}^{507}\) \& \({ }^{355}\) \& 199 \\
\hline 208
209 \& \(46^{6}\) \& 258
\({ }_{25} 59\) \& \begin{tabular}{l}
514 \\
463 \\
\hline 1
\end{tabular} \& 308
309 \& \({ }_{4}^{425}\) \& -358 \& 29 \\
\hline \({ }^{210}\) \& \({ }_{382}\) \& \({ }_{2}^{260}\) \& \({ }_{462}^{46}\) \& \({ }_{310}\) \& 502 \& 360 \& \({ }_{488}^{68}\) \\
\hline \({ }_{212}^{212}\) \& \({ }_{268}^{248}\) \& \({ }_{262}^{261}\) \& \({ }_{203}^{202}\) \& \({ }_{312}^{312}\) \& 122
209 \& \({ }_{362}^{361}\) \& \({ }_{4}^{342}\) \\
\hline \({ }^{213}\) \& 165 \& \({ }^{263}\) \& \({ }^{254}\) \& \({ }^{313}\) \& \({ }^{266}\) \& \({ }^{363}\) \& 72 \\
\hline \({ }_{215}^{214}\) \& 247 \& \({ }^{265}\) \& 204 \& 315 \& 65 \& \({ }_{365}^{364}\) \& \({ }_{4}^{421}\) \\
\hline 216 \& \({ }^{437}\) \& \({ }^{266}\) \& 500 \& \({ }^{316}\) \& 134 \& \({ }^{366}\) \& \({ }_{4}^{444}\) \\
\hline \({ }_{218}^{218}\) \& \({ }_{181}^{143}\) \& \({ }_{268}^{268}\) \& \({ }^{255}\) \& \({ }_{318}^{318}\) \& \({ }_{471}^{47}\) \& 368 \& \({ }_{449}\) \\
\hline \({ }^{219}\) \& \({ }_{466}^{100}\) \& \begin{tabular}{l}
269 \\
270 \\
\hline 20
\end{tabular} \& 389
373
373 \& \begin{tabular}{l}
319 \\
320 \\
\hline
\end{tabular} \& 498 \& -369 \& 345 \\
\hline \({ }^{221}\) \& \({ }_{481}\) \& \({ }^{271}\) \& \({ }^{214}\) \& 321 \& 278 \& 371 \& 163 \\
\hline \({ }_{223}^{222}\) \& \({ }^{251}\) \& \begin{tabular}{l}
272 \\
273 \\
\hline 2
\end{tabular} \& \begin{tabular}{l}
419 \\
306 \\
\hline
\end{tabular} \& 322
323
3 \& - \({ }^{26}\) \& \begin{tabular}{l}
372 \\
373 \\
\hline 73
\end{tabular} \& \({ }_{308}^{249}\) \\
\hline \& \({ }_{41}\) \& \({ }^{274}\) \& 205 \& \({ }_{324}\) \& 120 \& 374 \& \({ }_{283}\) \\
\hline \({ }^{226}\) \& \({ }_{160}\) \& 276 \& 334 \& \({ }_{326}\) \& \({ }^{97}\) \& 376 \& \({ }_{512}\) \\
\hline \({ }^{227}\) \& \({ }^{81}\) \& \({ }_{2}^{278}\) \& 501 \& 327 \& 384 \& 377 \& \({ }^{494}\) \\
\hline \({ }^{229}\) \& \({ }_{475}\) \& 279 \& \({ }_{134}\) \& \({ }_{329}^{328}\) \& \({ }_{89}\) \& \({ }_{379}\) \& \({ }^{332}\) \\
\hline 231 \& \({ }^{67}\) \& 281 \& 497 \& \begin{tabular}{l}
330 \\
331 \\
\hline
\end{tabular} \& \(\stackrel{149}{181}\) \& \begin{tabular}{l}
380 \\
381 \\
\hline 81
\end{tabular} \& \({ }_{439}^{339}\) \\
\hline \({ }^{232}\) \& 114 \& 282 \& 397 \& 332 \& 274 \& 382 \& 207 \\
\hline \({ }^{234}\) \& \({ }_{94}^{292}\) \& \begin{tabular}{l}
284 \\
284 \\
\hline 1
\end{tabular} \& 280 \& \({ }_{334}^{333}\) \& \({ }_{2}^{454}\) \& \begin{tabular}{l}
383 \\
384 \\
\hline
\end{tabular} \& 276
197 \\
\hline 2365 \& 130
484 \& \begin{tabular}{l}
285 \\
286 \\
\hline
\end{tabular} \& 224
390
3 \& 335
336 \& \({ }_{244}^{191}\) \& \begin{tabular}{l}
385 \\
386 \\
\\
\hline
\end{tabular} \& \({ }_{\substack{361 \\ 315}}\) \\
\hline 237 \& 20 \& \({ }^{287}\) \& 354 \& \({ }_{337}\) \& 391 \& 387 \& 197 \\
\hline \({ }_{239}^{238}\) \& 516
137 \& 288
289 \& 32
374 \& \({ }_{339}^{338}\) \& \begin{tabular}{l}
386 \\
363 \\
\hline
\end{tabular} \& (3888 \& 442
155 \\
\hline \({ }_{241}^{240}\) \& 285
237 \& \({ }_{291}^{290}\) \& \({ }_{320}^{527}\) \& \({ }_{341}^{340}\) \& 355
430 \& \({ }_{391}^{390}\) \& \({ }_{404}^{145}\) \\
\hline \({ }^{242}\) \& \({ }^{394}\) \& \({ }^{292}\) \& 215 \& \({ }^{342}\) \& 491 \& \({ }_{392}\) \& \({ }^{456}\) \\
\hline \({ }_{244}^{24}\) \& 241 \& \({ }_{294}^{293}\) \& \({ }_{341}^{28}\) \& \({ }_{344}^{34}\) \& 109 \& 394 \& 178 \\
\hline 245 \& (144 \& \({ }_{296}^{295}\) \& \begin{tabular}{l}
420 \\
366 \\
\hline
\end{tabular} \& 345
346 \& 270
375 \& 395
396 \& \({ }_{411}\) \\
\hline 248

