Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

W.C. Gaul, Ph. D., CHP, CHMM Chesapeake Nuclear Services

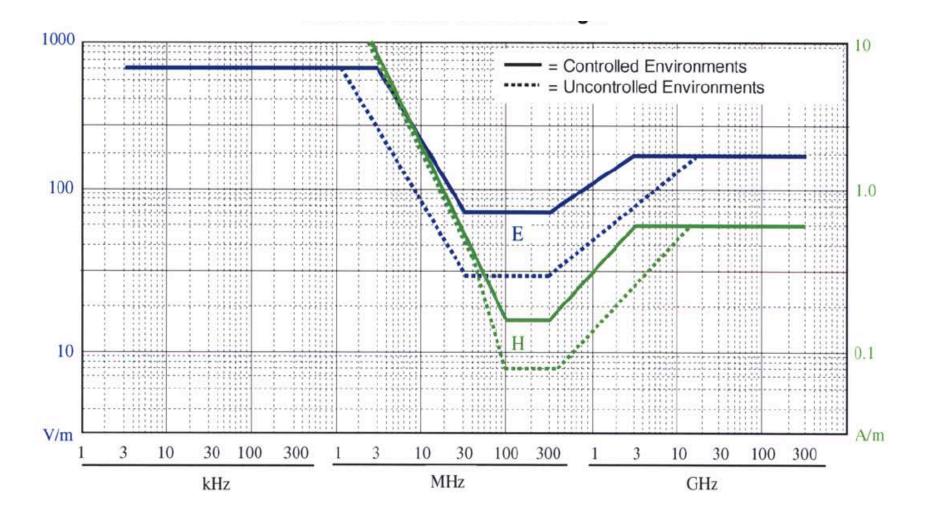
B. Davis, MS, CIH, CSP, CAC, NASA Dryden Research Flight Center

Limits and Guidelines

• OSHA

- From 10 MHz to 100 GHz 10 mW/cm² - 0.1 hr

• FCC


– Varies with frequency range

- For occupational worker and general public

- IEEE
- ACGIH

- Both also vary with frequency

Typical Variable Standard (IEEE) Frequency Dependent

FCC Standard 47 CFR 1.1310

Limits for Maximum Permissible Exposure (MPE) Occupational Exposure

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field (A/m)	Power density (mW/cm²)	Averaging time (minutes)
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

f = frequency in MHz

* = Plane-wave equivalent power density

Compliance Follows Unity Rule

WhereE

Eţotalosuerep

ppowermeasuredsourcei

rregulatoryrequirementatpoweri

Multiple Sources Contribute

Types of RF Signals

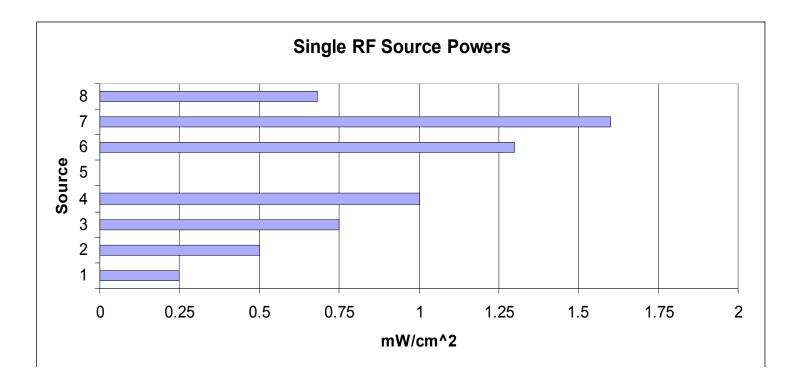
- Continuous output
 - Signal emitted at all times
- Pulsed output
 - Can be at regular intervals
 - Weather radar
- Irregular output
 - Police, ambulance, etc.

Interfering Radiations

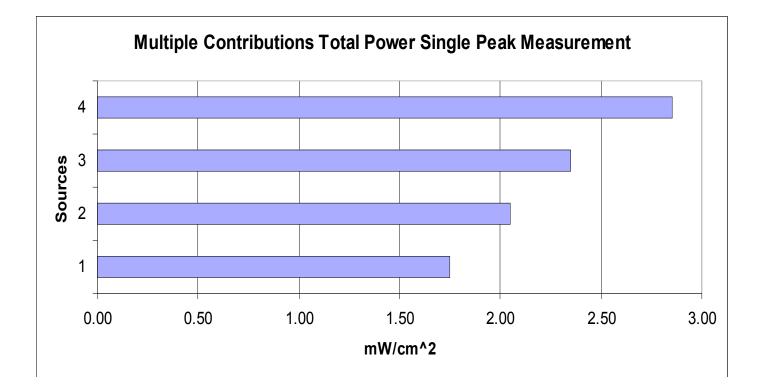
- Wireless LAN
- Wi-Fi Hotspots
- Cell phones, towers
- Radio towers
- Security radios
- Ambulance, Fire, Police
- HDTV high power

- Hospitals
- HVAC systems
- Elevator controls
- Cleaning equipment
- Light ballasts
- Paper shredders

Different Frequencies Different Powers


- Wireless LAN 1-5 W
- Wi-Fi Hotspots
- Cell phones, towers
- Radio towers
- Security radios

- 2 10 W 10 W
 - 100 kW
 - 5 W
- Ambulance, Fire, Police 100 1000 W
- HDTV 1 million watt transmitters


Power Summing - Peak Power

- Typical instruments are set for peak power
 - Irregardless of frequency
 - Sums over a broad range
 - Different correction factors for each frequency
 - Orientation affects reading
 - Irregardless of time averaging
 - Irregardless of spatial averaging
- Good if you never go over 1 mW/cm²

Contribution from Various Single Sources

Total Power from Multiple Sources

Are You Out of Compliance?

 Measured Power in mW/cm^2 25 mW/cm² @ 2.5 MHz 0.75 mW/cm^2 @ 125 MHz 1 mW/cm² -- 75% 0.5 mW/cm² @ 900 MHz 3 mW/cm² --

Out of compliance IF: Sources all radiating at once - in a broad field For six minutes continuously - over whole body

- Standard -- % limit
- 100 mW/cm^2 --25%
- 17%

In Compliance

- Know the generating frequency
- Know the pulse frequency
- Know the human exposure potential

Conclusion

- Monitor all sources
- Consider multiple sources
- Know frequency distribution
- Work with your radiofrequency and microwave equipment owners
- Trust their knowledge