MS+C-SUJ+HOG+CCC.

Title: Launching to the Moon, Mars, and Beyond Presentation

Author: Michael H. Kynard, Manager Upper Stage Engine Element, and Tom Byrd, Deputy Manager Upper Stage Engine Element, Ares Projects Office, NASA Marshall Space Flight Center

Date: September 21, 2007

Presented To: An internal audience at Snecma Propulsion Solid (SPS) in Bordeaux, France, an aerospace contractor that manufactures rocket engine nozzles.

Abstract: This presentation presents the goals of the Vision for Space Exploration. It gives a general overview of the Ares I and Ares V launch vehicles and shows how they enable NASA's lunar exploration missions. It explains how space exploration can inspire the next generation of explorers.

MSFC-502-Resontation

National Aeronautics and Space Administration

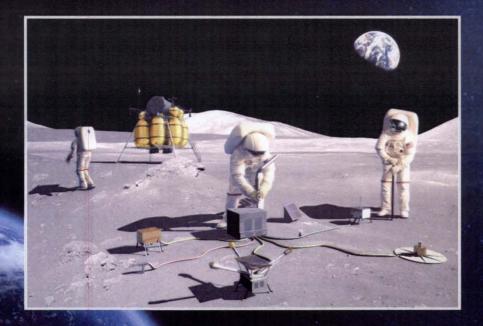
Launching to the Moon, Mars, and Beyond

Michael H. Kynard, Manager
Upper Stage Engine Element
NASA Marshall Space Flight Center

France, September 2007

www.nasa.gov

Today's Journey



- What NASA's mission is today, as defined by the National Space Policy and Global Exploration Strategy
- Why explore
- Timeline
- Why the Moon first
- Vehicle descriptions
- Progress toward launch
- Who will be doing the work to get us there
- Benefits of space exploration

NASA's Mission

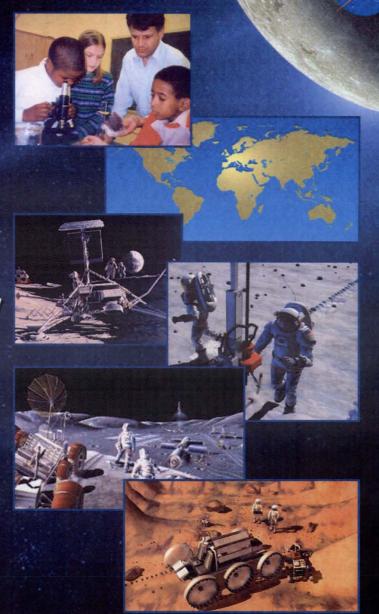
- Safely fly the Space Shuttle until 2010
- Complete the International Space Station
- Develop a balanced program of science, exploration, and aeronautics
- Develop and fly the Crew Exploration Vehicle (CEV)
- Return to the Moon no later than 2020
- Promote international and commercial participation in exploration

"The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect."

- NASA Administrator Michael Griffin October 24, 2006

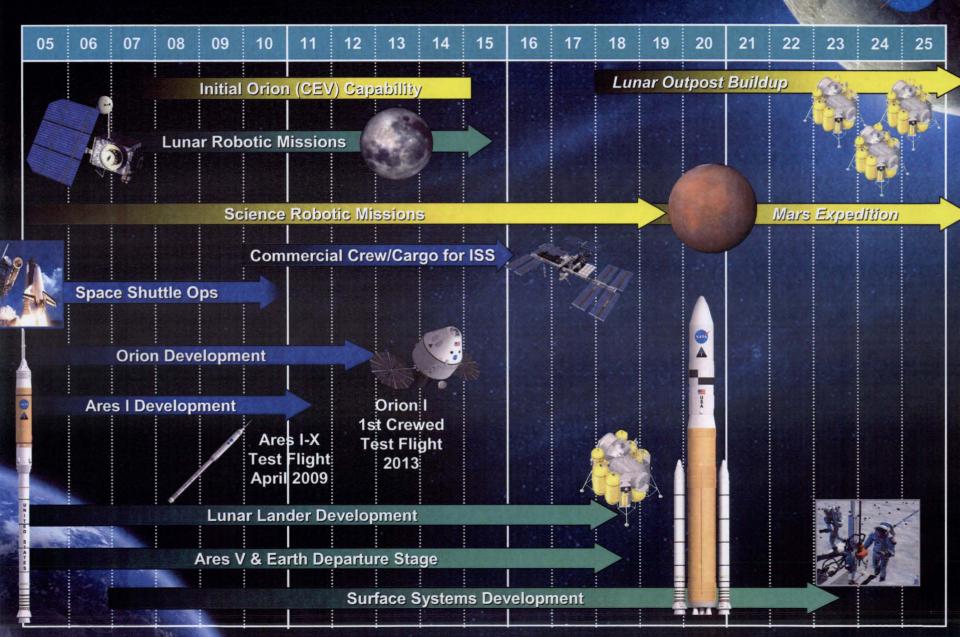
Why Explore?

