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The inductive formation of current sheets in a conical theta pinch FARAD (Faraday Ac-

celerator with Radio-frequency Assisted Discharge) thruster is investigated experimentally

with time-integrated photography. The goal is to help in understanding the mechanisms

and conditions controlling the strength and extent of the current sheet, which are two in-

dices important for FARAD as a propulsion concept. Theprofiles of these two indices along
the inside walls of the conical acceleration coil are assumed to be related to the profiles of the

strength and extent of the luminosity pattern derived from photographs of the discharge.

The variations of these profiles as a function of uniform back-fill neutral pressure (with no

background magnetic field and all parameters held constant) provided the first clues on the

nature and qualitative dependencies of current sheet formation. It was found that there is

an optimal pressure for which both indices reach a maximum and that the rate of change

in these indices with pressure differs on either side of this optimal pressure. This allowed
the inference that current sheet formation follows a Townsend-like breakdown mechanism

modified by the existence of a finite pressure-dependent radio-frequency-generated electron

density background. The observation that the effective location of the luminosity pattern

favors the exit-half of the conical coil is explained as the result of the tendency of the

inductive discharge circuit to operate near its minimal self-inductance. Movement of the

peak in the luminousity pattern towards the upstream side of the cone with increasing

pressure is believed to result from the need of the circuit to compensate for the increase

in background plasma resistivity due to increasing pressure.
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I. Introduction

Electrode-less spacecraft propubion thrusters arc attractive devices due to their avoidance of lifetime
limiting electrode erosion and their ability to use electrode-illcompatible propellants (such as CO2 and H20).
Pulsed inductive thrusters! are OllC type of electrode-less plasma propulsion devices. Their operatioll consists
of a high frequency current pulse through all inductive coil that induces a time-changing magnetic field and,
in accordance with Faraday's Law of Induction, all electric field. If propellant is within a certain distance of
the coil, this electric field will break down neutral gas and the changing magnetic field will induce a sheet
carrying current opposing that in the coil. The interaction of the current density in the sheet with the
induced magnetic field produces a Lorentz body force density that will act to expel the current sheet away
from the coil, entrainillg propellant and producing thrust.

Because the coupling between the propellallt and the inductive coil affects the efficiency of the thruster,
it benefits the design to provide propellant to the inductor that has already been ionized through some
external means. 2 A pulsed inductive propulsion device, called the Faraday Accelerator with Radio-frequency
Assisted Discharge (FARAD), was first introduced by Choueiri and Polzin3 who carried out proof-of-concept
experiments, derived design criteria,4 and described some potential advantages over a previous concept, the
Pulsed Inductive Thruster (PIT).!,5,6 Among these potential advantages is FARAD's ability to form current
sheets at much lower capacitor voltages and energies than PIT (1.5kV, 44J versus 30kV, 4kJ) through the
use of a RF-generated preionization. This advantage incurs the added complexity of incorporating an RF
plasma source and applied magnetic field, which are used to produce and guide plasma with a high-enough
density for current sheet formation onto the face of a flat inductive coil. A particular problem is the difficulty
of designing a non-cusped magnetic field that can effectively deliver a significant portion of the pre-ionized
propellant to the coil.

The Conical Theta Pinch FARAD (CTP-FARAD) is a permutation of the original FARAD concept with
the single difference that a conical inductive coil is used instead of a flat coil. Figure 1 shows, in the left
panel, a schematic of the original FARAD design with the flat acceleration inductive coil. In the present
work, the flat coil is is replaced by the conical coil shown in the right panel of the same figure. This geometry
allows for a non-cusp applied magnetic field that more closely follows the coil's face and that should be more
effective at guiding the pre-ionized propellant to the coil. Because of this conformity to the natural path of
plasma diffusion, current sheets are possible in CTP-FARAD even with no applied magnetic field. Moreover,
the CTP-FARAD cone is expected to produce an additional thrust component derived from electromagnetic
pinching of the plasma.

