
United States Patent [I91

Tulpule et al.
[ii] Patent Number: 4,727,549
1451 Date of Patent: Feb. 23, 1988

[54] WATCHDOG A(;TIVITY MONITOR (WAM)
FOR USE WTH HIGH COVERAGE

[75] Inventors: Bhaichaadra R. Tulpule, Vernon;

PROCESSOR SELF-TEST

Richard W. Crosset, III, Simsbury;
Richud E. Venrilles, New Hartford,
d l Of COM.

[73] Assignee: United Technologies Corporation,
Hartford, Conn.

[21] Appl. No.: 758,251
[22] Filed: Sep. 13, 1985
[51] Ink (3.4 .. GO6F 11/00
[52] US. CI 371/62; 371/25
[58] Field of Search 371/15, 25, 62;

324/73 R, 73 AT, 73 PC

r561 . References Cited
U.S. PATENT DOCUMENTS

3,749,897 7/1973 Hirvela 371/62 X
3,919,637 11/1975 Earp 371/25
4,161.276 7/1979 Sacher et al. 371/25
4,176,780 12/1979 Sacher et al. 371/25
4,392,226 7/1983 Cook 371/61
4,410,938 10/1983 Higashiyama 371/62 X
4,594,685 6/1986 Owens 371/62X

4,635,258 1/1987 Salowe 371/62 X

OTHER PUBLICATIONS
J. P. Hayes, Transition Count Testing of Combinational
Logic Circuits, IEEE Trans. on Computers, vol. C-25,
No. 6, Jun. 1976, pp. 613-620.
Primary Examiner-Charles E. Atkinson
Attorney, Agent, or Firm-Francis J. Maguire, Jr.

A high fault coverage, instruction modeled self-test for
a signal processor in a user environment is disclosed.
The self-test executes a sequence of sub-tests and issues
a state transition signal upon the execution of each sub-
test. The self-test may be combined with a watchdog
activity monitor (WAM) which provides a test-failure
signal in the presence of a counted number of state
transitions not agreeing with an expected number. An
independent measure of time may be provided in the
WAM to increase fault coverage by checking the pro-
cessor’s clock. Additionally, redundant processor sys-
tems are protected from inadvertent unsevering of a
severed processor using a unique unsever arming tech-
nique and apparatus.

V71 ABSTRACT

13 Claims, 8 Drawing Figures

https://ntrs.nasa.gov/search.jsp?R=20080004090 2019-08-30T02:22:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10539791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

US. Patent Feb. 23,1988

I

Sheet 1 of 5 4,727,549

/NSTRUCF

DECODE
ALU EoWg c$%TpL R€G/ST.ERS

I

/- PF

CONTROL BUS

I

I \65 1 60 / 6/

50
1 ------ I-------

ADDQES~T;MNG /NT€/?ffUPT
GENERATOR CONTKZ

b

FlG. 2

64 ADDRESS BUS /

U S Patent Feb. 23,1988

ADDInON & SURTR4CTlON
OPERA ~ O I V T€ST

EXERCISE EACH OF rHE
ONE B/TfUU ADDHS

I O 0 U - t START ?

CHECK REGIS TER
ADDRESS DECODNG

FOR BOTH BME

CHECK REGISTER
MEMORY CELLS
FOR STUCK RlTq

1

/IO

Sheet 2 of 5 4,727,549
/I8

KQTATE & SHIFT OPERAT/ON TEST
PERFORM LOGICAL LEF T & R/GH T
ARITHMETIC, AND DYNAMIC SHIFTS

PERFORM RX%?7ON FUNCTICW
BY RONE RIGH~; RIGHT rmu

CAAR): LEF 7; AND LEf T
THRU CARRY

c / I 2 2
BLOCK T'RANSFER TEST .

TEST BLOW MOVE, BLOCK
COMPARE, AND TR4NSLAT€

i
T/CKET PUNCH

CRESET)

FlG. 3

U.S. Patent Feb. 23,1988 Sheet 3 of 5 4,727,549
COUN T

CLOCK

START
'242

\250

""
R E s u

1
I
I

-
244 8 B/T

- - - LOAD REG/STER/COUN T&Q
COUNT

* ENABLE
246 206 CONTROL

FIG. 4

/msec WINDOW
~ LOG/C

MS

~ 2 5 3 a I

254J j 2 S 5 I
I
I

CLEAR

t I 2/01,

REST REQU€ST WDT POWER
SEVER

+
LOG/C SEVER REQUEST - -

CLEAR

U.S. Patent Feb. 23,1988 Sheet 4 of 5 4,727,549

30? I I

l? 3/8'

I

r
R€SET REQUEST ~ WDT

LOGIC
- SEVER REQUEST

I -L--.ll

2 8 '326
/Nl T/A L /ZE t ---------

POL

--

'R SEVER 7

FlG. 6

FIG. 7

U.S. Patent Feb. 23,1988 Sheet 5 of 5 4,727,549

I

4.727.549 , ,
1

WATCHDOG ACTIVITY MONITOR (WAM) FOR
USE WTH HIGH COVERAGE PROCESSOR

SELF-TEST
5

The invention described herein was made in the per-
formance of work under NASA Contract No. NAS2-
11771 and is subject to the provisions of Section 305 of
the National Aeronautics and Space Act of 1958 (72
Stat. 435; 42 U.S.C. 2457). 10

. TECHNICAL FIELD
This invention relates to detecting signal processor

faults in a user environment with a high degree of fault
coverage and to predicting that fault coverage.

BACKGROUND ART
In many digital computer systems the detection and

correct isolation or “coverage” of failures in the com-
puter is a matter of great concern. This is particularly 20
true in avionic type computer systems such as flight,
engine, navigation or weapon control systems where
redundant control systems exist and the correct isola-
tion of a fault must be guaranteed with a high probabil-
ity without regard to the source of failure. Upon detec- 25
tion of a fault one of the redundant systems is immedi-
ately selected to “carry” the system. A variety of Built-
In-Test (BIT) techniques have been developed to meet
such requirements. Notable among these are the Watch-
dog Timer (WDT) function and processor self-tests.

