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Technical Memorandum

Application of Simulated Reactivity Feedback in Nonnuclear Testing 
of a Direct-Drive Gas-Cooled Reactor

1.  Introduction

Nonnuclear testing can be used to evaluate the operation of an integrated nuclear system within 
a reasonable cost and schedule in order to provide valuable input to the overall system design. Vari-
ous operational regimes can be studied in nonnuclear testing to validate thermal and thermal hydraulic 
codes, assess thermal hydraulic behavior, characterize stress/strain in the system during operation, and 
verify system integration processes. However, because the electrically heated core lacks neutrons, the 
dynamic neutronic response of the system cannot be fully simulated without the incorporation of addi-
tional system models.

In early 2005, dynamic testing was performed on the Safe Affordable Fission Engine (SAFE) 
100a test article at the NASA Marshall Space Flight Center (MSFC) Early Flight Fission Test Facili-
ty (EFF–TF). The SAFE–100a is a resistively heated, stainless steel heat pipe (HP) reactor core segment 
coupled to a prototypic gas-flow heat exchanger (HX). Core power transients that were simulated in 
the electrically heated system tests were controlled by a point kinetics model with reactivity feedback 
based on a bulk temperature reactivity feedback coefficient and core average temperature. This type of 
nonnuclear test is expected to provide a reasonable approximation of reactor transient behavior because 
reactivity feedback is very simple in a compact fast spectrum reactor (simple, negative, and relatively 
monotonic temperature feedback, caused mostly by thermal expansion) and calculations show that no 
significant reactivity effects are associated with fluid in the HP (the worth of the entire inventory of 
sodium (Na) in the core is much less than one dollar, so fluid movement and temperature changes will 
cause very minor effects). In previous SAFE–100 tests, the point kinetics model was based on core 
thermal expansion via deflection measurements.1 These tests demonstrated that core deflection was a 
strong function of how the SAFE–100 modules were fabricated and assembled, in terms of straightness, 
gaps, and other tolerances. Both the SAFE–100 and 100a were constructed from individual modules 
that nested together to form a core rather than being constructed from a monolithic block. To remove 
the added variable of SAFE–100a expansion with varying temperature, as compared to a different con-
cept, it was decided to use a temperature-based feedback model, based on several thermocouples (TCs) 
placed throughout the core. The bulk core temperature feedback coefficient for most reactors of this 
class is on the order of –0.1 to –0.2 cents per degree Kelvin.
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The test matrix applied in SAFE–100a testing included changes in coolant flow rate to simulate 
system load variations and step reactivity insertions and decreases. The system responded as expected 
for all induced transients—increased/decreased coolant flow rate with reactivity feedback, increased/
decreased coolant flow rate without reactivity feedback (done for comparison), and positive/negative 
reactivity insertion. Expected implies that the transient response was typical of any simple reactor, 
whether it be cooled by a pumped fluid (gas or liquid metal), or by HPs. Figure 1 shows the system 
response to a series of transients in which the system load was increased several times, represented  
by mass-flow increase through the HX, followed by a step reactivity insertion of $0.06. An in-depth  
discussion of the SAFE–100a system response can be found in reference 2.
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Figure 1.  Dynamic system testing of the SAFE–100a with simulated reactivity feedback: 
	 (a) Core thermal power and calculated reactivity and (b) HX mass-flow rate, 
	 average core temperature, and average HP temperatures upstream and 
	 downstream of the HX.

During the applied transients, the HPs appear to act as very good conductors with relatively  
little thermal inertia, such that system response would be expected to be very similar in a reactor design 
in which gas directly removes power from the core, as in a direct-drive gas (DDG) cooled reactor that  
does not incorporate an intermediate HX. The time scale of the transient is dictated mostly by the ther-
mal inertia of the core, with a smaller extent being dictated by the HPs and HX for the SAFE–100a. In 
each transient applied to the SAFE–100a, the peaks and valleys of the power and temperature occurred 
within 3–5 min after transient initiation, followed by modest oscillations until the system stabilized at a 
new steady state condition approximately 20–30 min after the transient was initiated. The magnitude  
of power and temperature overshoots were also modest; ≈15 K temperature overshoot for a $0.10 reac-
tivity insertion, although the magnitude of overshoot is not of great meaning because the SAFE–100a  
is a low-power density core with nonprototypic thermal inertia. 

