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monly used techniques are the water and bone corrections 
which assume that the materials in the scan field are either 
water-equivalent or dense bone-equivalent in X-ray attenu- 
ation characteristics. For more information regarding these 
techniques, reference can be made to “A Method for Cor- 
recting Bone Induced Artifacts in Computed Tomography 
Scanners” by P. M. Joseph and R. D. Spital in the Journal 
of ComputerAssisted Tomography vol. 2, pp. 481-487,1978 
and “Post-Reconstruction Method for Beam Hardening in 
Computed Tomography” by 0. Nalcioglu and R. Y. Lou in 
Physics in Medicine and Biology, vol24, pp.33&340,1979. 

In another beam hardening correction method, calibration 
tubes having a known transmission characteristic are used. 
However, this method is often not effective for two reasons: 
1) different regions in the scan field experience different 
degrees of beam hardening, and 2) calibration tubes cannot 
capture the beam hardening characteristics in vicinity of a 
patients bone because the calibration tube must be placed 
outside the body. 

There exists a need in the art of CT imaging and QCT for 
an improved method of beam hardening correction. An 
improved beam hardening correction technique will provide 
QCT measurements and CT images with improved accuracy. 

OBJECTS AND ADVANTAGES OF THE 
INVENTION 

Accordingly, it is a primary object of the present invention 
to provide an improved method for beam hardening correc- 
tion that: 
1) accurately corrects beam hardening errors; 
2) does not require knowledge of the attenuation character- 

3) does not require calibration tubes; 
4) can be used with objects comprising many different 

materials. 
These and other objects and advantages will be apparent 

upon reading the following description and accompanying 
drawings. 

istics of the X-ray detectors used in the CT imager; 

SUMMARY OF THE INVENTION 

The present invention provides a method for beam hard- 
ening correction in CT imaging data. The present method 
includes reiterative calculations that converge on accurate 
measurements of X-ray attenuation. In a first variation of the 
present invention, the following information is required: 

1) The attenuation spectra for materials within the object 
being imaged. Each voxel is assumed to contain at most 
two materials. 

2) The output spectra of the X-ray source 
3) The output data from the X-ray detectors. 
An initial estimation is made of volume fraction of the 

two materials in each voxel. Then, a reiterative calculation 
is performed that converges upon the true volume fraction 
for each material in each voxel. 

In a second variation of the present invention. the fol- 
lowing information is required: 

1) Two basis attenuation spectra. The attenuation spectra 

2) Output spectra from the X-ray source at two different 

3) Output data from the X-ray detectors at the two X-ray 

An initial estimation is made of the relative weighting of 
the two basis attenuation spectra based on a linear combi- 
nation of the basis spectra. Then, a reiterative calculation is 

do not need to correspond to real materials. 

settings (e.g. two different X-ray tube voltages). 

source settings. 

1 
METHOD FOR BEAM HARDENING 
CORRECTION IN QUANTITATIVE 

COMPUTED X-RAY TOMOGRAPHY 

RELATED APPLICATIONS 

The present application claims the benefit of priority from 
copending provisional patent application 601108,257, filed 
on Nov. 12, 1998, which is hereby incorporated by refer- 
ence. 

This invention was made with U.S. Government support 
under grant numbers NCC-5186 and NCC2-5088 awarded 
by NASA. The National Institutes of Health also supported 
the development of the present invention under grant P41- 
RR09784. The Government has certain rights in the inven- 
tion. 

FIELD OF THE INVENTION 

The present invention relates generally to computer 
assisted tomography and quantitative computed tomography 
(both known as CT imaging). More particularly, it relates to 
a method for processing CT imaging data that corrects for 
beam hardening errors. 

BACKGROUND OF THE INVENTION 

CT imaging is extensively used for medical imaging and 
the imaging of objects. In CT imaging, X-rays are projected 
through the object being imaged, and these X-rays are 
detected by arrays of detectors. The X-rays are projected 
through the object in many different directions. The com- 
bination of X-ray trajectories through the object provides 
data from which the internal structure of the object can be 
determined. Contrast in CT images is provided by variations 
in X-ray attenuation within the object. No other contrast 
parameters are available. Therefore, accurate measurements 
of X-ray attenuation are required for high quality CT 
images. 