The WDT function, also known as “ticket punch” or
“sanity monitor” is used to monitor correct software
operation by requiring periodic updating or resetting of
the WDT hardware within a legal time interval known
as a window. This WDT function is a %on-specific” 35
monitor which can detect any selected failure that can
cause the program to diverge from its correct execution
sequence and thereby miss the WDT update window.
The particular implementation of a WDT function can
sometimes erode its coverage capability. For example, if 40

15

30

the WDT window is too iarge- and the WDT c& be
updated more than one time within the window, the
coverage probability for, say, a program looping failure
is thereby reduced.

The processor self-test, unlike the WDT, is a very
specific test involving a collection of specific “must
work” instructions for a given processor. The tests are
executed using specific data as inputs and are designed
to “exercise“ the maximum number of individual gates
in the processor. Clearly this is a formidable task even
for the simplest microprocessors due to the essentially
infinite number of possible machine states. A very large
proportion of thcse must be tested to assure a high de-
gree of coverage.

The coverage provided by processor self-tests is gen-
erally very difficult to predict and has been the subject
of many studies. See, for example, an article by Thatte,
S. M. and J. A. Abraham, “Test Generation for General
Microprocessor Architectures.” in IEEE Proc. of 1979
International Symposium on Fault-Tolerent Comput-
ing, Madison, Wisc., IEEE Computer Society, pp.
203-210, June, 1979. There, a graph-theoretic model for
microprocessor architecture is presented which permits
the treatment of the organization and instruction set as
parameters of test generation procedures. Functional
level fault models for the register decoding function,
and the instruction decoding and control function are
developed independent of the details of implementation.

45

50

55

60

65

2
Test generation procedures are presented to detect
faults in these functions. Their approach is potentially
attractive in a user environment because it suggests the
avoidance, to some extent, of the normally enormous
amount of computation required to generate test sets for
the very large number of gates, flip-flops, and intercon-
nections in LSI circuits such as microprocessors.

In the past, when faced with this task, semiconductor
and sometimes system manufacturers have resorted to
exhaustive testing of each and every machine state and
stuck-at fault condition. However, this approach is un-
suitable for providing real time, on line, built-in-test
(BIT) coverage of avionic computer systems because of
the size of the test.

One of the most important drawbacks of these tests is
that they lack an independent, external monitor for the
execution and correct completion of these self-tests. In
the absence of such a monitor function, such as a WDT,
there would be no assurance that the self-test was ever
started or successfully completed. The monitoring
hardware must be independent of the processor so that
the use of the processor under test as a monitor would
defeat the purpose of the test.

DISCLOSURE OF INVENTION
The object of the present invention is to provide a

highly reliable method and apparatus for the on-line,
real time, detection and isolation, Le., “coverage”, of
internal failures in a digital computer which may be
used to guarantee channel shutdown to a very high
degree of certainty in the presence of such failures.

According to a first aspect of the present invention,
an instruction modeled self-test method is combined
with a Watchdog Activity Monitor (WAM) which
must be periodically started and then stopped at the
precise time that each self-test is completed in order to
avoid having the WAM initiate a trip out or cause a
channel sever action. During each WAM activity moni-
toring interval, the CPU under test executes a processor
self-test; the CPU issues a sequence of state transition
signals after each subtest is completed; the failure to
complete the test, as measured by the number of transi-
tion signals received, exactly at the end of the interval,
as indicated by a reset signal provided by the CPU,
results in a guaranteed WAM trip leading to channel
sever. The concept of encompassing a comprehensive
functional processor self-test with the WAM function
to provide a very high and predictable coverage of
processor faults is at the center of this invention.

It is essential, in order to understand the central
teaching of this first aspect of the present invention, t.0
understand that the timing aspects of the WDTs of the
prior art have been abandoned in the WAM of the pres-
ent invention. The processor self-test is set-up in ad-
vance to test the major functional blocks of the signal
processor. These may include bit manipulation tests,
logical operation tests, addition and subtraction opera-
tional tests, divide and multiply operational tests, and
rotate and shift operational tests. Of course, a variety of
these tests may be excluded and other tests may be
included. At the conclusion of each of the above major
categories of tests a transition is made to the next major
category of tests. At that time, a transition signal is sent
into the Watchdog Activity Monitor indicating that one
of the major tests has been completed. Of course, transi-
tion signals could be sent more frequently, at the con-
clusion of minor test steps accomplished within each
major functional test block. Each time that the WAM

4,727,549
3

receives a transition signal it increases or decreases a
count signal magnitude which keeps track of the total
number of state transitions which have taken place for
each repetition of the periodic test. At the conclusion of
each repetition of the test a reset signal is sent by the
CPU to the WAM. If the reset signal arrives at the
WAM while the count signal magnitude is equal to an
expected magnitude then the WAM will have ascer-
tained that a correct number of test executions have
taken place and a channel sever signal will not be issued.

In further accord with the fmt aspect of the present
invention, a timer is provided which determines the
“health” of the system clock. It must be updated period-
ically within a window as determined by an indepen-
dent time reference. This timer is necessary in order to
guarantee the reliability of the WAM. It is a loss of
clock or loss of software detector.

In accordance with a second aspect of the present
invention, a methodology for analytically modeling
processor faults and predicting the self-test fault cover-
age is provided. A finite state Markov modeling tech-
nique for the WDT processor self-test function provides
a methodology for analytically predicting and evaluat-
ing the failure coverage provided by this and any other
WAM function.

A number of prior art techniques have been devel-
oped for modeling the failures of individual electronic
components and predicting their reliability. However,
these are clearly unsuitable for digital microprocessors
in a user environment due to the large number of gates,
flip-flops, and state sequences involved. A state transi-
tion modeling approach such as Markov is also inade-
quate due to data dependencies. The finite state Markov
modeling technique for the WAM and self-test method
disclosed herein provides a methodology for analyti-
cally predicting and evaluating the failure coverage
provided by this or any other WAM function.

