

Impact of Air Injection on Jet Noise

Brenda Henderson and Tom Norum NASA Langley Research Center

Fall Acoustics Technical Working Group December 4 – 5, 2007 Cleveland, OH

Determine impact of core fluidic chevrons on noise produced by dual stream jets

- •Broadband shock noise supersonic
- •Mixing noise subsonic and supersonic

Jet Noise Sources

Shock Noise

Mixing Noise

Large Scale Turbulence (Mach Wave Emission)

- Mixing noise
- Mach wave radiation Crackle
- Shock associated noise Broadband Discrete
- STOVL noise/tones

NASA Langley (LSAWT)

Low Speed Aeroacoustics Wind Tunnel

National Aeronautics and Space Administration

Jet Engine Simulator (JES)

Nozzle design was the result of a partnership between NASA Langley Research Center and Goodrich Aerostructures under SAA1-561

National Aeronautics and Space Administration

Generation III Fluidic Chevrons

- Core fluidic chevron
 nozzle
- 8 injectors
 - 4 pairs independently controlled
- No common plenum

Chevron Mixing Enhancement

• Enhanced mixing shortens potential core and reduces volume of acoustic sources

National Aeronautics and Space Administration

X/Dc = 8

National Aeronautics and Space Administration

Experiments

NPR _c	TTR _c	
1.93	1	
2.04	1	
2.17	1	
2.30	2.5	

Single Stream Experiments

• Fan stream operated at tunnel conditions

NPR _c	TTR _c	NPR _f	TTR _f
1.56	2.66	1.75	1.16
1.61	2.13	2.23	1.05
1.82	2.13	2.23	1.05
2.04	2.39	2.23	1.05
1.61	2.26	2.35	1.17
1.82	2.26	2.35	1.17
2.04	2.39	2.35	1.17
2.17	2.46	2.35	1.17
2.04	2.39	2.45	1.04
2.17	2.46	2.5	1.05

Dual Stream Experiments

Free-stream Mach number = 0.10

National Aeronautics and Space Administration

Single Stream Results

Effect of Increasing NPR_c

Injection at Low Supersonic Speeds

15

Frequency (Hz)

Injection for Well-Defined Shock Noise

Azimuthal Control for Shock Noise

Dual Stream Results

Injection at Subsonic Core and Fan Speeds

Injection at Subsonic Core and Fan Speeds

21

Baseline Results at NPR_f = 2.23

Injection at Subsonic Core Speeds

Azimuthal Control at Subsonic Core Speeds

Injection at Supersonic Core Speeds

Injection at Subsonic Core Speeds

26

- Injection impacts shock structure and stream disturbances through enhanced mixing
 - May impact constructive interference between acoustic sources
- High fan pressures may inhibit mixing produced by core injectors
 - Fan stream injection may be required for better noise reduction

- Modification of Gen II nozzles to allow for some azimuthal control
 - Will allow for higher mass flow rates
 - Will allow for shallower injection angles
- Flow field study spring, 2008
- CFD analysis of flow

Conclusions

- Injection can reduce well-defined shock noise
- Injection reduces mixing noise near peak jet noise angle