Similar dynamic test methodology is planned for application with the electrically heated, DDG 
test article currently undergoing testing at MSFC. Designed by engineers at Sandia National Laboratory 
and the Los Alamos National Laboratory, the DDG was previously tested to assess basic flow character-
istics and system pressure drop.3 The core must be refurbished to incorporate additional instrumentation 
for measuring core block temperatures and to replace the existing graphite heater elements that have 
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undergone a significant amount of thermal cycling during previous checkout tests. Instrumentation will 
be positioned to provide extensive characterization of the core block temperature, both axially and radi-
ally, and to monitor coolant gas temperature in regions of interest. Details of the proposed instrumen-
tation will be discussed in this Technical Memorandum (TM). More detailed characterization of core 
temperatures will allow implementation of a higher fidelity neutronics model that incorporates multiple, 
localized reactivity feedback coefficients as a function of various independent core temperature mea-
surements. Additionally, investigation of deflection measurement techniques for application inside a 
pressure vessel has commenced and their potential applicability of these methods will be discussed. 
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2.  System Model: Point Reactor Kinetics

Reactor dynamics can be modeled using the point kinetics equations (PKEs), which can be 
derived from transport and diffusion theory.4 The PKEs representation provides only an approximate 
model of the reactor; it does not provide a mechanism to describe neutron energy effects or structural 
details in a heterogeneous reactor. Because fast reactors are relatively small in size and do not con-
tain any moderator to slow the neutrons to a lower energy, the PKEs are a good approximation for the 
dynamics in a fast reactor. In the absence of an external source and written in terms of reactor thermal 
power, the PKEs are given by

	 dP
dt

P Ci i=
−( ) +

ρ β
λ

Λ
	 (1)

and

	
dC
dt

P Ci i
i i= −

β λ
Λ

, 	 (2)

where the reactivity, ρ, is given by

	 ρ = −k
k

1 	 (3)

and k is the effective neutron multiplication factor. Reactivity is often expressed in units of dollars. The 
reactivity scale between zero and β, the total delayed neutron fraction, is divided into 100 cents, where 
100 cents of reactivity are equal to 1 dollar. Hence, the reactivity expressed in units of dollars is given 
by ρ / β .

Studies of reactor dynamics generally recognize six distinct groups of delayed neutrons. Approxi-
mate solutions to the PKEs can be found using a smaller number of groups to represent the delayed neu-
tron population. The dynamic model applied in the previous application of simulated reactivity feedback 
on the SAFE–100a included a simple dynamic model having one group of delayed neutrons, applying a 
weighted average decay constant and the total delayed neutron fraction. The one group decay constant (λ) 
is calculated as a weighted average of the six individual decay constants. A one-group representation sim-
plified the computational model, speeding the real-time implementation of simulated reactivity feedback 
during test. However, to improve the fidelity of the neutronic model, a more detailed PKEs representation 
should be employed. 

A complete six-group model, requiring seven ordinary differential equations, will be applied in 
DDG testing. The individual decay constants and delayed neutron fractions for a fast spectrum reactor, 
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as reported by Hetrick, are provided in Table 1.4 To maintain real-time implementation of the neutronics 
model, with updates to the PKEs solution implemented on the order of 2 Hz, high-speed computing must 
be employed. Potential options for implementing real-time system control will be discussed in section 5.

Table 1.  Delayed neutron properties for fast fission of 235U.