The Watchdog Activity Monitor and self-test
method of the present invention provides an attractive
alternative to prior art methods and apparatus for de-
tecting faults in signal processors in a user environment.
By marrying a unique self-test method based on the
processor subfunctions with a unique Watchdog Activ-
ity Monitor, a very high degree of failure coverage is
achieved. Furthermore, the use of a second keep-alive
“ticket-punch” type timer for guaranteeing the health
of the system clock, the present invention further in-
creases its failure coverage.

These and other objects, features and advantages of
the present invention will become more apparent in the
light of the following detailed description of an exem-
plary embodiment thereof as illustrated in the accompa-
nying drawing.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a Markov model for fault coverage analysis;
FIG. 2 is a simplified block diagram illustration of a

functional model of a signal processor;
FIG. 3 is an illustration of a comprehensive test pro-

cedure which may be camed out on a processor mod-
eled according to the functions shown in FIG. 2;

FIG. 4 is a simplified block diagram illustration of a
watchdog activity monitor for use with a comprehen-
sive, functionally modeled self-test of a signal proces-
sor, according to the present invention;

FIG. 5 is a simplified time line diagram showing some
of the signal waveforms of FIG. 4 in real time;

4
FIG. 6 is a simplified illustration of additional hard-

ware which may be added to the WAM of FIG. 4,
according to the present invention, for testing for a loss
of the CPU clock;

FIG. 7 is a simplified time line type diagram showing
some of the signal waveforms of FIG. 6 in real time; and
FIG. 8 is a simplified schematic block diagram of

sever logic showing the unsever arming logic in partic-
ular.

BEST MODE FOR CARRYING OUT THE
INVENTION

The analytical techniques utilized in the self-test as
taught herein, according to the present invention, pro-

15 vides an arbitrarily large, analytically determined cov-
erage of processor faults which can be predicted by
using a Markov based fault modeling technique. A typi-
cal current state of the art micFoprocessor contains
several thousand gates and many flip-flops many of

20 which are data dependent and/or inaccessible exter-
nally. Therefore, under non-controlled conditions the
possible states of a processor are essentially infinity.
However, when a processor is performing a self-test in
close concert with a Watchdog Activity Monitor

25 P A M) as described herein, the data and timing charac-
teristics are prespecified. Therefore, the processor states
consisting of the union of the states of all internal mem-
ory devices (flip-flops) and logic gates are fixed and can
be uniquely defined. Likewise the transition states of the

30 processor during the WAM self-test are also fixed and
can be uniquely defined, at least under no failure condi-
tions.

FIG. 1 is an illustration of such a Markov model for
analyzing predicted fault coverage in a functional level

35 processor test such as is utilized in a processor using a
Watchdog Activity Monitor (WAM), according to the
present invention. The test is conceptualized as a chain
of test states 10,12,14, . . . ,16,18 (Qo, QI, 4 2 , . . . , QN-I,
QN). The test starts with an initial state 10 (Qo). As soon

40 as the test is thus initiated, A WAM counting sequence

5

lo

45

SO

55

60

65

- .
is also begun in which test state transitions are counted.
After the test is initiated in step 10, a selected test is next
executed in step 12. There is a certain probability PF
that the test initiated in step 10 will not properly se-
quence to the step 12. In that case a fail state 20 (QF) is
entered. The fail state QFis defined to be the collection
of states to which the processor transitions under failure
conditions. Thus, if a failed processor transitions from
one of the expected test states to any out-of-sequence
state without going through the correct intermediate
state(s) then it is in state QF. Similarly, if it goes from a
test state to some other state not defined in the set of test
states it is also considered to have entered QF.

A series of correct test states 12, 14, 16 are normally
executed until the final state 18 (QN) is reached. After
each state transition a count pulse is sent to the WAM.
After the final state (QN) is reached the WAM is sent a
reset signal indicating the point in time at which the
entire test sequence has been completed. As explained
above, if a failure has occurred during the test sequence
at some point, a transition will be made from the normal
Qo-QN sequence into the fail state 20. An out-of-
sequence transition from the fail state 20 to the final
state QN i.e., before or after the complete test sequence
has been run in full, will result in a reset signal being
sent to the WAM before or after expected i.e., before or
after the count reaches the expected count. Since the
WAM tolerates a reset signal only when the count is at

5
4,727,549

the expected count, the channel will be severed by the
WAM. The best mode embodiment disclosed herein
utilizes a counter responsive to the above described
count pulses. If the counter counts down to zero before
or after expected, a channel sever is initiated. It should 5
of coulst be understood that many other similar ap-
proaches may be taken in implementing the tracking of
the state transitions of the self-test.

The state transitions in the Markov diagram of FIG.
1 are probabilistic in nature with the probability of io
taking incorrect paths denoted by PF, Le., the probabil-
ity of a failure. The P~va lues are assumed to be the
same for all state transitions for the sake of simplifica-
tion.

described in this invention can be described as a finite
state machine that transitions sequentially from the
initial state Qo through states Q1, Q2,. . . to the final state
QNwithout any deviation. The associated WAM in this
scheme is a counter which counts the correct number of 20
state transitions. More sophisticated clounting schemes
that distinguish between the various types of transitions,
i.e., instruction types, are possible, and are entirely
within the scope and intent of the present invention.
However, the simplified approach illustrated here is 25
adequate to establish the concepts required to achieve
minimum coverage by the WAM as taught herein. In
any case, regardless of the counting mechanism used,
whenever an incorrect number of state transitions are
detected by the WAM at the end of a particular test 30
execution, this leads to channel sever.