Quantitative computed tomography (QCT) is a technique 
that allows for quantitative measurements of physical prop- 
erties related to X-ray attenuation. QCT has been used for 
in-vivo quantitative measurements of bone density, for 
example. The uses of QCT include assessment of spinal 
trabecular bone, evaluation of drug therapy in the treatment 
of osteoporosis, screening for osteoporosis, fracture risk 
assessment and many others. Although QCT is now an 
established tool for bone densitometry, there exist major 
issues affecting the accuracy and precision of QCT mea- 
surements. 

QCT measurements and CT images are affected by beam 
hardening error in X-ray attenuation measurements. Beam 
hardening error is caused by the energy-dependence of 
X-ray transmission within an object being imaged. In any 
material, low-energy X-rays are attenuated more strongly 
than high-energy X-rays. Therefore, as a polychromatic 
X-ray beam passes through an object, the proportion of high 
energy X-rays in the beam increases, and attenuation 
decreases. Long path lengths through an object therefore 
appear to have an excessively small attenuation. When an 
image is computed, the center of an object appears to have 
a lower attenuation than the outer regions of the object. In 
this way, beam hardening error produces inaccurate mea- 
surements in QCT. Correction of beam hardening errors has 
been an active area of research since 1975. Some popular 
current correction techniques for beam hardening require 
strict assumptions about the X-ray attenuation characteris- 
tics of the materials within the object. The two most com- 
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performed that converges upon the relative weightings of the 
basis attenuation spectra that produce the observed measure- 
ments. A separate reiterative calculation is performed for 
each voxel. In this way, an accurate measurement of the 
attenuation spectrum for each voxel is provided. 

DESCRIPTION OF THE FIGURES 

FIG. 1 (Prior Art) shows a CT imaging device as known 
in the art. 

FIG. 2 shows exemplary attenuation spectra for bone, soft 
tissue and fat. 

FIGS. 3a-3c illustrate an essential restriction on charac- 
teristics of attenuation spectra used in the present method. 

DETAILED DESCRIPTION 

FIG. 1 shows a CT imaging device as known in the art of 
CT imaging. The device includes an X-ray source 20, such 
as an electron tube, and X-ray detectors 22. An object 24 to 
be imaged is disposed between the source 20 and detectors 
22. The source and detectors are attached to a rigid frame 26 
that is free to rotate around the object 24. X-ray beam paths 
28 extend from the source to detectors through the object 24. 
In operation, X-ray intensity is measured at every detector at 
many different orientations of the rigid frame with respect to 
the object. The number of discrete measurement made in a 
complete scan is equal to NxK, where N is the number of 
positions of the frame used during a scan, and K is the 
number of detectors. In the following discussion, it is 
understood that there are NxK beam paths, with each beam 
path corresponding to an X-ray intensity measurement. 

The object is divided into volume elements, or voxels. 
Each voxel within the object is located in the paths of several 
beam paths. Therefore, each voxel affects many X-ray 
intensity measurements. The challenge of CT imaging is to 
separate the X-ray attenuation contributions from each 
voxel. 

THEORY 

The attenuation along any beam path is a function of the 
attenuation coefficient of the material in the beam path and 
the energy spectrum of the X-ray source. For a given beam 
path r through the object, the corresponding detector mea- 
surement C is given by: 

C(r)=-loslS(E)exp(lu(x,E)dx)dE 

where: 
1) S(E) is the energy spectrum of the X-ray source and must 

be known to the experimenter, and 
2) p(x,E) is the linear attenuation coefficient of a voxel at 

X-ray photon energy E and location x. 
Consider the operator B defined by Bp=C. The operator B 

is nonlinear with respect to p: 

BOCl+L4)*BICl+BlcZ 

This nonlinear characteristic is the main cause of beam 
hardening artifacts in CT images. 