Delayed Neutron 
Group

Decay Constant 
λi (s)–1

Relative Yield 
βi /β

1
2
3
4
5
6

0.0127
0.0317
0.115
0.311
1.4
3.87

0.038
0.213
0.188
0.407
0.128
0.026

Total decay constant, λ = 0.0767 s–1

Total delayed neutron fraction, β = 0.00642

A simple model of a point reactor with feedback was applied in approximating the tempera-
ture reactivity feedback in the SAFE–100a. In that application, a single bulk reactivity feedback 
coefficient (αT) was applied to the entire core. The feedback calculation was then made based on bulk 
core temperature changes that were determined by measuring multiple temperatures at the axial core 
centerline, and calculating the average core temperature using these data. In this simple case the total 
reactivity of the reactor core is given by equation (4) as:

	 ρ ρ α= + ( )o T T∆ , 	 (4)

where αT is the temperature coefficient of reactivity, 

	 α ρ
T

d
dT

= , 	 (5)

and ρo is the initial steady state reactivity before a transient is applied to the reactor power. In the previ-
ous application, αT represented a bulk feedback coefficient, incorporating all reactivity feedback effects 
due to fuel and structural temperature changes, including Doppler broadened cross sections and thermal 
expansion effects. However, if highly precise temperature (and possibly deflection) measurements can 
be made, each of these individual effects on reactivity can be assessed separately in the feedback model. 
For example, equation (4) would be expanded to include several components of reactivity feedback  
as follows:

	 ρ ρ ρ α α= + ( )( ) + ( ) +o dL T TdL T T T, ,fuel fuel block b∆ ∆ llock reflector reflector( ) + ( ) +αT T, .∆  	 (6)
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In equation (6), temperature feedback was broken into components based on the measured core 
dimensions and the current fuel, core block, and reflector temperatures. In nonnuclear testing, fuel tem-
perature changes must be approximated from measured temperatures in the electric heating element or 
heater sheath, which is equivalent to the fuel-clad structure. Additionally, the nonnuclear test article may 
not incorporate a full reflector. In this case, the reflector temperature can be inferred from measured tem-
peratures near the periphery of the core block and at the periphery of the pressure vessel in the case of a 
reactor cooled by a pumped fluid, as in the DDG.

One might choose to base reactivity feedback calculations solely on temperature measurements 
in various locations, or one might determine reactivity feedback from measured deflection in various 
regions of the core. Monte Carlo calculations can be performed to assess the reactivity worth of vari-
ous core deflections that occur due to elevated temperature during core operation. The largest reactivity 
worth in a fast-spectrum reactor is expected to be due to fuel expansion with temperature, which can 
be further separated into radial and axial expansion; however, in the absence of an electric heater that 
closely mimics the dynamic characteristics of nuclear fuel, including thermal expansion, deflection-
based reactivity feedback will likely need to be based on measured deflection of the core block, as was 
performed in SAFE–100 testing.1 Options for measuring the deflection inside the DDG pressure vessel 
will be discussed in section 4.2.
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3.  Test Article Description

The DDG is a gas cooled, UN-fueled, pin-type fast reactor designed to use helium-xenon (HeXe) 
gas flowing directly into a recuperated Brayton system to produce electricity for nuclear-electric pro-
pulsion.5 The DDG, which consists of 37 fuel pins in a block matrix, is designed to operate at 32 kW 
thermal. This is a reduced power version of a full-scale design, similar to the SAFE-30 test series that 
preceded the SAFE–100 and 100a test series.6 Each fuel pin is surrounded by an annular flow chan-
nel that provides direct heat removal by flowing gas. The DDG design was initially provided by Sandia 
National Laboratories but was transferred to Los Alamos National Laboratories for additional testing 
support. The DDG is constructed entirely of stainless steel. The core block is a 53.3-cm (21-in) long, 
16.5-cm (6.5-in) (flat-to-flat) hexagonal, solid stainless steel block with a pattern of 37 gun-drilled  
0.75-in-diameter holes through the length. A closeup of the core inlet region, with graphite electric heat-
ers (thermal simulators) installed, is shown in figure 2.

Core
Thermal
Simulators

Connectors

Figure 2.  Core block inlet end with graphite heater elements installed.