The probability of correct failure detection and isola-
tion, i.e., “coverage” (C) can be calculated as follows.
The lack of coverage (1-C) can be attributed to those
sequences of incorrect state transitions through state 35
Q ~ f o r which the total number of state transitions a p
pears to be correct so that the WAM is unable to detect
the failure. As may be seen from FIG. 1, there are many
paths for which this is possible. One such sequence is a
failure sequence Qo, Q1, QF, (N-3) QF, QN in which 40
(N-3) QFdenotes that exactly N-3 transitions from Q1 to
state Q ~ t a k e place before Q ~ i s reached with a total of
N transitions and the WAM is not tripped. The total
probability of the lack of coverage can therefore be

In terms of the Markov model, the processor self-test 15

given by: 45

N
1=1

1 - c = ,z P$(1 - &)N-2

= N. - PF)’v-2.
50

Thus for a processor with PF= 10-5 (10 failures per
106 hours), a 100 state WAM gives a lack of coverage of

55 1 - C = 100 x 1O-‘O(l -
= 9.99 x 10-10

70 that
coverage (C)=0.9999999991=0.991 60
Of course it will be understood that the above calcu-

lation assumed that every processor failure is detected
by the WAM self-test. This is usually not true because
of the large number of gates and their possible failure
modes. A variety of techniques have been developed in 65
the prior art, the best known of them being the stuck-at
gate fault models. The task of simulating stuck-at gate
faults to determine the coverage capability of a self-test

6
is extremely difficult because of the extremely large
number of possible failure modes of a complex proces-
sor. A more powerful technique has been developed by
Thatte and Abraham who have modeled the processor
architecture in terms of the instructions and registers
(see their article referred to in the Background Art
section). Their approach deals with failures in instruc-
tion or data path execution and is therefore independent
of the specific gate level implementation.

The self-test design methodology used in this inven-
tion is different from that approach in that it is based on
a functional model of the processor such as the model
shown in FIG. 2. The modules or elements in the pro-
cessor are conventional or classical such as registers,
arithmetic and logic units, multipliers, rotate and shift
units, comparators, instruction decoder, etc., all con-
nected with data and address bus connections for exter-
nal connection. The method is general enough so that
new or unconventional elements can be added to the
processor model. In any case, the gate level implemen-
tation of these elements is analyzed to determine the
apportionment of the processor failure rate. The tests
are then developed to exercise each type of instruction
and the percentage of failures that can be covered by
each test is determined. For example, a shift and rotate
unit might be tested by testing right and left shifts for
specified logical and arithmetic operands and compar-
ing against expected results. As another example, all
gates associated with an adder can be checked by add-
ing one to the largest binary number represented and
checking for an overflow with zero as a result. The data
input for the tests are chosen to maximize the number of
gates that are energized by the test.

The block diagram illustration of FIG. 2 is a func-
tional model of a signal processor 50 including registers
52, ALU 54, program counter 56, control unit 58, inter-
rupt control 60, and addredtiming 61 functional
blocks. Of course, the typical signal processor will also
include other major functional blocks which are not
included for the sake of simplicity. Each of the func-
tional block may be conceptualized as communicating
with a data bus 62, an address bus 64, and a control bus
65.

FIG. 3 is an illustration of a comprehensive test pro-
cedure which may be carried out on a processor mod-
eled according to the functions which it is capable of
carrying out as, for example, in FIG. 2. Thus, the test
procedure illustrated in FIG. 3 is designed for specific
use on a typical signal processor. It will therefore be
appreciated that the WAM of the present invention is
not restricted to use with any particular processor or to
a particular test sequence. The processor test sequence
described herein is merely illustrative of one of many
such tests which may be practiced according to the
present invention. The CPU self-test of FIG. 3 is de-
signed to test the processor for hardware faults using
the machine instruction set. Each test checks a specific
microprocessor function with the assumption that all
other functions of the processor are working and are
tested elsewhere. The union of the fault coverage of all
the tests approaches 100% coverage.

The CPU self-test is performed periodically in order
to provide a ticket-punch signal to a Watchdog Activ’ity
Monitor (WAM) each time the series of tests is success-
fully executed. The WAM hardware will be described
in detail later; but first, a summary outline of a typical

7
4,727,549

8
set of functional tests performed is given immediately
below.

The self-test begins in a start step 100. During the
execution of each test the processor activity signals are
monitored by the WAM to count up or down the num-
ber of steps executed. At the end of the sequence a
ticket-punch or reset is sent, as indicated in a step 102, to
the WAM hardware. If the WAM hardware does not
receive the ticket-punch signal precisely when the
count reaches a selected total count or count-down, a
channel sever is immediately executed by the WAM
hardware. After successful execution the above test
procedure may then be reexecuted periodically after
returning in a step 103 and starting again at step 100.

Of course, it should be understood that the particular
restrictions of a particular Watchdog Activity Monitor
implementation may not allow running the full CPU
self-test in the time frame available. The test may then
be segmented into modules and/or different sequences,
each of which must meet certain restrictions dictated by
the particular implementation, Le., the number of activ-
ity signals within a particular real time frame.

Each of the tests described below is designed to ener-
gize a small subset of instructions using prespecified
data chosen to energize the maximum number of flip-
flops, gatess, etc., involved in the execution of each par-
ticular instruction. The test results are compared with
expected results and the next instruction test started on
the successful completion of the previous test. How-
ever, if the test is not successful as indicated by the
comparison, a branch to step 102 is made for sending an
(early) ticket-punch signal to the WAM. This action
being earlier than expected, trips the external WAM
and leads to a channel sever.

After starting the self-test, the processor performs a
register test in step 104. The purpose of this test is to
verify register address decoding for both bit and word
modes. In addition, the register memory cells are
checked for stuck bits.

Assuming that a 16 register processor is being tested,
word mode decoding can be tested first by loading the
word registers RO to R15, in order, with predefined
values. Then each register is read and its contents veri-
fied against the predefined number. Xf all values are
correct, R15 to RO are loaded, in order, with the com-
plement of these numbers. Each register is then read
and its contents verified against the complement.

For a bit mode test, only a single bit register pair is
tested for bit mode operation. The high bit is loaded
with a known value and the low bit is loaded with an-
other known value. Both the high and low bits are then
read and verified.

An address mode decoding and function test is next
executed in a step 105. A typical modem processor
provides many addressing modes such as register, im-
mediate, indirect, direct, index, relative, base, and base
index modes. A stored value is read using each address-
ing mode. The value read is verified against a prespeci-
fied value.