Figure 1. Left: Schematic of original FARAD set-up with flat Inductive coil. Right: Schematic of replacement
conical coil.

The propulsive efficacy of the current sheet depends on a number of factors (e.g., sheet strength, extent,
decoupling distance from the coil, propellant leakage, pinching, stability, etc.). Only two of these, namely
strength and extent, are the focus of the present study. Specifically, the thruster should ideally induce a
strong (high current-density) current sheet that uniformly extends over the entire coil surface in order to
maximize the amount of work done on the plasma. An understanding of the mechanisms and conditions
controlling the intensity and extent of the current sheet would be useful in providing guidance for future
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designs and in choosing operating conditions that lIlost enhance these two sheet performance indicies with
respect to propulsive efficiency.

The goal of the study reported here is to provide the first dues on the underlying lIlechani:-;ms ami
condil.ions behind HlP IC'lfmation, intensit,y and pxtent of currpnt sheets in CTP-FAHAD. Ultimately, for a
given physical configuration, we need to know how to maximize the thruster's performance as a function
of the controllahle operating parallleters (lIIass How rate, propellant type, RF power, and applied ulagnetic
field topology and stnmgth). In the present study we stmt with our attl'mpts at elucidating the underlying
physical mechanisms by focusing on the most basic dependencies of sheet formation, namely the role of
background density. While in a real thruster the background density, for a given configuration and RF
power, il:i controlled by the maSl:i flow rate through the thnll:itcr, in thil:> bal:iic l:itudy we cllOl:ie to control the
background density by varying the nniform back-fill gas pressure, while holding all controllable parametprs
fixed and applying no magnetic field. This removes the complications of the flow and expansion the pre
ionized gas from the picture and allows for a clearer isolation of the basic mechanisms controlling current
shl'et formation, strength and extent.

Furthermore, before carrying out detailed studies using Langmuir probes, B-dot probes, and more an
alytical optical diagnostics, we limited our initial investigation to a single diagnostic: time-integrated pho
tography. Thil:i wal:i motivated by the visually rich character of the distinguil:ihable visihle-light emil:ision
associated with the sheet.

The rest of the paper is organized into successive sections in which we describe the experiment, document
the new conical coil design, describe the photographic data collection, report the observed trends and attempt
to extract physical insight into l:iome of the basic mechanisms underlying shed formation, strength and extent.

II. Experimental Setup

A. Vacuum Chamber

All experiments were performed in a vacuum chamber consisting of two pyrex cylinders joined together by a
fiberglass plate on which the CTP is mounted, extending 12 cm into the larger cylinder. The smaller cylinder
has an inner diameter of 6 em and is 37 cm long and the larger cylinder has an inner diameter of 20 cm and is
,16 cm long. While the experiment can be operated with mass injection through the endplate of the smaller
cylinder, for the present study the chamber is back-filled to various pressures from a port on the opposite
end of the experiment. The pressure is monitored using a Granville Phillips 275 mini-conveet.ron pressure
gauge. Plasma is created in the smaller, pre-ionization chamber and diffuses through a 6 cm inner diameter
concentric hole in the fiberglass plate into the region bounded by the CTP before eventually migrating into
the remainding volume of the larger cylinder. A 150 lis turbomolecuIar pump backed by a roughing pump
is attached to the larger cylinder at the endplate opposite the CTP inductive coil; the same endplate where
gas is fed into the vacuum vessel.

B. Plasma Source

A Boswell-type saddle antenna is wrapped around the smaller cylinder, creating the pre-ionization chamber.
The saddle is composed of quarter-inch copper tubing attached to a water cooling line. An ENI 13.56 MHz
1.2 kW power supply is coupled to the antenna through a tuner consisting of two Jennings 1000 pF 3kV
variable vacuum capacitors located immediately next to t he antenna and used to minimize reIleded power.
A Faraday cage surrounds the entire experiment to shield from radiated RF fields.