The problem of calculating CT images while minimizing 
beam hardening errors can be restated as follows: given S(E) 
and C(r), find p(x,E) that satisfies C(r)=-logJS(E)exp(J# 
(x,E)dx)dE. 

The problem of constructing a CT image without beam 
hardening errors is to find p(x,E) from the detector mea- 
surements C(r). Since p(x,E) is a three-dimensional 
function, and C(r) is a two dimensional function, the prob- 

4 
lem is not well posed. In order to find a stable solution, 
p(x,E) must be regularized. The present invention includes 
two different regularization methods associated with two 
different CT methods: single energy reconstruction and dual 

FIG. 2 shows typical relative attenuation coefficients p(E) 
for bone, soft tissue and fat. The attenuation coefficients are 
monotonically decreasing with increasing E. 

s energy reconstruction. 

10 SINGLE ENERGY RECONSTRUCTION 

In the single energy reconstruction embodiment of the 
present invention, it is necessarily assumed that each voxel 
consists of at most two different known materials. The 
materials may be different in each voxel. For a particular 
voxel at location x, the attenuation coefficient p(x,E) can be 
written as a linear combination of two attenuation coeffi- 
cients according to the equation 

lc(x,E)=v(x)lcl(x,E)+(1-v(x))lcz(x,E) 
20 

where pl(x,E) is the attenuation coefficient for material 1, 
p2(x,E) is the attenuation coefficient for material 2, and v(x) 
is the volume fraction of material 1 within the voxel at 
location x. Other voxels within the object may contain 

25 materials other than materials 1 and 2, but each voxel is 
modeled to have exactly two distinct materials. A C T  image 
is provided by finding the volume fraction v for each voxel. 

In the present invention it is necessary to impose the 
following requirements on the attenuation coefficients p1 

1) Both p1 and p2 must be monotonically decreasing with 
increasing E, and 

2) The quantity p1-p2 must be either positive and mono- 
tonically decreasing, or negative and monotonically 

Although not always specifically noted in the present 
description, it is understood that the attenuation coefficients 
p are functions of location x and photon energy E, and the 
volume fraction v is a function of location x. 

FIGS. 3a-3c illustrate requirement (2). FIG. 3a shows 
attenuation coefficients which cross, and therefore violate 
requirement (2). FIG. 3b shows attenuation coefficients for 
which p1-p2 is either positive monotonic increasing or 
negative monotonic decreasing and therefore violate 

45 requirement (2). FIG. 3c shows an exemplary plot of attenu- 
ation coefficients that satisfy requirement (2). 

30 andpu,: 

35 increasing. 

40 

Next we define an operator P that is linear in p: 

Plc(r)=l JS(E)lc(x,E)dEdx 

It is noted that P-' exists and that P-'P+I. This is true 
because 

JS(E)P(x,E)dE=P-lPp 

55 According to the single energy reconstruction method of 
the present invention, the volume fraction v(x) in the voxels 
comprising the object is found using the following algo- 
rithm: 
1) Assume an initial estimate for v(x), given by v"(x). 

6o 2) Calculate a total estimated attenuation coefficient p" using 
the equation and the current estimate of v(x), given by 
v"(x) (v"(x)=v"(x) in the first iteration): 

Lc"=v*(x)lcl(x,~)+(l-v*(x))l"z(x,~) 

65 3) Calculate p"+' using the equation: 

,uk+l=P-l{P,&B,uk+C(r)] 
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where C(r) is the measured data. 
4) Solve for vk+' in the following equation: 

D(x) are found. The attenuation spectrum may be used to 
identify materials within the voxel, or for other purposes. 