Condition codes are used in many instructions in
today’processors. These instructions include condi-
tional jumps, return from subroutine, and blockhtring
manipulation instructions. It can be shown that both
condition code decoding and function can be tested in a
step 106 by selecting only a subset of combinations for
each condition code.

A bit manipulation test is next executed in a step 110
where the bit address decoding and static and dynamic
operation of the set, reset and test functions are verified.

Bit address decoding may be tested by first setting a
5 register to all zeroes. Next the set instruction is used to

change a bit to one. The register contents are then com-
pared to a value the whole register should have with
that single bit set. This test may be performed on every
bit in the register. For practical reasons the register

10 value can be changed to a new value using a shift opera-
tion. Various static and dynamic test, reset, and set
functions may next be performed.

A set of logical operational tests may next be per-
formed in a step 112 in which the decoding and correct

l5 functioning of the logical operations ADD, OR, XQR,
and COMPLIMENT may be verified. The logical tests
may be implemented using input from known stored
values and the result of each test compared with the
stored known values.

Addition and subtraction operational tests may next
be performed in a step 114. The addition operation may
be verified by exercising each of the one bit full adders.
At the completion of each selected test the sum and the
flags may be checked against known stored values. The

25 tests may include verification of addition without input
carry with the assumption that the addition function is
correctly working.

Verification of subtraction without carry with the
3o assumption that the addition function is correctly work-

ing may then be carried out. Another set of tests may be
executed at this point to verify subtraction with carry,
also with the assumption that the addition function is
correctly working. At the completion of each test the

35 result is checked against a known stored value. The
negate operation may be verified at this time as well.

The self-test next executes a divide and multiply oper-
ation test in a step 116. An assumption is made that the
shift operation is correctly working and that the add
and subtract operation is correctly working. For most
microprocessors special cases can be selected to verify
the divide operation. These may include division by
zero, and division when the divisor is positive, negative,
or in a certain range. Separate tests can be set up for

45 each of the cases. At the completion of each test case,
the quotient, the remainder and important flags set may
be checked against known values.

Similarly, special cases may be needed to verify the
multiplication operation depending on the range of the

50 multiplier. Again, a single test is selected for each of the
cases and at the completion of each test case, the prod-
uct and carry bit is checked.

A rotate and shift operation test is next executed in a
step 118. The operation of the shift function may be

55 verified by logical left and right shifts, arithmetic shifts,
e.g., a arithmetic shift right, and a logic dynamic shift
left. The number of bits shifted depends on the proces-
sor. The register to be shifted and the carry are loaded
with known values. The operation is then performed

60 and the resultant register value and the carry are com-
pared with known values. The known values are se-
lected to test for stuck bits in the shift function.

The operation of the rotate function may be verified
by rotate right and left and rotation right and left

65 through carry. These tests load known values into the
register to be rotated and the result is compared with
known values that represent the results. The carry flag
is tested in the through carry instructions. In addition,

2o

4,727,549
9 10

tests may be designed to rotate single as well as multiple which the WAM must be legitimately started and
bits in one instruction. stopped. The window may begin right after the occur-

The self-test next executes, in a step 120, a stack oper- rence of the Macrosync signal as shown in FIG. 5(b) by
ation available in most processors today. A push opera- a waveform 249 which shows the window beginning at
tion is used to place known values on a stack. As the 5 time to and ending at a time t4.
values are placed on the stack, the stack pointer is tested The control logic 204 is also responsive to a START
to assure it is decremented correctly. The memory of signal on a line 250 which may be a decoded signal
the stack is then addressed and its values compared with generated by software to signify the start of a predeter-
the known V d U a . Next the V d U H are removed from mined perid of red time, i.e., the start of the timed
the stack U h g the POP operation. AS the values are 10 w m self-test sequence occurring in the signal proces-
removed, they are compared with the known Values sor. The start signal is shown beginning at time t l in
a d the stack pointer iS tested to aSSuTe it iS hCre- FIG. 5(c) as indicated by a simal pulse 251 which ends
mented. The number of values used in this test is deter- at a time t2.
mined by software memory requirements. According to the present invention, the WAM self-

be used to verify the the test will have a precise duration. Although the pre-
pare, and move is cise duration of each test is not specifically monitored
tested by prestored values into a or timed, it is effectively measured by the counter since
using the auto increment a d repeat type ofinstructions. the preplanned duration of each test is known in ad-
At the completion of this instruction registers used by 20 vance. ne test must thus have a precise duration in this
the instruction are checked against known values. The sense, that it must take place exactly according to the

values The next instruction to be have a duration exactly equal to a known duration, used in this test set is the translate and test instruction. only indirectly measured. As described above, it

The next step 122 is a block transfer test which may 15 test will be performed Once per Macrosync period and
move function*

and test functions* The

values in the are then against the known e x F t e d sequence of test state transitions which
in the

This instruction is given a string and a known ” is a comprehensive test designed to exercise the major
functional block of the processor. In the best mode ne registen and bits used by the

instruction are then checked against known values.
During and after each of the steps 104-122, the in- implementation disclosed herein, the execution of this

test is monitored by the WAM function in terms of a struction fetch, decode and other signals generated automatically by the processor are monitord by the 3o precise number of data and instruction fetch operations
w A ~ indicating the completion of a test step. At the executed Over a precisely known period. However, it

or under consistent with the concepts disclosed herein. In my
test to the Watchdog Activity Monitor hardware which 35 case, each such measurable activity constitutes a state
is expecting a at the time that the transition for the processor and is used to count down

expected value. If not re- the counter 206 by means of the COUNT signal on the
ceived at expected moment, the channel is severed line 245. At the conclusion of the allotted time, the
by the WAM. signal processor’s CPU sends a RESET signal on a line

A fixed internal Watchdog Activity Monitor (WAM) 40 252, dS0 known aS a “ticket punch” or “keep-alive”
200 for use with a comprehensive, functionally modeled si@, to the WAM 200 as indicated by a signal Pulse
=if-test of a signal processor, according to the present 253 shown in FIG. 5(6). Since the counter 206 is preset
invention, is illustrated in FIG. 4. to the total number of measured and predetermined