C. Conical Theta Pinch

The conical theta pinch is compol:ied of a flexihle circuit board wrapped around a pyrex funnel with a wall
thickness of 4 nun and providing stl'llctural support to the circuit board. The iw(:k of the funnel, with a 6 cm
inner diameter and 2 cm length, fits into the concentric hole in the fiberglass plate holding the funnel's axis
parallel to the horizolltal plalle. The conical coil !Hied for the present study has a half-angle of :~o degrees.
The design of the circuit. board, shown in Fig. 2, is based on the design of the flat inductive coil Iound in
the current PIT7 and the original F'ARAD experiment. The circuit traces follow an Archimedes spiral with
current flowing down one surface from the hus at the major radius to plated through holes at the minor
radius. Thil:i current then proceedl:i up tht, back l:iide of the circuit board (l:ihown as lighter-colored traces in

3
The 30th International Electric Propulsion ConfeTence, Florence. Italy

Scptcmbcl' /7-20. 2007



Fig. 2), providing cancellation of tile radial component of current with tile traces from tile ['rout side. In this

way, the circuit produces a purely azimuthal current that is uniform across the coil face. The traces that

form this azimuthal current end ,1 cm I)eforc the downstream end of the cone, and all normalization made

with respect to a particular distance l'rom the cone inlel, is made with respect to the downstream end of the

cone (not tile edge of the inductive coil).

bus

major radius
400 mm

Lv

Figure 2. The CTP inductive coil shown as it is a print on a circuit board, with twenty spirals per side printed
onto a .002 inch-thick Kapton substrate to maintain flexibility. Current is fed to the circuit through the bus,
flows down the darker-colored traces on the front side of the circuit board, through plated through holes at
the minor radius, and then up the lighter-colored traces on the back side. The ends of the board are brought
together to form the conical theta pinch.

Current is fed to the coil through strip-lines, one t)egween a 39.2pF capacitor and the vacuum vessel

and another from the interior wall of the vacuum vessel fiberglass plate to the circuit-board bus (shown in

Fig. 2). The circuit penetrates tile vacuum vessel through metal standoffs, which connect the two striplines.

The current pulse is initiated (as ill the FARAD) using a :'hmmner" switch. When a current pulse is thus

fed into the coil, a time changing radial and axial magnetic field and an azimuthal electric field are induced

in the volmne contained by the coil. If pre-ionized propellant is present within the decoupling distance of

the coil, a current sheet will be induced in this propellant during the first half-cycle of the pulse at voltages

an order of lnagnitudc lower than those required tbr operation of the PIT. 3 This current sheet will form such

that, inside of the sheet, its own induced field cancels out the magnetic field from the coil and, between the

current sheet and coil, the two induced fields add. This build-up of magnetic pressure acts to accelerate the

current sheet away from the coil normal to the coil surface for a uniform induced magnetic field profile.

Since the torce is normal to the coil surface, the CTP inductive coil provides a radial tbrce density on the

plasma current sheet as well as an axial one. The axial component of the tbrce density contributes to the

total thrust by imparting axial directed kinetic energy to the current sheet and any entrained propellant.

The radial force density component takes advantage of a portion of the pre-ionized propellant that is not

involved in current sheet formation by I)inching the current sheel, and (:an provide an additional contribution

to thrust as well as reduction in the divergence of the exiting plasma. Schematics showing the idealized stages

of sheet tbrmation and pinching are shown in Fig. 3.