According to the dual energy reconstruction method of 
the present invention, the basis coefficients A and D are 

s found by using the following algorithm: 
1) Assume initial estimates for basis coefficients A(x) and 

D(x), given by Ao(x) and Do(x). 
2) Calculate pk using the equation and the current esti- 

mates of A and D, given by Ak(x) and Dk(x) (A0(x)=Ak(x) 

p=J.+ljl+( l - " k f l ) L  

where: 

j1=JS(E)pl(x,WE, and 

L=JS(E)h(x,E)dE. 
i o  and D0(x)=Dk(x) in the first iteration): 5) Substitute ++' for vk in step (2), and reiterate the process 

until successive values vk+', v ~ + ~ ,  v ~ + ~ .  . . converge. In 
one particular embodiment, convergence is defined by: 

~ ( X , E ) = A ~ ( ~ ) ~ ~ ( X , E ) + D ~ ( X ) ~ ( X , E )  

3) Using pk, calculate pk+'"' for the spectrum $(E) using 
IIBpk+' - c(r)llz o,98, 
IIBP - c(r)llz 

15 the equation: 

,u?l,S1=P-l{ Ppk-Bpk+C(r)}, 

Generally, the algorithm should be iterated at least twice to 
for significant improvement over conventional techniques. 
More preferably, the algorithm is repeated 4-5 times. Sig- 2o 4) Using Pk, calculate Pk+l"z for the spectrum Sz(E) using 
nificant improvements are generally not provided by repeat- 
ing the algorithm more than 5 times. 

The initial estimate vo does not need to be close to the 
final value of vo in order to arrive at a correct solution using 25 where operators p, B, and c(r) are defined with respect to 
the present method. However, an initial estimate close to the 
final value of the convergent series will reduce the number 5) Calculate Ak+' and Dk+' using the following simultaneous 
of iterations and the processing time. 

It is noted that the present invention cannot be applied to 

single voxel. This is because calculations for every voxel 30 
affect calculations for other voxels, and the entire solution 
must be self-consistent. 

where Operators p, B, and c(r) are defined with 
Si(E). 

the equation: 

,u?l,SZ=P-l{ Ppk-Bpk+C(r)}, 

S Z W  

equations: 

a single voxel in isolation, unless the object comprises a ~l,S1=Ak+ljl ,S1+Dk+lL,sl ,  and 

~ l ~ S Z = ~ k + l j l , S Z + ~ k + l ~ , s z ,  

where B1 .s1= IS 1 (E)Pl (E)dE, L l  .sz= I SZ(E)Ll(E)dE, Lz,s1= 
DUAL ENERGY RECONSTRUCTION ISl(E)PZ(E)dE, and 

35 Lz,sz=ISz(E)Lz(E)dE. In the dual energy reconstruction, it is assumed that the 
attenuation coefficient p(x,E) can be expressed as a linear 
combination of two basis attenuation functions pl(x,E) and 
IUZ(X,E): gence is defined by: 

6) Substitute Ak+1 and ~ k + l  in step (21, and reiterate the 
and Dk+' , 

one particular embodiment, conver- 
process until successive values Ak+l, Ak+z 
~ k + z ,  , , converge, 

40 
p(x,E)=A(x)pi(x,E)+D(~)pz(~,E), 

"Bpk+' - c ( r ) l l z  t 0.98 for SI(,?) and #,(E) where basis coefficientsA(x) and D(x) are real numbers. The IIBiuk - c(r)llz 
basis functions pl(x,E) and h(x,E) do not necessarily cor- 
respond to attenuation coefficients of any known material. In 
a particular object comprising many voxels, each voxel may 45 and basis 
be modeled by different basis attenuation functions. For attenuation functionspu, can be to reconstruct the 
example, a single object may comprise several basis attenu- attenuation spectra of individual voxels. The reconstructed 
ation functions, but any particular voxel is associated with attenuation spectrum can be used to identify materials in the 
exactly two basis attenuation functions. object, or for many other purposes such as bone density 

impose the following requirements on the basis attenuation energy method 
functions and pz: cannot be applied to a single voxel in isolation, unless the 
1) Both p1 and pz must be mono ton~ca~~y  decreasing with object comprises a single voxel. This is because calculations 

for every voxel affects calculations for other voxels, and the 
2) The quantity pl-pz must be either positive and mono- 55 entire 