The DDG was designed to operate at 2.4 MPa (350 psia) using an HeAr gas coolant with a core 
inlet temperature of 650 K, core exit temperature of 850 K, and bulk coolant flow of 0.1 kg/s. HeAr, 
which can duplicate the HeXe gas requirements, can be used in early tests to reduce the cost of the test 
program. Initial DDG testing was performed with nitrogen (N2) gas to allow early system checkouts and 
verification of the test matrix for early problem identification, with gas-flow parameters selected based 
on a Reynolds number comparison. The test article is also plumbed to allow testing with any desired 
mixture of He and Ar. In the DDG design, the coolant gas enters the upper bonnet and is directed via a 
manifold to six 2.54-cm (1-in) inlet tubes located on the upper bonnet assembly, as shown in figures 3 
and 4. The gas then flows down between the pressure vessel wall, called the downcomer region, 
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	 Figure 3.  DDG test article installed 	 Figure 4.  Graphical rendering of the DDG.
	i n the vacuum chamber.

keeping the vessel wall at a constant lower temperature and providing gas insulation of the core. The 
insulation layer is constructed by including a metal shield between the core block and the pressure vessel 
wall, causing a stagnant gas layer to form between the core block and the metal shield. At the base of the 
pressure vessel, the gas collects in a plenum and is directed back up through 37 annular flow channels 
in the core. Flow parameters are selected such that the gas is heated ≈200 K through the core. Exit gas 
is then collected in an exit plenum where the flow is recombined and allowed to exit through the upper 
bonnet center exit pipe.
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4.  Instrumentation plan

Initial DDG checkout testing was performed with minimal instrumentation of the DDG test arti-
cle. The primary intent of these initial tests was to verify core operation, assess gas-flow temperatures, 
and determine experimentally the core pressure drop to validate thermal hydraulics codes. A majority of 
the TCs were installed to measure gas-flow temperature in various regions. A few TCs were tack welded 
to the core block surface to obtain an approximate block temperature, but the temperature measurements 
from these TCs likely provided a combined block and flow temperature. Rather than being embedded 
in the core block, these TCs were mounted to the upper block surface where gas flow provided some 
cooling of the TC junction. No temperature measurements were made in the internal block region. Dur-
ing refurbishment of the DDG core, necessary to install new electric heaters for the next phase of test-
ing, significant modifications will be made to the core instrumentation to provide the necessary data for 
implementation of simulated reactivity feedback in dynamic system testing.

4.1  Temperature Measurement

Various options for temperature measurement in the DDG core block and heater elements are 
currently being investigated. Ideally, temperature measurements would be made in the gas-flow regions 
within the core block, and between the electric heater and the sheath/fuel clad to obtain an estimate of 
fuel temperature. Gas-flow temperatures were measured in the initial DDG testing and will again be 
measured in planned tests. Additional type-K TCs will be positioned in key regions of interest to assess 
gas temperature: two in the gas blanket insulation region, two in the flowing gas downcomer region, two 
in the gas inlet plenum, and two in the gas outlet plenum. Additional TCs will be placed throughout the 
core block to fully characterize the block temperature both radially and axially. Methods of measuring 
the temperature near the heater element are also being investigated. 

4.1.1  Core Block Temperature Measurements

A series of sheathed, type-K TCs will be installed throughout the DDG core block to fully 
characterize axial and radial temperature distribution. To minimize potential damage to the core block, 
machining of the block necessary for TC placement will be kept to a minimum. To characterize the axial 
temperature distribution, it is desirable to obtain temperature measurements along the core centerline 
and periphery at several axial locations. To accomplish this, the central heating element will be removed 
(reducing the number of heaters and flow channels to 36, representing a design configuration in which 
a central safety rod might be used) and will be replaced with an Inconel® sheathed axial profile probe. 
Manufactured by Omega, these probes can be purchased in the desired length and diameter, with the 
number and location of TCs located along that length also specified by the customer. The DDG core 
block is 52.7-cm (20.75-in) long and is equipped with 50.8-cm (20-in) heater elements. The bore holes 
in the core that accommodate a heater, sheath, and annular flow path are 1.9-cm (0.75-in) diameter. 
For DDG testing, a 51.4-cm (20.25-in), 1.7-cm (0.67-in) diameter probe will be employed with 10 TCs 
located at seven unique axial positions—2.54, 10.5, 18.4, 26.4, 34.3, 42.2, and 50.2 cm (1, 4.125, 7.25, 
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10.375, 13.5, 16.625, and 19.75 in). To ensure that measurements can be taken at these positions, even 
in the case of a failed TC, two independent TCs will be located at three different locations: 2.54, 26.4, 
and 50.2 cm (1, 10.375, and 19.75 in). A 1.3-cm (0.5-in) long metal plug installed in the central chan-
nel at the gas exit end of the core will prevent gas flow along the axial profile probe. Positioning the 
first and last TCs 2.54 cm (1 in) from either end of the core block ensures that they will be located in the 
heated region, accounting for the slightly shorter heating element (50.8-cm versus 52.7-cm core block). 
The axial centerline probe will be complemented by seven TCs located on the core periphery, embedded 
≈0.64 cm (0.25 in) into the core block. The axial positions of these TCs are selected to correspond with 
the TC positions in the profile probe, as shown in figure 5.