2 \& +465 \& 2297 \& (301 \& 344
348

3 \& | 259 |
| :---: |
| |
| 317 | \& (397 \& 5088

\hline 249 \& 159 \& 299 \& 511 \& 349 \& 51 \& 399 \& 183

\hline \& \& 300 \& \& 350 \& 433 \& 400 \& 336

\hline
\end{tabular}

Fig.6B

Fig. 7

$X=k^{y}$ MODULO N				
FOR $R=3$	x	y	x	y
$N=17$	d	m	d	m
	1	0	9	2
	2	14	10	3
ROM MODULO N				
	3	1	11	7
	4	12	12	13
	5	5	13	4
	6	15	14	9
	7	11	15	6
	8	10	16	8

Fig. 8

PARALLEL ACCESS ALIGNMENT NETWORK WITH BARREL SWITCH IMPLEMENTATION FOR D-ORDERED VECTOR ELEMENTS

The invention described herein was made in the performance of work under NASA Contract Number NAS 2-9456 and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958 (72 Stat. 435, 42 U.S.C. 2457).

CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of application Ser. No. 820,234 filed July 29, 1977, now U.S. Pat. No. 4, 162,534.

In copending application, Ser. No. 682,526 , now U.S. Pat. No. 4,051,551, for a "Multidimensional Parallel Access Computer Memory System", filed in the name of D. H. Lawrie et al, and assigned to the assignee of present invention, there is described and claimed a parallel data processing system for storing and fetching d-ordered vectors. Although not limited thereto, the present alignment network invention may be used with or in such a system.

BACKGROUND OF THE INVENTION

The present invention relates to an alignment network for use in a parallel data processing environment. More particularly, the present invention finds application in unscrambing a d-ordered vector having its elements stored a distance d apart from each other in the parallel memory modules of a parallel data processor.