The methods of the present invention provide improve- 
ments in beam hardening errors. Further applications of the 

raphy 

After being comPuted~ the coefficients A and 

Just as in the single energy method, it is necessary to 50 measurements. 
As in the sing1e energy method, the 

increasing E, and 

tonically decreasing, or negative and monotonica~~y 
increasing. 

must be 

In the dual energy reconstruction, two Scans of the object present invention to processing from X-ray tomog- 
must be performed with distinct X-ray beam spectra, S,(E) 
and &(E). The beam spectra $(E) and S,(E) can be 60 
provided by applying different accelerating voltages to an 
X-ray tube (e.g. 80 kV and 120 kV as known in the art), or This section contains the theoretical foundation for the 
by placing different X-ray filters in the X-ray beam. Many iterative Single energy reconstruction algorithm. We show 
different techniques for altering the X-ray spectrum are well that the reconstruction problem can be formulated as a fixed 
known in the art and are often used in X-ray tomography. 65 point problem and the Banach fixed point theorem ensures 

In the dual energy reconstruction, the attenuation spec- that the algorithm will always converge to a unique solution. 
trum for a voxel is characterized when coefficients A(.) and For ease of understanding, we divide the proof into two 

be apparent to One in the art. 

PROOF 
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theorems. Theorem 1 uses the results from Theorem 2 to 
illustrate the unique convergence properties of the iterative 
algorithm. 
Theorem 1 (Iterative polychromatic reconstruction) 

can be expressed by a two mixture model: 
Let m*(x,E) be an unknown attenuation function which s 

lc*(x,E)=v*(x)lci(x,E)+(1-v*(x))~(x,E) 

where v*(x) is the volume fraction of the first material at 
location x and pl, p2 are attenuation spectra of the two lo 
known materials, with the following properties: 
1) For any x, p1 and iu, are monotonically decreasing 

functions with respect to E. 
2) For any x, the quantity p1-p2 is a positive monotonically 

decreasing function with respect to E. 
Let C=Bp* be the polychromatic projection of m* with 

respect to the polychromatic spectrum S(E). Then the 
sequence {."} which satisfies: 

1s 

~ i l + ( l - ~ i z = P ~ l { P l c * ~ l - B ~ ~ l + C }  20 

where 

/i-l=J.-l/L1+( l-v*-l)l"z, 

,k=JS(E)lcl(x,E)dE, 2s 

and 

,&=JS(E)l"z(x,E)dE, 

30 converges to the true volume fraction function v* indepen- 
dent of the initial estimate vo. 

In the above problem, the true volume fraction v* is a 
fixed point mapping T, 

V*=T(v*), 3s 

where T is defined as 

w=T(v): w~1+(1-w)~z=P~1{P(v,ul+(l-v),uz)-B(v~l+(1-v),u,J+C} 

The Banach fixed point theorem states that if T is a 40 
contraction on the space of volume fraction V, 

Vx,ytV,\crt%,crSl such that ~~T(x)-T(y)~~ Scr~~x-y~~,  

then T has precisely one fixed point and the iterative 
sequence {."}, from the procedure vk=T(vk-') converges to 4s 
the unique fixed point v* of T with arbitrary vocV. Hence, 
proving that T is a contraction on V is sufficient. 

Let v,, vb be any two volume fraction functions and pa, p,, 
pa, pb, w,, wb be defined as follows: 

so 
lca=vY1+(1-va)l"z 

flb=v&l+(l-vb)/'b 

P,=Plc,-Blc,+C 
5s 

Pb'pflb-Bflb+c 

w,=T(vJ 

Wb'T(vb) 
60 

Defining f(r,E)=Jy,(x,E)dx and g(r,E)=Jyb(x,E)dx, we 
have 

lpa(r)-pb(r)l=lE{f }-E{g}-[-log E{exp(-f)}l+[-log E{exp(-g)}ll 

where the expectation is taken with respect to the beam 65 
spectrum profile S(E). Using the results from the above 
equation leads to 