Axial Profile 
Probe

(a) (b)

Axial Profile 
Probe

Figure 5.  (a) Graphical rendering and (b) hardware representation of axial TC placement 
	 in the DDG core block with the central element replaced by an axial profile probe; 
	 TC locations are denoted by small circles.

The radial temperature profile will be obtained by embedding TCs into the core block at both 
the inlet and outlet surfaces. The TC positions are selected to provide radial profiles of interest in two 
dimensions at each core surface. These TCs will be embedded ≈2.54 cm (1 in) into the block to ensure 
that they are located in the heated region as discussed above. Complete radial profiles at either end of  
the core block and complete measurement of the axial profiles along the centerline and the periphery 
will allow the radial temperature profile to be interpolated at any axial position. Proposed TC locations 
are superimposed on photos of the core block in figure 6. The proposed positions on the gas exit end of  
the core take advantage of existing mounting holes in the core block (originally intended for placement 
of flow orifice pieces) that are not currently being used. These holes will be bored to the desired  
2.54-cm (1-in) depth for TC placement. Dashed lines in figure 6 show the approximate temperature  
profile obtained from surface TC measurements.
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(a)

Axial Profile 
Probe

Axial Profile 
Probe

Axial Profile Probe Flow Exit End of Core Block

(b)

Figure 6.  Radial TC placement on the (a) Flow entrance (heater end) and (b) flow exit ends 
	 of the DDG core block; the central element is replaced by an axial profile probe 
	 and TC locations are denoted by small circles.

4.1.2  Fuel Temperature Measurement

To implement detailed reactivity feedback, it is also desirable to measure temperature in the 
heater region to approximate the corresponding fuel temperature at a given power level, which requires 
the insertion of a temperature measurement device into the 0.7-cm (0.28 in) gap between the graphite 
heater element and the sheath structure, shown in figure 7; the gap is currently filled by an alumina space 
ring at three axial locations. This may be accomplished with very fine TCs embedded in the insulator 
rings on the heater element, or fiber optic probes might be inserted along the length to obtain a complete 
description of the temperature in this region at multiple axial positions. 

Power Leads

Core Block

Annular Flow Gap

Alumina Spacer

Sheath/Clad

Graphite Heater

Figure 7.  Heater element placement inside the DDG core block.
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Fiber optic temperature probes developed by Luna Innovations, Inc. are constructed with Bragg 
gratings spaced evenly along the sensing length to obtain detailed temperature profiles; standard fiber 
optic design allows measurement of temperature at 1-cm (0.39-in) increments. These fiber optics cur-
rently have a temperature limitation of 1,273 ºK for testing over extended times and may not survive 
over long test times at elevated temperatures in the DDG core. Luna fiber optic probes tested on the 
SAFE–100 demonstrated superior ability in generating three dimensional temperature profiles of the 
core.7 Luna is currently working to extend the maximum operating temperature of the fiber optic sen-
sors, which may qualify them for use as embedded temperature instrumentation in future advanced 
heater elements. Previous tests with Luna fiber optics were conducted by Luna, who brought the support 
hardware necessary to obtain and record data from the fiber optic probes to MSFC for temporary use. 
The EFF–TF is currently working to obtain an in-house capability to use fiber optic sensing techniques 
in future testing applications.