D. Time-integrated Photography

A Nikon D50 digital SLR camera with a 50 mm focal length lens was used to cat)ture tinm-integrated images

of the luminous pattern associated with the current sheet. All automatic compensation for light intensity,

gamnm., and color balance were defeated in the acquisition of these data.. Each picture was taken with a half

second exposure time, an IS() of 100, and a preset whitebalance of mnlbrm gray. The camera was mounted

tor a top view of tile cone at a distance of roughly 60 cm from the cone exit. Due to physical constraints of

the experimental setup, the camera is unable to view the cone surface at an angle where the "film plane" of

tile camera is parallel to tile plane subtending the bottom edge of tile cone. All photographs were obtained

with an angle of 30 degrees between these two planes.
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Figure 3. Idealized schematics showing current sheet formation (left panel) and pinching (right panel) in the
CTP-FARAD.

The picture frame includes the lower half of the inside cone surface, allowing determination of the intensity
and extent of the luminous structure from the cone's inlet to its outlet. The aperture is remotely opened,
the switch is then activated sending the current pulse through the coil, and the aperture closes automatically
after one half second.

III. Experimental Results

A. Interpretation of the Images

While the steady-state argon discharge from the RF source fills the cone with a gas radiating pink light, this
distinct luminosity is greatly overpowered by an azimuthally-symmetric bright blue discharge that emanates
from inside of the cone when the switch is closed. We make the assumption that the intensity, location and
extent of this latter luminous structure along the wall of the cone are highly related to those of the current
sheet. However, previous study of current sheets between plane electrodes8 using high-speed imaging and B
dot probes showed high correlation between the current carrying structures and their luminous signatures. In
our study, the use of time-integrated photography implies a loss of some of this correlation since the luminous
structure is more a representation of both the regions where the current has passed at some time during
the pulse and those containing radiating gas that does not carry current. Moreover, since the current sheet
presumably moves away from the cone's inner surface during the pulse, there is a parallax error associated
with determining its location along the cone's surface from time-integrated photographs obtained with a
camera whose film plane is not parallel to the cone's axis of symmetry.

Due to these limitations we take the measured intensity, location and extent of the luminous structure
that appears during the pulse as rough representations of the corresponding features of the current sheet
and limit our conclusions to only relative changes in these measured quantities.

B. Image Processing

All image processing is performed in MatLab. The images are filtered for blue light to increase the signal to
noise ratio. To further increase the signal to noise ratio, a first photo that includes a current sheet is taken
directly before a second photo with no current pulse (but with the background RF plasma on), and this
second image is subtracted from the first to eliminate a large fraction of the background light associated with
the steady-state RF discharge. This procedure is repeated five times for a given condition and the intensity
values are averaged. Intensity values on a line along the cone surface are plotted with respect to distance
from the cone inlet. When distance from the cone inlet is normalized, it is normalized to the cone outlet,
which occurs at 13.5 em from the cone inlet. The edge of the inductive coil occurs at 9.5 em from the cone
inlet, and corresponds to a normalized distance of .7. The resulting axial profiles are also integrated and
normalized to their peak values to provide a measure of the intensity and extent of the luminous structure.
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C. Measured Profiles and Pressure Dependencies

The RF power sonrcf' wns held com:tant at 200W forward power and 1%reflected power. No applied mngrlPtic
filed was employed and the voltage on the capacitor was maintained at 1.25 kV for each pulse. The argon
back-fill pressure in the CTP vacuum vessel W1lS varied from 4 lilT up to 48 mT.

Figure ·1 shows intellsity profiles alollg the cone's wall with the inlet located 1lt 0 cm ellld the exit at
l.3.5 cm. Representative profiles from eight back-fill pressure levels spanning the range of varied pressure are
shown. The small peak at the latter location is due to light reflection from the downstream edge of the cone.
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Figure 4. Profiles of intensity (in arbitrary units) versus distance from inlet along the cone's wall for eight
back-fill pressure levels spanning the back-fill pressure range

Figure 5 shows the effective intensity of the current sheet plotted as a function of pressure. Effective
intensity for a given pressure is calculated by integrating the curve of intensity versus position and normalizing
it with respect to the maxiuHun value for that integral attained over the pressure range.