The fmed interval Watchdog Activity Monitor activities in a given Self-test, the OCCUrrenCe Of the reset
(WAM) 200 is initialized by a synchronizing, or Mac- 45 Pulse On the h e 252 at time t= t3, in the absence Of any
rosync (MS) signal on a line 202. The Macrosync signal processor faults, must coincide with the countdown
is a periodic signal which is to frame synchonize reaching zero in the counter 206. Any other combina-
the overall system operation. It is shown as a pulse 203 tion Of circumstances is indicative of a fault and leads to
occurring at a time to in FIG. 5(a) and recurring a fixed a Power sever request signal on a line 258 as generated
interval of time later at time tM. The WAM 200 corn- 50 by the WAM Sever Logic 210. For example, if the reset
prises a fued count counter, but the count may be pro- Pulse on the line 252 occurs before the count has
gr-able. The WAM includes a control logic section reached zero or is absent when the count reaches zero,
204, an eight bit register/counter section 206, a compar- the WAM Sever Logic 210 generates a power Sever
ator 208, and WAM sever logic 210. The particular request signal on the line 258.
implementation of the WAM 200 shown in FIG. 4 uses 55 As explained, the logical implementation of this
a register/counter 206 for counting count signal pulses WAM function may be accomplished by counting oc-
and which is preset by a load command signal on a lines currences of a specific selected CPU activity on a line
244. The counter is loaded with a total count and 245 in the eight bit registedcounter 206 which is driven
counted down to zero by a clock signal on a line 242 by the processor clock pulses on the line 242. Upon
which clocks in count signal pulses on a line 245 when 60 being initialized by the LOAD signal on the line 244 the
enabled by a count enable signal on a line 246. The counter 206 begins its count of CPU activities after
WAM 200 can be cleared by the processor’s CPU to receiving a COUNT enable signal on the line 246. The
start operation using a CLEAR signal on a line 247. LOAD signal loads the prespecified count total and

Besides being responsive to the Macrosync and may be activated once per Macrosync frame by the
CLEAR signals, the control logic 204 is also responsive 65 WINDOW signal on the line 248 and held valid until
to a window signal on a line 248 which may be gener- the simultaneous occurrence of the START signal on
ated by a frequency countdown, and which, when ac- the line 250 and the WINDOW signal on the line 248 at
tive, indicates the allowable window of real time during which time it is removed, allowing the counter to count

completion of all of the above steps 102-122, the self-
test next executes the step 102 in which a ticket-punch

be understood that meaura Of activity Other
herein are possible and are entirely than those

signal is Sent from the signal

count reaches

4,727,549 4- 11
and the count monitor logic to function. If active-high,
the counter and monitor logic is held initialized.

Assuming the counter 206 is of the countdown type,
it will time out when it reaches zero. The comparator
208 compares the contents of the counter 206 as repre-
sented on a line 253u with zero and may provide two
signals, namely, equal to zero on line 254 and not equal
to zero on line 255. A power sever signal on a line 258
serves to sever the channel in the presence of a failure of
the self-test. Thus, if the counter 206 does not exactly
countdown to zero at the time the WAM 200 receives a
RESET signal on the line 252, a sever signal on the line
258 will be sent and the channel will be severed.

RESET REQUEST and SEVER REQUEST signals
on limes 262, 264 are provided by the control logic 204
to the WAM sever logic 210 for the purpose of validat-
ing the start and reset request and initiating a sever
request from the control logic as a resylt of detecting
incorrect sequences of processor commands to the
WAM 200 as described below.

In addition to assisting the WAM sever logic 210 in
detecting the time out function described above, the
control logic 204 of WAM 200 is also designed to detect
the Occurrence of any of the following conditions:

(1) More or less than one start and reset command

(2) Any stare or reset command after the window;
(3) The start/reset commands out of sequence.
Whenever any one of these conditions above is de-

tected, the control logic 204 generates a sever request
on the line 264 which results in a power sever request
on the line 258, regardless of the contents of the counter
206. The control logic 204 passes through (i.e.? vali-
dates) the RESET request signal on the line 252 from
the processor to the WAM sever logic on the line 262
only when none of the above conditions are true.

Additional hardware may be added to the WAM,
according to the present invention, for testing for a
complete loss of the processor clock on the line 242 of
FIG. 4. In the case of a complete loss of that clock
signal, the processor, as well as the WAM, will be hung-
up and an orderly transition to the fail safe condition
cannot be achieved. It is therefore desirable to include
an independent timing source which, if not periodically
serviced, automatically times out.

FIG. 6 illustrates additional hardware 300 of this type
which may be added to the WAM hardware of FIG. 4.
The new hardware includes control logic 302, an inde-
pendent oscillator 304, a counter 306, and WAM sever
logic 308 which may be included within the sever logic
210 of FIG. 4. The control logic 302 is responsive to the
Macrosync (MS) signal on the line 202 and the RESET
signal on the line 252. These signals are illustrated in
FIG. 7(u). There, the Macrosync pulses are illustrated
generally by a series of pulses 203 occuring at to, t3, . .
. . Similarly, the RESET signal on the line 252 is shown
in FIG. 7(u) occuring at a time tl within the Macrosync
time frame between to and t3. The RESET signal is
illustrated generally by the pulse 232.

After receiving a Macrosync signal on the line 202 or
a RESET signal on the line 252, the control logic 302
initializes a counter 306 with an INITIALIZE signal on
a line 318. This signal serves to initialize the counter
which then provides a count-up or count-down to a
specific number of clock pulses. The clock signals are
provided on a line 320 from the independent oscillator
304. If the counter is not reinitialized before reaching a
specific count the WAM sever logic 308 will send a

pair in the window;

5

10

15

20

25

30

35

40

45

5 0

55

60

65

144
power sever signal on a line 258 which will cause the
channel to be severed.