In the prior art, as disclosed in U.S. patent application, Ser. No. 682,526, now U.S. Pat. No. 4,051,551, filed May 3, 1976, in the names of D. H. Lawrie and C. R. Vora and assigned to the assignee of the present invention, there is described a cross-bar network for transferring and aligning data between a set of parallel memory modules and a set of parallel processors. The cross-bar network so disclosed is relatively easy to program or control; however, it is also relatively costly in components requiring N^{2} elementary elements to transmit data through wherein \mathbf{N} is the number of parallel memory modules storing data to be aligned.

Other prior art networks require fewer components but present difficult control problems. Typical of this type of alignment network is the Benes network requiring only $2 \mathrm{~N} \log _{2} \mathrm{~N}$ elements, see Benes, V. E., "Optimal Rearrangeable Multi-stage Connecting Networks, Part 2," Bell System Technical Journal Vol. 43, 1964, p. 1641.

Still other prior art alignment networks require fewer omponents than the cross-bar network and are not too difficult to control or program, but these require multiple data flow transitions cycling through a single alignment layer thereby increasing the time required for data to pass through the network; see Roger C. Swanson, "Interconnections for Parallel Memories to Unscramble p-ordered Vectors", IEEE trans. Computers, November 1974. Swanson's "p-ordered vectors" corresponds to the "d-ordered vector" terminology used herein.

Therefore, it is an object of the present invention to provide an alignment network for d-ordered vectors requiring fewer components than a cross-bar network and yet being easy to control.

It is yet another object of the invention to provide alignment for d-ordered vectors while requiring only a
single pass through any of the elements used for alignment.

SUMMARY OF THE INVENTION

5 The above and other objects of the invention are realized through an alignment network for use with a parallel data system having \mathbf{N} parallel data input ports and \mathbf{N} parallel data output ports, the alignment network therebetween having a first and a second barrel switch.

With reference to FIG. 1, the alignment network of the present invention interfaces between a plurality of memory modules M0-M6 and a plurality of processing elements P0-P6. Data stored in the memory modules M0-M6 may be accessed in parallel through Memory Ports MP0-MP6, aligned in the Alignment Network 11 as directed by control word m , and fed through Processing Ports PP0-PP6 for parallel processing by the

Processing Elements P0-P6. Although seven Memory Modules M0-M6 and seven Processing Elements P0-P6 are shown in FIG. 1, in alternate embodiments, other system arrangements having differing numbers of Memory Modules and Processing Elements may be used, see U.S. patent application Ser. No. 682,526 filed May 3, 1976, now U.S. Pat. No. 4,051,551 issued Sept. 27, 1977 by D. H. Lawrie et al for a "Multidimensional Parallel Access Computer Memory System', assigned to the assignee of the present invention.
For purposes of illustration, a 5×5 two-dimensional matrix comprising Data Elements a_{11} through as5 is shown loaded into Memory Modules M0-M6. To process in parallel Data Elements $a_{11}, a_{12}, a_{13}, a_{14}$, and a_{15} the Alignment Network need merely establish a direct data flow path between Memory Ports MP0, MP1, MP2, MP3 and MP4 and Processing Ports PP0, PP1, PP2, PP3 and PP4, respectively. However, to process in parallel data elements $a_{11}, a_{21}, a_{31}, a_{41}$ and a_{51} the alignment network must perform in essence a shifting operation to direct the data elements $\mathbf{a}_{11}, a_{21}, a_{31}, a_{41}$ and a_{51} to processors P0, P1, P2, P3 and P4, respectively. As can be seen, each data element in the set $a_{11}, a_{21}, a_{31}, a_{41}$ and a_{51} is shifted five Memory Modules (modulo 7) from the preceding data element. The shift occurs modulo 7 since there are seven memory modules (M0-M6). In general, the required shift would occur modulo \mathbf{N} where N equals the number of memory modules.
For illustrative purposes, a specific example of how the alignment network 11 of the present invention functions will be examined followed by a more general approach to extend the application of the present invention to more universal situations. With reference to FIG. 2, the alignment network 11 having seven (7) Memory ports MP0-MP6 and seven (7) Processing Ports PP0-PP6 is partitioned into a first level 13, a second level 15 and a third level 17.
Each level 13, 15 and 17 includes seven (7) two-input selection gates 19, each having a first input 21, a second input 23, an output 25 and two selection control inputs EO and ES, see FIG. 3. For purposes of discussion, the control inputs of the selection gates 19 in the first level 13 are designated $\mathrm{EO}^{\prime \prime}$ and $\mathrm{ES}^{\prime \prime}$ while the control inputs of the selection gates 19 in the second level 15 are designated EO' and ES'. When a logical one or true level is present on the $E O$ (or $E O^{\prime}, \mathrm{EO}^{\prime \prime}$) control input, a data communications path is provided between the first input 21 and the output 25 . With a logical one or true level present on the ES (or ES', ES') control input, a data communications path is provided between the second input 23 and the output 25 . All control inputs EO and ES are fashioned to receive complementary binary levels, so that a true or logical one level at EO implies a false or logical zero level at ES and vice-versa. The preferred embodiment fabrication of the simple two-input selection gate 19 will be detailed hereinafter.
All selection gates 19 in a given level 13,15 or 17 may have their control inputs EO and ES connected in parallel. Thus, three bits of a control word m determines the data flow or shifting between the memory ports MP0-MP6 and the processing ports PP0-PP6. The most significant bit of m controls level 17, the second most significant bit controls level 15, and the least significant bit controls level 13. In essence the control word m provides control to the ES input of the selection gates 19 while a binary complement of m feeds the EO input of the gates 19 .