8 
lpa(r)-pb(r)l SIE{f}-E{g}l=IPlc,-plcbl 

Taking p-' on both sides of the above equation leads to 

~ ~ ~ ~ W ~ ~ X ~ ~ w b ~ X ~ ~ ~ l ~ X ~ ~ ~ Z ~ X ~ ~ d X  1.11 ~ ( v ~ ( X ) - - V b ( X ) ) ~ l ( X ) - ~ ( X ) ) d X ~  

The above inequality is equivalent to 

~ ~ w a - w b ~ ~  S ~ ~ v a - v b ~ ~  

llT(va)-T(vb)ll ~ ~ v a - v b ~ ~  

where the norm is defined as 

..V,ll.Il=lllAr) Ijl(X)-iZ(X))dXldr 

Thus T is a contraction on V. 
Theorem 2 

Let f and g be positive monotonically decreasing func- 
tions such that f-g is a positive monotonically decreasing 
function, then 

E{f}-E{gl>[-log E {exp(-f)ll-[-log E{exp(-g)ll 

where the expectation is taken with respect to any probabil- 
ity density function. 

Proof 

Let the expectation be based on probability density func- 
tion h. We define t:[O,l]+%as 

t(cr)=Eh{g+cr(f-g)}-[-log Eh{exp(-g-cr(f-g))}l 

By Jensens inequality, t(0)ZO. Differentiating with 
respect to a ,  we have 

where h' is a probability density function defined by 

Since f and g are monotonically decreasing functions, 
exp(-g+(f-g-)) is a monotonically increasing func- 
tion for any ac[O,l]. 

Thus we conclude that 

d t  
- = E h { f - g ) - E h ~ { f - g ) > O  f o r a n y u E [ O , l ]  
du 

This shows that t is a monotonically increasing function. 
Thus we have t(l)>t(O), which is equivalent to: 

E{f}-E{gl>[-log E{exp(-f)ll-[-log E{exp(-g)ll 

It will be clear to one skilled in the art that the above 
embodiment may be altered in many ways without departing 
from the scope of the invention. Accordingly, the scope of 
the invention should be determined by the following claims 
and their legal equivalents. 

What is claimed is: 
1. A method for calculating characteristics of an object 

comprising voxels using an X-ray computer assisted tomog- 
raphy device, comprising the steps o f  

a) projecting through the object an X-ray beam having a 
known energy spectrum indicated by S(E); 
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b) detecting the X-rays with an X-ray detector; 
c) repeating steps (a) and (b) for at least two different 

orientations of the X-ray beam with respect to the 
object; 

d) defining a first material and a second material within 
each voxel, wherein the first and second materials have 
known distinct attenuation spectra, given by p,(x,E) 
and k(x,E),  respectively, such that a total attenuation 
coefficient p(x,E) of the object is given by: 

lc(x,E)=v(x)lc,(x,E)+(1-v(x))lcz(x,E) 

where v(x) is a number between 0 and 1 and indicates a 
volume fraction of each voxel comprised of the first mate- 
rial; 

e) defining an initial estimated volume fraction vk(x); 
f) calculating an estimated total attenuation coefficient 

pk(x,E) from the equation; 

/,&(x,~)=~*(x)lc,(x,~)+(1-v*(x))lc,(x,~) 

g) calculating a new estimated total attenuation coefficient 
pk+'(x,E) from the following equation: 

p(x,E)=P-'(P/,&(x,E)-B/,&(x,E)+C(r)} 

where P is an operator defined by Pp=JrJS(E)p(E)dEdx, B 
is an operator defined by Bp=-logJS(E)exp(Jp(E)dx)dE, 
and C(r) represents X-ray detector output, and r indicates the 
X-ray beam path; 

h) calculating a new estimated volume fraction vk+' from 
the following equation: 

~(x,E)=S+~(X,E)~~(X,E)+(~-~*~~(X))~(X,E) 

where i,(E)=JS(E)p,(E)dE and i,(E)=JS(E)p,(E)dE 
i) repeating steps (f), (g) and (h) using the new estimated 

volume fraction vk+'(x) instead of the initial estimated 
volume fraction vk(x). 