The WAM sever logic 308 is responsive to a RESET
REQUEST signal on a line 324, a SEVER REQUEST
signal on a line 326, and a time out signal on the line 328.
The RESET REQUEST signal informs the sever logic
of the occurrence of the first correct RESET signal
from the processor after each Macrosync (MS) signal.
The SEVER REQUEST signal on the line 326 is used
to shutdown the channel in case of multiple RESET
requests (between two Macrosync signals) from the
CPU on line 230. In case of a complete lack of RESET
requests by the CPU, the counter 306 times out and a
power sever is requested on line 258 by the WAM sever
logic 308. The WDT 300 can be cleared to start opera-
tion by an CPU using the INITIALIZE signal on a line
329.
FIG. 7(6) shows the RESET signal 232 of FIG. 4(a)

occuring at time tl and also shows a subsequent point in
time b a t which time a subsequent reset signal should be
received but which is not received. The dotted lines
indicate the absence of the expected signals at the ex-
pected times. Thus, at time b a reset signal is expected
but does not occur.

If the “counter” of FIG. 6 is implemented as an RC
network, the charging and discharging voltage of the
necessary capacitor element is shown generally by a
ramp waveform 229 in FIG. 7(c) and is indicative of the
“time left to sever.” Thus, the initialization signal on the
line 318 causes the “counter” to be refreshed beriodi-
cally. In the absence of a reset, the capacitive element is
not refreshed and its voltage decays to a value below
which the sever logic 308 triggers a power sever signal
on the line 258 generally indicated by a waveform 330
in FIG. 7(4.

Referring now to FIG. 8, the sever logic may be
designed to respond to the power sever requests from
the WAMs as well as other sources and actually per-
form the output disable function. The sever logic shown
in FIG. 8 has replicated sever functions for both the
sever drive HI and sever drive LO paths for guaranteed
fault protection. In other words, the output of the chan-
nel under test is controlled by a relay 180 having its coil
driven by the power bus. The power supply (e.g., 28
VDC) path 182 is capable of being broken by either one
of two relays 184,186. Each of these relays is driven by
a separate sever path which are replications of each
other and which include, respectively, a sever drive
high unit 188 and a sever drive low unit 190. The sever
drive high path also includes a latch 196 and an OR gate
192. Similarly, the sever drive low path includes the
latch 198 and an OR gate 194. It should be understood
that the replicative function shown for the sever drive
circuitry shown is used to assure that a fail-safe channel
shutdown can be achieved with a high probability of
success regardless of the source of the fault. When
power is first applied sever latches 196, 198 are cleared
by a POR signal on a line 200 and all channel outputs
are disabled. This occurs because ti e POR signal clears
the latches 196, 198 resulting in a zero at each of the Q
outputs on the lines 206, 208 which causes the respec-
tive sever drive units 188, 190 to deenergize, respec-
tively, the relays 184, 186 causing all channel outputs to
have no power. The same POR signal is also used to
arm an unsever arm latch 210 so that when the CPU
issues an unsever command on a line 212, it is able to
enable the latches and turn power on to all outputs.
However, the same CPU request also clears the unsever

4,727,549
13 14

arm latch so that, if the processor later issues an unsever providing a sever signal for severing the selected output
command without a POR (power or reset) or pilot signals of the signal processor.
request signal on a line 220 being valid (indicating a 5. A watchdog activity monitor (WAM), responsive
processor failure such as lost software), that incorrect to an unsever request signal by providing an unsever
action itself clears the sever latches and causes a sever. 5 signal for unsevering selected output signals of a signal
This last feature provides an added degree of enhanced processor, the WAM for use with a signal processor
processor fault coverage. repetitive self-test having associated therewith a num-

Although the invention has been shown and de- ber of sub-tests, a clock signal, a repetitive frame syn-
scribed with respect to a best mode embodiment chronizing signal pulse and a self-test window signal for
thereof, it should be understood by those skilled in the 10 indicating a subframe within each repetitive frame
art that the foregoing and various other changes, omis- within which subframe a self-test may be executed, a
sions, and additions in the form and detail thereof may start signal pulse and a reset signal pulse, occurring
be made therein without departing from the spirit and respectively, at the beginning and end of each self-test,
scope of the invention. and the processor providing, during the course of each

15 self-test, state transition signal pulses upon the occur-
rence of transitions between selected sub-test states, the
WAM comorisina:

We claim:
1. A watchdog activity monitor (WAM) responsive

to a power-on-reset signal for providing a start-up sever
signal for severing selected signal processor output
signals and responsive to a subsequent unsever request
signal for providing an unsever signal for unsevering 20
the selected processor output signals, the WAM for use
with a signal processor repetitive self-test, the self-test
having associated therewith a start signal pulse indica-
tive of the beginning of each self-test. state transition
signal pulses provided by the processor during each 25
self-test upon the occurrence of test state transitions,
and a reset signal pulse provided by the processor indic-
ative of the conclusion of each self-test. the WAM com-
prising:

counter means, responsive during each repetition of 30
the self-test to the start signal pulse from the signal
processor and the state transition signal pulses for
providing an output signal having a magnitude
indicative of the number of state transition signal
pulses received after the reception of the start sig- 35
nal pulse, and

sever logic means, responsive to the reset signal pulse
and to said output signal for providing a sever
signal for severing the selected signal processor
output signals if the magnitude of said output sig- 40
nals is different from a selected magnitude at the
time the reset signal pulse is provided.

2. The WAM of claim 1, further comprising:
independent timing means responsive to selected

processor pulses for timing the interval between 45
said selected processor pulses and providing a tim-
ing signal indicative of the duration of said interval,
and

means for comparing the magnitude of said timing
signal to a selected magnitude and for providing a 50
sever signal for severing the selected signal proces-
sor output signals if said timing signal magnitude further comprises means for comparing the sequence of
differs from said selected magnitude. received window, start, and reset signals within each

3. The WAM of claim 1, further comprising further repetitive frame to a selected expected sequence and for
sever logic means, responsive to a first to occur unsever 55 providing a sever request signal in the presence of a
request signal for providing an unsever signal for unsev- received signal sequence different from the selected
ering the selected output signals of the signal processor expected sequence.
and responsive to any subsequent unsever request sig-
nals for providing a sever signal for severing the se-
lected output signals of the signal processor.