At present, standard TCs have been investigated to measure temperature along the heating  
element. Because TCs are relatively inexpensive and are available in a wide range of sizes and  
configurations, it was feasible to test a proposed configuration in a relatively short time frame. Six  
0.254-mm (0.01-in) diameter, Inconel-sheathed type-K TCs with an ungrounded junction were pro- 
cured to assess their applicability in DDG testing. Graphite heater elements used in the DDG testing  
are 0.985 cm (0.375 in) in diameter and are single ended (designed such that both inlet and outlet power 
leads are on a single end). These heater elements fit inside a 1.4-cm (0.55-in) diameter sheath, the outer 
diameter of which forms the annular flow path. The heater is separated from the sheath using three alu-
mina spacer rings to prevent contact between the graphite element and the metal sheath. The junction 
end of a TC was bonded to the graphite element at each alumina ring using alumina cement to obtain 
three temperature measurements along each element, as shown in figure 8. During testing, several prob-
lems were noted with this configuration. Because the TC sheath is made of an electrically conductive 
material (Inconel), bonding the sheath to the heater in more than one location set up a parallel current 
path in the Inconel sheath. The current required to operate the heater element caused the TC sheath to 
vaporize and the 52 guage TC wires did not survive. Future investigation will consider alternate methods 
of embedding TCs within the heater elements to obtain approximate fuel temperature measurements; 
e.g., measurement of heater temperature that can be directly correlated to the expected fuel temperature 
at comparable conditions.

Heater Power Leads Graphite Heater

Embedded TCsTC Lead Wires

Figure 8.  TC location on graphite heater element for preliminary testing.
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4.2  Deflection Measurement

Reactivity feedback based on core deflection measurements was implemented in SAFE–100 
hardware testing.1 Note that tests discussed in section 1 were performed on the SAFE–100a, a 19-mod-
ule partial array of the SAFE–100 design that utilizes Na-filled HPs and is coupled to a prototypic gas-
flow HX. The SAFE–100 was a predecessor to the SAFE–100a. The SAFE–100, designed to provide 
100 kW power, includes 61 modules, each containing three fuel tubes and one HP. In the test article, a 
total of 183 graphite resistance heaters were used to simulate the heat of nuclear fission. However, the 
SAFE–100 test article had no mechanism for heat removal from the core; hollow stainless steel tubes 
were used to represent the HPs in each module. As a result, this test article was used to simulate the 
operation of a fission system in the absence of cooling; this condition is similar to the operation of a HP 
reactor during the start-up period prior to complete thaw of the HP working fluid and initialization of the 
HXs. Deflection tests were performed on the 316 stainless steel (SS316) SAFE–100 core, manufactured 
according to the SAFE–100 core fabrication drawings. 

Because the SAFE–100 did not require a pressure vessel, visual access to the core was main-
tained. In this case, deflection could be measured using high-resolution photography. Mounted outside 
the vacuum chamber, imagery from a 6.3 mega-pixel high-resolution camera, composed of a charge-
coupled device (CCD) and a camera lens, was used to assess core deflection as a function of temperature 
by scanning multiple cross sections along the axial dimension of the core (fig. 9). The SAFE–100 was 
located on an immobile stand inside the chamber, and the CCD imaging system had a clear view of the 
core through a fused silica viewing port. 

D2

D3

D1

SAFE–100 Cross-Section Diameter
 Current Diameter 1: 267.02 mm
 Current Diameter 2: 266.88 mm
 Current Diameter 3: 266.55 mm

Figure 9.  Screen shot taken during SAFE–100 testing identifying 
	 three axial locations for core width measurement.