With continued reference to FIG. 2, it can be seen that a control word m of 000 would introduce no shifting and thus direct data flow would occur between memory ports MP0-MP6 and processing ports PP0-PP6 respectively. For a control word m of 100 , a shift of 4 (modulo 7) would occur in level 17 with no shift in levels 13 and 15 . Likewise, a control word m of 010 would introduce a shift of 2 (modulo 7) in level 15 and a control word m of 001 would introduce a shift 3 (modulo 7) in level 13. Shifts may occur, of course, in more than one level. For example, a control word m of 111 would generate a shift in all three levels 13,15 and 17. However, in practice, for the alignment network 11 as shown in FIG. 2, control words 110 and 111 are not required since the same shift amount occurs using 000 and 001 respectively.

The selection gate 19 is readily fashioned from a first AND gate 27, a second AND gate 29 and an OR gate 37, see FIG. 3. The AND gate 27 is fed by EO and by direct input 21. The AND gate 29 is fed by ES and shift input 23. The OR gate 37 is fed by both AND gates 27 and 29 and provides output 25. In some logic families the OR gate 37 may be fabricated as a "wired-OR" rather than as an actual physical gate.

The selection gate 19 fabrication as above described is unidirectional in that it provides data flow only from the memory ports MP0-MP6 to the processing ports PP0-PP6. Therefore, a reverse path must be provided to permit data to flow from the processing ports PP0-PP6 to the memory ports. Such reverse flow is easily provided for, see FIG. 4, by providing a first level 13^{\prime}, a second level 15^{\prime} and a third level 17^{\prime}.