Inspiration


 Inspire students to explore, learn, contribute to our nations economic competitiveness, and build a better future.

Innovation

 Provide opportunities to develop new technologies, new jobs, and new markets


Discovery

 Discover new information about ourselves, our world, and how to manage and protect it

NASA's Exploration Roadmap

NASA

The Moon The First Step to Mars and Beyond

- Lunar missions allow us to gain exploration experience
 - Space no longer a short-term destination
 - Will test human support systems
 - Use Moon to prove ability to build and repair long-duration space assets
- Developing exploration technologies
 - Launch and exploration vehicles
 - In-situ resource utilization
 - Power and robotic systems
- Conduct fundamental science
 - Astronomy, physics, astrobiology, geology, exobiology

Next Step in Fulfilling Our Destiny As Explorers

There Are Many Places To Explore

Central Farside Highlands

We Can Land Anywhere on the Moon! Floor

- Luna
- Surveyor
- Apollo
- + Possible landing sites

South Pole -Aitken Basin Floor

South Pole

Near Side

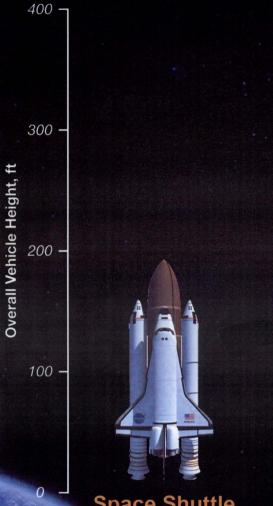
Far Side

Our Exploration Fleet

Earth Departure Stage

Ares V Cargo Launch Vehicle

> Ares I Crew Launch Vehicle



ELO Ambassador, Page

Building on a Foundation of Proven Technologies - Launch Vehicle Comparisons -

Space Shuttle

Height: 184.2 ft

Gross Liftoff Mass: 4.5M lb

55k lbm to LEO

Orion

Upper Stage
(1 J-2X)
305k lb LOX/LH₂

5-Segment
Reusable
Solid Rocket
Booster

(RSRB)

Ares I

Height: 328 ft Gross Liftoff Mass: 2.0M lb

52k lbm to LEO (effective)

Lunar Lander

Earth Departure Stage (EDS) (1 J-2X) 493k lb LOX/LH₂

> Core Stage (5 RS-68 Engines) 3.1M lb LOX/LH₂

Two 5-Segment RSRBs

Craw

Lander

S-IVB (1 J-2 engine) 240k lb LOX/LH₂

S-II (5 J-2 engines) 1M lb LOX/LH₂

S-IC (5 F-1 engines) 3.9M lb LOX/RP-1

Ares V

Height: 362 ft Gross Liftoff Mass: 7.3M lb

133-144k lbm* to TLI in Dual-Launch Mode with Ares I Saturn V

Height: 364 ft Gross Liftoff Mass: 6.5M lb

> 99k lbm to TLI 262k lbm to LEO

*Note: Depending on length of on-orbit LEO loiter time

National Aeronautics and Space Administration

ELO Ambassador, Page 9

Ares I Elements

Orion

• 16.5 ft diameter

Lunch Abort System (LAS) Instrument Unit (IU)

Stack Integration

- 2M lb gross liftoff weight
- 328 ft in length
- NASA-led

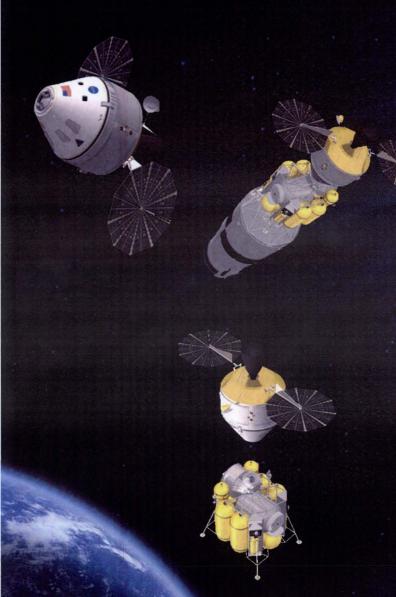
Interstage

Spacecraft Adapter

Upper Stage

- 305k lb LOX/LH₂ stage
- 18 ft diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for 1st stage flight
- · Primary Ares I avionics system
- NASA Design / Contractor Production

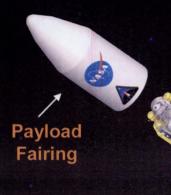
First Stage


- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- ATK Launch Systems

Upper Stage Engine

- Saturn J-2 derived engine (J-2X)
- Expendable
- · Pratt and Whitney Rocketdyne

Orion Crew Exploration Vehicle



- Crew Module modeled after Apollo Command Module, but twice the volume
- Transports six crew members to International Space Station or four to the Moon
- Uninhabited while crew descends to the Moon in Lunar Lander
- Can lift away from Ares booster via Launch Abort System in emergencies
- Capable of land or water landing