INormalized Integrated Intensity vs. Pressuref
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Figure 5. Effective intensity of the current sheet as a function of back-fill pressure

Figure 6 shows a plot of effective current sheet extent versus pressure. Effective current sheet extent along
tlte wall (in the axial direction) for a given pressme is c1llculated as the integral of the cmve of intensity
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versus t)osition divided t)y the peak intensity tor that pressure and normalized to the maxinmm current sheet

exteut attained over the pressure range.

1.0_ _, [Normalized Extent vs. Pressure]
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Figure 6. Effective axial extent (along the wall) of the current sheet as a function of back-fill pressure. The

values of the extent are normalized by the largest value.

The effective location is determined by calculating the eentroid for each curve of intensity versus distance
from the cone inlet. The centroid locations are normalized by the distance between the cone inlet and exit

(13.5 cm), with the cone inlet and beginning of the inductive coil at 0, the inductive coil ending at .7, and
the exit at 1, and plotted vcrsus back-fill pressure in Fig. 7.
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Figure 7. Effective location (along the wall) of the current sheet as a function of back-fill pressure. The

locations are normalized so that the cone inlet and beginning of the inductive coil are at O, the end of the

inductive coil is at .7, and the cone exit is at 1.
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From
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3,

Observations

the experiments and the plots of Figs. 4-7, we make the following observations:

Current sheets of varying intensity, extent and location were observed to form at each of the back-fill

pressure levels in the investigated range (4 to 48 reTort).

There is an optimal back-fill pressure, P* (between 10 and 15 reTort for the particular conditions

of this experiment), for which both the clfcctive intensity and extent of the current sheet are largest
(Figs. 5 and 6).

The rate of change in effective intensity (and extent) with pressure differs on eit her side ol this optimal
pressure, Specifically, the growth rate of intensity (and extent) with increasing pressure below P* is
significantly higher than its decay rate with increasing pressure above P*.
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4. For pressure levels below P', the current sheet intensity profiles are not sylllmetric and are relatively
more extended towards the calle exit. Above P' they become 1110re synlllletric with respect to cone
inlet and cone outlet (Fig. ;1), but at all vres:mres the current sheet favors the downstream eml of the
inducl ivp coil.

5. For all pressure levels ill the illvestigate range, current sheet formation occurs around the middle section
of the cOlle but strollgly favors the dowllstream half of the illductive coil. As call be seell ill Fig 7,
current sheet formation occurs at normalized distances of 0.5 to 0.56 from the inlet, while the end of
the coil occurs at .7.

G. As t.h<~ prpssnre risps the dfective location of currpnt shpet formation moves Rlightly, hut ddinitely and
monotonically, towards the inlet (Fig. 7).

We proceed by using these qualitative observations to glean some basic aspects of the mechanisms un
derlying current sheet formation in such a device.

IV. Discussion and Interpretation of the Observations

The existence of an optimal pressure (Observation 2) is indicative of a Townsend-like breakdown. On the
lower-pressure side of P', due to the relatively lower neutral density, the electrons involved in current sheet
hreakdown undergo fewCf ionizing collisions with the hackground neutrals, while on the higher pressure side
of that optimum they gain less energy from the electric field between collisions because their mean free path
between collisions with neutrals is smaller.

Uulike iu the c1as:;ic Towusend breakdowu, however, there is a finite steady-state backgortlnd electron
density from the steady-state RF discharge in FARAD without which breakdown would require far larger
pulse energies. Measurements of a similar RF argon discharge at fixed RF input power of 200 W were
reported by Chang et al. 9 and are reproduced in Fig. 8. These data show that the electron density increases
with pressure over the pressure range of our experiment. (Of course this increase cannot go indefiuitely at
constant power as the energy input per unit mass decreases with increasing pressure.)