2. The method of claim 1 wherein steps (f), (g), and (h) are 
repeated using a successive value of the estimated volume 
fraction vk+'. 

3. The method of claim 1 wherein steps (f), (g), and (h) are 
repeated 4 times using successive values of the estimated 
volume fraction. 

4. The method of claim 1 wherein steps (f), (g), and (h) are 
repeated until 

5. A method for calculating characteristics of an object 
comprising voxels using an X-ray computer assisted tomog- 
raphy device, comprising the steps o f  

a) projecting through the object a first X-ray beam having 

b) detecting the first X-ray beam with an X-ray detector; 
c) repeating steps (a) and (b) for at least two different 

orientations of the first X-ray beam with respect to the 
object; 

d) projecting through the object a second X-ray beam 
having a known energy spectrum indicated by &(E); 

e) detecting the second X-ray beam with an X-ray detec- 
tor; 

f) repeating steps (d) and (e) for at least two different 
orientations of the second X-ray beam with respect to 
the object; 

a known energy spectrum indicated by S,(E); 
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g) defining a first basis attenuation function and a second 

basis attenuation function, given by p,(x,E) and p2(x, 
E), respectively, such that a total attenuation coefficient 
p(x,E) of the voxel is given by: 

l c ~ ~ ~ ~ ~ = ~ ~ ~ ~ l c l ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ z ~ ~ ~ ~ ~  

where coefficients A and D are real numbers; 
h) defining initial coefficients Ak and Dk; 
i) calculating an estimated total attenuation coefficient 

#(x,E) from the equation; 

/,&(x)(x,E)=A*(x)~~,(x,E)+D*(x)~~,(x,E) 

j) calculating a new estimated total attenuation coefficient 
p?+l'S1(~,E) associated with spectrum S,(E) from the 
following equation: 

,uk+',"'(x,E)=P,,-'{ PS,$(x,E)-BS,,u*(x,E)+Cl(r)} 

where P,, is an operator defined by P,,p=J,JS,(E)p(E) 
dEdx, B,, is an operator defined by B,,p=-logJS,(E)exp 
(Jr(E)dx)dE, and C,(r) represents X-ray detector output 
associated with S,(E); 

k) calculating a new estimated total attenuation coefficient 
IUk+,S2(x,E) from the following equation: 

,uk+'~"'(x,E)=P,,~'( PS+*(x,E)-Bs+*(x,E)+C,,(r)} 

where Ps2 is an operator defined by P,+=J,JS,(E)p(E) 
dEdx, B,, is an operator defined by B,+=-log JS,(E)exp 
(J#(E)dx)dE, and C,(r) represents X-ray detector output 
associated with &(E); 

1) calculate new estimated coefficients Ak+'(x) and Dk+' 
(x) from the following simultaneous equations: 

,~~+'~"'(X~E)=A*''(X)~~,~~(X,E)+D*+'(X)~,~,(X,E), and 

, ~~+ '~" ' (X ,E)=A*+' (X)~~ ,~ , (X ,E)+D*+~(X)~ ,~ , (X ,E) ,  

where 

m) repeating steps (i), (j), (k) and (1) using the new 
estimated coefficients Ak+'(x) and Dk+'(x) instead of 
the initial estimated coefficients Ak(x) and Dk(x). 

6. The method of claim 5 wherein steps (i), (j), (k) and (1) 
are repeated using successive values of the estimated coef- 
ficients Ak+'(x) and Dk+'(x). 
7. The method of claim 5 wherein steps (i), (j), (k) and (1) 

are repeated 4 times using successive values of the estimated 
coefficients. 

8. The method of claim 5 wherein steps (i), (j), (k) and (1) 
are repeated until 

where N is an integer indicating number of algorithm 
iterations. 

* * * * *  