Each level 13', $\mathbf{1 5}^{\prime}$ and 17^{\prime} includes seven (7) twoinput selection gates 19 , each for transferring data back to the memory ports MP0-MP6 in the same manner in which the data was transferred to the processing ports PP0-PP6, see FIG. 2. By comparing FIG. 2 with FIG. 4 , one can see that under the control of a simple control word m , data can be pulled from the memory ports MP0-MP6, sent to the desired processing ports PP0-PP6 and returned back to the memory ports MP0-MP6 from whence it came. Each level 13, 15, and 17 of FIG. 2 corresponds to each level 13', 15' and $\mathbf{1 7}^{\prime}$ respectively of FIG. 4 in that the reversed data flow is channeled back to the memory ports MP0-MP6 in the same manner in which it is flowed to the processing ports PP0-PP6.
The alignment network 11 above described for a system having seven (7) memory ports may be extended to the general case wherein the number of memory ports equals \mathbf{N}. In the general case, the alignment network 11 includes a plurality of levels, each level including N number of two-input selection gates 19. The number of levels is equal to $\log _{2}(\mathrm{~N})$ rounded up to the nearest integer. In the above example, N equalled 7 and $\log _{2}(\mathrm{~N})$ rounded up to the nearest integer equalled 3. The total number of gates 19 required in the general case is then N multiplied by $\log _{2} \mathrm{~N}$ rounded up to the nearest integer.
Each level of the alignment network 11 either allows data to flow directly through or provides a data shift depending upon the control word m and more particularly upon the voltage levels applied to the ES and EO of each selection gate 19. The amount of shift in each level is equal to $\mathrm{k}^{2(L-1)}$ modulo N , where k is relatively prime to \mathbf{N} and is a primitive root of N, N is the number of memory modules, and L is the alignment network 11 level ranking. For example, referring to FIG. 2,
wherein $k-3$, the shift occuring in the first level 13 is $3^{2(1-1)}$ modulo $7=3$. In the second level 15, the shift is $3^{2(2-1)}$ modulo $7=2$. The third level 17 shift is $3^{2(3-1)}$ modulo $7=4$.
In operation, the distance d (which is the distance between elements sought to be accessed) is known and the value m must be generated. For example, in FIG. 1 to access the elements $a_{11}, a_{12}, a_{13}, a_{14}$ and a_{15} the distance d is unity and no shifting is required through the alignment network. Hence, it is clear in this case that m must equal zero. However, to access the data elements $a_{11}, a_{21}, a_{31}, a_{41}$ and a_{51}, the distance d is equal to five (5) and the control word m must be calculated to generate the proper shift through the alignment network 11.

The calculation of m is derived from the relationship $\mathbf{d}=\mathbf{k}^{m}$ modulo N, see FIG. 5, which illustrates the generation of m for the system of FIG. 2. In the preferred embodiment the value d is used to address a ROM which has been programmed to the equation $d=\mathbf{k}^{m}$ modulo N to produce the value m at address d. FIG. 5 illustrates the generation of m for values of d in a system having $\mathrm{k}=3$ and $\mathrm{N}=7$. Alternatively, of course, m could be generated by software given the values of d, k, and N. However, hardware generation of m is preferred since in parallel processors, speed is nearly always of 25 the essence.

The alignment network 11 shown in FIG. 2 was developed for a system of seven (7) memory modules and a \mathbf{k} of 3 . Other arrangements may, of course, be developed. For example, in a system having seventeen (17) memory modules, a k of $3,5,6,7,10,11,12$ or 14 may be used. FIGS. 6A-6C as positioned as shown in FIG 6 illustrates in tabular format the generation of m for a system having $\mathbf{k}=3$ and the number (N) of memory modules equal to 521.
Other arrangements of the present invention may be fabricated. As an illustrative example, referring to FIG 2 , levels may be combined in parallel rather than serial. If two levels were combined, for example level 13, and level 15, each selection gate 19 would require four inputs instead of two to provide for the shift required in level 13, the shift of level 15, the combined shift of levels 13 and 15 and direct through data flow. Hence, the design trade-off is the complexity of gates 19 versus an increased number of gates 19 and an increased number of levels.

Parallelism may be carried even further by combining all levels 13,15 and 17 and by using eight-input selection gates 19.

Further, in certain applications it may be desirable to insert data storing, shifting or processing apparatus between the alignment network of the present invention and the parallel memory modules storing the data to be aligned. For example, one such apparatus would be an Electronic Barrel Switch for Data Shifting of the type disclosed by R. A. Stokes et al in U. S. Pat. No. $3,610,903$. The disclosed Barrel Switch comprises a matrix of gates arranged in rectangular configuration and adapted to shift in a single clock time a multibit parallel input a preselected number of places to the left or right, either end-off or end-around. The Barrel Switch insertion permits d-ordered vectors stored in memory at various starting or base locations to be shifted to a left-most memory starting location for processing through the alignment network.