4. The WAM of claim 1, further comprising further
sever logic means responsive to a power-on-reset signal
for providing the start-up sever signal for severing the
signal processor output on start-up and responsive to
the first to occur of any subsequent unsever request 65
signals for providing an unsever signal for unsevering
the selected output signals of the signal processor and
responsive to any additional unsever request signals for

7. The WAM of claim 5, further comprising:
independent timing means, responsive to selected

signal pulses from the processor for measuring a
time interval between said selected processor sig-
nal pulses and providing an interval signal indica-
tive of the duration of said interval; and

means for comparing the magnitude of said interval
signal to a time reference signal having a magni-
tude indicative of the duration of each frame and
for providing a sever signal for severing the se-
lected signal processor output signals in the pres-

60

- -
logic means, responsive to the frame synchronizing

pulses and the window signals for enabling a self-
test sequence within each subframe, said logic
means also responsive, during each subframe, to a
start signal pulse from the signal processor for
providing a load count signal and a count enable
signal in response thereto, siad logic means also
responsive, during each subframe to a reset signal
pulse from the signal processor for providing a
reset request signal in response thereto;

counter means, responsive to said load count signal
and to said count enable signal, for respectively
loading a count signal magnitude and for enabling
the counting of a plurality of state transition signal
pulses during each subframe, said counter means
also responsive to the state transition signal pulses
and the clock signal from the processor for count-
ing upon each simultaneous reception of both a
clock signal pulse and an edge of the state transi-
tion pulse within a subframe, said counter means
providing a counted output signal having a magni-
tude indicative of the number of state transition
signals received during the subframe; and

means responsive to said reset request signal and to
said counted output signal for comparing, at the
time said reset request signal is received, the magni-
tude of said counted output signal to a reference
signal having a magnitude indicative of the magni-
tude of the number of selected sub-test states and
for providing a sever signal for severing the se-
lected output signals of the signal processor if said
counted output signal magnitude differs from said
reference signal magnitude.

6. The WAM of claim 5, wherein said logic means

15
4,727,549

16
ence of said interval signal magnitude differing
from said time reference signal magnitude.

8. The WAM of claim 5, further comprising;
sever logic means, responsive to a first to occur un-

sever request signal for providing a unsever signal 5
for unsevering the selected output signals of the
signal processor and responsive to any subsequent
unsever signals for providing a sever signal for

prOCeSSOr.

providing, for each test repetition, in response to said
transition signals a count signal having a magnitude
indicative of the number of transition signals pro-
vided for comparing said count signal magnitude,
in response to said reset signal, to a reference signal
having a magnitude indicative of said selected
number of sub-tests; and

providing, for each test reptiition, a sever signal for
severing the selected processor output signals in

ing from said reference signal magnitude.
the Output si@ds Of the signal 10 the presence of &d count signal magnitude differ-

9. The WAM of claim 5, further comprising:
sever logic means responsive to a power-on-reset

Signal for Providing a Sever signal for severing the
selected signal processor output signals on start-up 15
and responsive to the first to OCCUr of
quent unsever request signals for providing an un-
sever signal for unsevering the selected output
signals of the signal processor and responsive to
any additional unsever request signals occurring 20
after said first to occur unsever request signal for
providing a sever signal for severing the selected
signal processor output signals.

10. A method of repetitively testing a signal proces-
sor which has selected output signals unsevered after 25
start-up in response to an unsever request signal, each
test repetition having a start signal associated with the
commencement thereof, state transition signals indica-
tive of transitions therein and a reset signal associated
with the conclusion thereof, comprising the steps of:

providing, for each test repetition, a start signal from
the signal processor for indicating the starting of a
sequence of a number of processor sub-tests;

sequentidly executing, for each test repetition, a se- 35
lected number of processor subtests, the processor

states;

tion, a reset signal indicative of the conclusion of 40
the last of the selected number of subtests;

11. The method of claim IO, further comprising the

providing an independent clock signal for providing

using said independent clock signal to measure the
elapsed time between successive selected signal
processor signals occurring within corresponding
successive test repetition periods and providing an
elapsed time signal having a magnitude indicative
of the duration thereof;

comparing the magnitude of said elapsed time signal
to a selected signal magnitude indicative of the
processor clock period; and

providing a Sever signal for severing the selected
processor output signals in the presence of said
elapsed time signal magnitude differing from said
selected signal magnitude.

12. The method of claim 10, further comprising the
30 steps of severing the selected output signals of the signal

13. The method of claim

unsevering the selected output signals of the signal
processor after start-up in response to a first to
occur unsever request signal; and

output signals of the signal processor in response to
any unsever request signals occurring subsequent
to said first to occur unsever request signal.

steps of:

an independent meaure of time;

porcessor in the presence of said Sever
further

steps of:

providing a transition signal indicative Of subtest providing a Sever signal for severing the selected

the signal processor providing, for each test repeti-

* * * * *

45

50

55

65

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4 , 7 2 7 , 5 4 9

DATED : 2 / 2 3 / 8 8

INVENTOR(S) : Bhalchandra R. Tulpule e t a1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

C l a i m 1, column 13, l i n e s 40-41. Cancel. t he second occurrance. of
"s igna ls" and s u b s t i t u t e -- s i g n a l --

C l a i m 4 , column 13, l i n e 6 8 .

C l a i m 5 , column 14 , l i n e 2 4 .

Claim 10 , column 16, l i n e 8 .

C l a i m 1 2 , column 1 6 , l i n e 31.

I

Attest:

Attesting Oflcer

After "s igna ls" i n s e r t -- occurr ing a f t e r s a i d f i r s t t o
occur unsever r eques t s i g n a l --
Cancel "siad" and s u b s t i t u t e
-- s a i d --
Cancel " r e p t i i t i o n " and s u b s t i t u t e
-- r e p e t i t i o n --
Cancel ' lporcessorl ' and s u b s t i t u t e

processor -- --

Signed and Sealed this

Twenty-fourth Day of January, 1989

DONALD I. QUIGG

Commissioner of Parents and Tmdemarks