5 10 15
Pressure (Torr>

20

Figure 8. The effect of pressure on electron number density in a 13.56 MHz RF inductive discharge. 9

The reported increase of electron density with back-fill pressure implies that the decrease in ion production
rate due the lower average electron energy on the high-pressure side of P* is, to some extent, counterbalanced
by the increase iu the !Hnnber of background e1ectrous. This would explain the lower rate of decrease in the
current sheet's intensity and extent vs pressure at that side of the optimum relative to their increase rate on
the lower-pressure side (Observation 3).

It is well know in pul:;ed plasma thruster research that the current sheet tend::; to form ill such a way that
the inductance presented to the circuit is minimized. 2 For the conical theta pinch, this implies a curn'nt
sheet forming at a location that serves to exclude as much coil-generated magnetic: flux from the interior
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volume of the (:oil. A current sheet forming at the downstream end of the coil eircmnscribes a larger area

circle than a current sheet forming fitrther upstream. This may explain why the current sheet favors tile
downstreanl location.

In addition, a current sheet, lorming at the downstream edge of the induclive coil will tend to affect

magnetic flux lines fiarther upstream, forcing them to stay close to the walls of the theta-pinch to maintain

V-B -- 0. A current sheet forming near the upstream end, consisting of a smaller ring current, will not have

nearly the same effect <m the magnetic field lines in the rest of the theta pinch's interior. Consequently, the

point of lowest inductance, and the point where the sheet is predisposed to form, is at or near the downstream

end of the inductive coil. This may explain why the current sheet has an asymmetric extent favoring the

exit end of the coil (OI)servation 4) and why current sheet fbrmation (at all the investigated pressure levels)

is biased (to a varying degree) towards the downstream end o[ the inductive eoil (Observation 5). Because

tile circuit board traces end 4 cm before the cone outlet, current sheet formation is less dramatically biased

toward tile exit half of the cone as it is biased towards the downstream edge of" the inductive coil.

The remaining observation (Observation 6) that current sheet formation has a tendency to move upstream

with increasing pressure may be explained through a consideration of the inductive circuit shown in Fig. 9.

R< Lo Switch

C Ij

Figure 9. Schematic of the inductive circuit used to explain observation 6

The resistivity of a weakly ionized plasma., such as the background RF-produeed plasma, in CTP-FARAD,

is dominated by eleetron-imutral collisions. As the pressure increases, the frequency of these collisions

increases, increasing the resistivity in the preionized plasma. During the inductive pulse, the plasma has

a resistance Rp that is equal to the resistivity integrated around the circumference of the coil. This value

increases for a given axial location as a function of pressure and for a given pressure it decreases as we

move axially towards the inlet. From a circuit point-of-view, we recognize that the voltage drop across the

transformer nmst bc equal to the voltage drop owing to the plasma resistance. This would require the currcnt

sheet to initially form filrther upstream in the theta-pinch coil as the pressure and Rp increase at a given

axial location. Consequently, in a pulsed inductive discharge the sheet may be forced to form at a location

other than the point of minimum overal circuit inductance.

V. Summary and Concluding Remarks

A photographic study of the effects of back=fill pressure on the intensity, extent and location of current

sheets in a conical theta pinch FARAD thruster provide some basic insights into the mechanisms regulating

current sheet formation. The existence of an optimal pressure for maximum sheet intensity and strength

and the difference in the rates of change in these quantities with changing pressure on either side of this

optimum were explained as the behavior of a _ibwnsend-like breakdown modulated by a background electron

density that increases with pressure. The effective axial location (along the wall) aromld which the sheet

tends to form, and its dependence on pressure, are thought to be related to a dynamic balance between tile

resistive elements (depending on plasma resistivity and, thus, pressure) and inductive elements (depending

on the axial location inside the conical coil) of all equivalent inductive circuit.

Future work will aim at verifying and consolidating these insights with more analytical diagnostics and

models, with the ultimate goal of deriving prescriptions for optimizing current sheet formation and evolution

as a [im('tion of controllable operating parameters, inchlding the mass flow rate through the device, applied

inagnetic field and RF power.
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