Other obvious modifications are apparent. For example, with reference to FIGS. 2 and 4, it can be appreciated that the furthest left-most selection gate 19 in all
levels 13,15 and 17 provides only direct through data flow regardless of control word m. Hence, in many applications, the left-most selection gate 19 may be deleted.
With reference now to FIG. 7, the present invention may be implemented through the use of a first barrel switch 33 and a second barrel switch 35 . As may be appreciated by a comparison to FIG. 2, and a review of the discussion relating thereto, the implementation of FIG. 7 performs an alignment between a plurality of memory ports MP0 through MP16 and a plurality of processor ports PP0 through PP16. It is appreciated that alignment may be implemented for any number of memory and processor ports, such as for the seven (7) shown in FIG. 2 and FIG. 5 or for the five-hundred and twenty-one (521) detailed in FIGS. 6A-6C.
The function of the first barrel switch 33 is merely to shift when required the stored d-vectors to the left-most starting position for processing through the barrel switch 35. The ordered output data paths 1 through 16 of the first barrel switch 33 are connected to the ordered input data paths 0 through 15 of the second barrel switch 35 in the sequence suggested in FIG. 8 for the equation $x=k^{y}$ modulo N wherein x represents the ordering of the output data paths of the first barrel switch 33 and y represents the ordering of the input data paths of the second barrel switch 35 . N is the number of memory ports and k is a primitive root of N. For the embodiment shown, N equals 17 and k equals 3 . The zero (0) ordered output data path of the first barrel switch 33 is connected directly to the zero (0) ordered processor port.

The ordered output data paths 0 through 15 of the second barrel switch 35 are connected to the processor ports PP1 through PP16 in a sequence opposite to the sequence interconnecting the first barrel switch 33 and the second barrel switch 35 .
The control operations for the above-described FIG. 7 implementation are relatively simple. First, an S control input is provided to the first barrel switch 33 to shift the starting data element of a stored d-vector to the left-most (0) output data path of the first barrel switch 33. Second, an m control input is provided to the second barrel switch 35 to produce the desired shift increment therein. The desired shift increment is equal to the distance d (which is the distance between the data elements sought to be accessed).

The calculation of m is derived from the relationship $\mathrm{d}=\mathrm{k}^{m}$ modulo N. See FIG. 8 which illustrates the calculation of m for the system of FIG. 7. In the preferred embodiment the value d is used to address a ROM which has been programmed to the equation $\mathrm{d}=\mathrm{k}^{m}$ modulo N to produce the value m at address d. FIG. 8 illustrates the generation of m for values d in a system having $k=3$ and $N=17$. Alternatively, of course, m could be generated by software given the values of d, k and N. However, hardware generation of m is preferred since in parallel processors, speed is nearly always of the essence.

Other arrangements of the present invention may be fabricated. For example, in applications wherein d vectors are stored having starting data elements all available at memory port MPO, the first barrel switch 33 is not required and may be deleted. Also, the alignment network is not, of course, limited to being interposed between memory and processor ports but may be interposed between any set of parallel ports between which alignment is desired.

Thus, while particular embodiments of the present invention have been described and illustrated, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit and scope of the invention.

What is claimed is:

1. A parallel data access alignment network for aligning data between \mathbf{N} ordered input ports and \mathbf{N} ordered output ports wherein \mathbf{N} is an integer greater than one, said data comprising d -ordered vector data elements spaced d modulo \mathbf{N} input ports apart, said network comprising:
a first barrel switch having \mathbf{N} ordered input data paths and N ordered output data paths, said \mathbf{N} ordered input data paths thereof being connected in direct sequential order to the \mathbf{N} ordered input ports, said first barrel switch providing a data path connection for a data element in said d-ordered vector data elements to the lowest ordered output data path of said first barrel switch in said \mathbf{N} or- 20 dered output data paths thereof;
a second barrel switch having $\mathrm{N}-1$ ordered input data paths and $\mathrm{N}-1$ ordered output data paths and being responsive to a shift control signal for shifting data flow therebetween, said $\mathrm{N}-1$ ordered input data paths thereof being connected to the $\mathrm{N}-1$ highest ordered data output paths of said N ordered output data paths of said first barrel switch according to the relationship $x=k y$ modulo N wherein x represents the output data path ordering of said first barrel switch, y represents the input data path ordering of said second barrel switch and