Ares V Elements

Lunar Lander

Stack Integration

- 7.3M lb gross liftoff weight
- · 362 ft in length

First Stage

 Two recoverable five-segment PBAN-fueled boosters (derived from current Ares I First Stage)

Core Stage

- Five Delta IV-derived RS-68 LOX/LH₂ engines (expendable)
- 33 ft diameter stage

12

EDS

Interstage

Earth Departure Stage (EDS)

- One Saturn-derived J-2X LOX/LH₂ engine (expendable)
- 27.5 ft diameter stage
- · Aluminum-Lithium (Al-Li) tanks
- Composite structures
- · Instrument unit and Interstage
- Primary Ares V avionics system

Journey to the Moon

Programmatic Milestones

- Completed Ares I System Requirements Reviews
- Contracts awarded for building First Stage, J-2X Engine, and Orion; other Ares I awards in process
- Ares I System Design Review preparations in progress
- Ares I-X test flight scheduled for April 2009

Technical Accomplishments

- First Stage parachute testing and nozzle development
- J-2X Test Stand to be constructed at the Stennis Space Center
- J-2X injector testing and powerpack test preparation
- Upper Stage initial design analysis cycle

 Ares I-X hardware fabrication

Down-to-Earth Benefits from Space Technologies

NASA powers innovation that creates new jobs, new markets, and new technologies

Personal Health

- Pain relief from Light-Emitting diode (LED) chips
- Eye tracker for LASIK surgery

Consumer Products

- Wireless light switch
- Remote appliance programmer

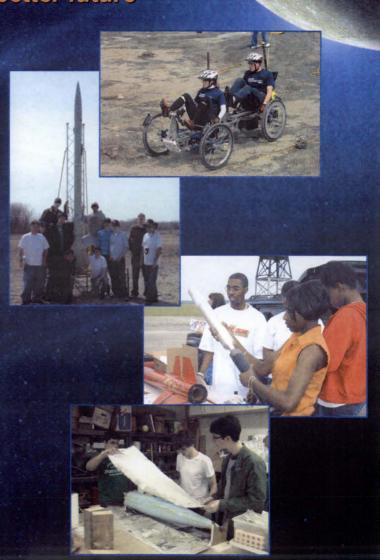
Environmental

- Water Filtration system
- Environmentally friendly chemical cleanup
- Real-time aircraft weather forecasting

Security

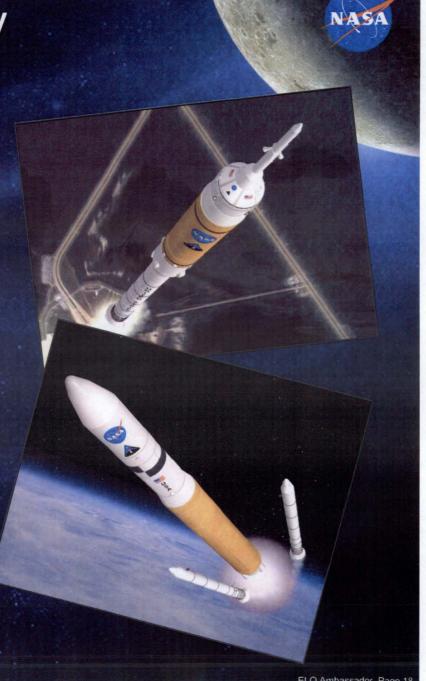
- Suspicious material sensor
- Anthrax sensor
- Stair-climbing tactical robot

For more information see http://technology.jsc.nasa.gov


every Dollar Invested in Space is Spent on Earth

NASA Explores for Answers that Power Our Future

NASA


NASA powers inspiration that encourages future generations to explore, learn, and build a better future

- NASA relies on a well-educated U.S. workforce to carry out missions of scientific discovery that improve life on Earth
- America's technological edge is diminishing
 - Fewer engineering graduates from U.S. colleges and universities
 - More engineering and science graduates in other countries
- Global marketplace is increasingly competitive and technology-driven
- Students need motivating goals and teachers with information to share
- NASA continues to develop educational tools and experiences that inspire, educate, and motivate

Summary

- Human beings will explore the Moon, Mars, and beyond to encourage inspiration, innovation, and discovery
- We must build beyond our current capability to ferry astronauts and cargo to low Earth orbit
- We are starting to design and build new vehicles, using extensive lessons learned to minimize cost, technical, and schedule risks
- To reach for Mars and beyond we must first reach for the Moon
- Team is on board and making good progress – the Ares I-X test flight is on schedule for April 2009

www.nasa.gov/ares