Deflection measurement becomes increasingly complex when visual access is not readily avail-
able. Because the DDG must be tested inside a pressure vessel, novel deflection measurement techniques 
must be investigated. Displacement can be measured using an optical proximity sensor; e.g. a laser range 
finder, a differential variable reluctance transducer (DVRT), or a noncontact inductance proximity sen-
sor. Each of these was evaluated for its applicability in DDG testing. The next stage of DDG testing will 
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be performed at ≈ 0.34 MPa (50 psi) to accommodate a Brayton energy conversion system that may be 
incorporated with the DDG hardware. This reduced pressure condition somewhat relaxes the require-
ments for a deflection measurement system, but the gas temperature will be approximately the same as 
in previous testing.

Initial investigations indicate that optical proximity sensors or laser range finders may not be 
reliable methods of deflection measurement. In this application, the sensor would be directed at the 
external core block surface. This would require a window to be installed in the DDG pressure vessel, 
and it is difficult to find ports with viewing windows rated for the experimental pressure and tempera-
ture conditions (in the downcomer region, the inlet gas flow is ≈450 K). Additionally, these instruments 
are dependent on the emissivity of the surface being investigated. As the core surface temperature 
increases, the emissivity of the stainless steel block changes such that the accuracy of the sensor over 
time can be compromised.

DVRTs were previously investigated for application to the SAFE–100 and–100a test articles. A 
DVRT uses a plunger that is in contact with the core surface. Deflection is then determined by measuring 
differential reluctance between magnetically shielded DVRT coils. Unfortunately, very few of the com-
mercially available units are rated for high-temperature operation (>773 K). Although the sensor would 
not be in direct contact with the hot core block, the plunger conducts heat to the sensor and can cause the 
operating temperature to be exceeded. 

Eliminating direct contact with the hot core block surface reduces the temperature that will be 
seen by a sensor housing. This can be accomplished using a noncontact inductance proximity sensor. 
These devices are commercially available for operation at pressure and at elevated temperatures. RDP 
Electrosense, Inc. manufactures high-temperature, noncontact transducers that employ an inductive 
proximity position sensor principle and will operate with any ferritic material. The output of the dis-
placement transducer varies as the gap between the front face of the transducer and the target changes. 
These sensors have electron beam-welded joints and are rated for operation from full vacuum up to  
20 MPa (2,900 psi) and up to 873 K. The RDP sensor can be purchased with a measurement range of up 
to 6 mm, with a quoted linearity of ±0.05 percent of full scale. Sensor model PY256C has been ordered 
to determine potential applicability in DDG testing. The sensor is currently being retrofitted to place a 
pressure feedthrough on the signal cable that will allow it to be installed through the DDG spool. The 
basic configuration is shown in figure 10. The sensor head itself is 4.8-cm (1.9-in) long with a maximum 
diameter of 2.8 cm (1.1 in), making it a tight fit between the core and the pressure vessel. The unit must 
be calibrated for operation in the desired environment prior to implementation, somewhat complicating 
its use. Initial calibration and testing will commence after the modified unit has been received and prior 
to integration in the DDG.
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RDP
PY256C

Ferrules
(Supplied by 
NASA)

Nut
(Supplied by NASA, 
Do Not Swage)

Flange With 
Welded Fitting 
(Supplied by 
NASA)

Figure 10.  Configuration of the nocontact inductance proximity sensor for the measurement of core
	 deflection during testing. The flange will be installed in the wall of the DDG pressure 
	 vessel, and the face of the RDP PY256C sensor will be directed toward the core block.
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5.  Control Methodology: Implementation

Specialized LabVIEW® programs have been developed at the EFF–TF to implement all aspects 
of system operation. One visual interface provides power supply control while a second monitors core 
temperatures and controls the gas supply to remove heat from the core (either for the HX in the SAFE–
100a or the direct gas flow through the DDG). To implement reactivity feedback control, the LabVIEW 
control program additionally implements a solution to the PKEs in order to govern core power response 
to the transient.

In SAFE–100a testing, which implemented the PKEs with one group of delayed neutrons, the 
neutronic model included only two differential equations (eqs. (1) and (2)). The simplicity of this model 
allowed the solution to the system of equations to be precalculated and programmed into LabVIEW in 
algebraic form, minimizing the computation time required by the LabVIEW data acquisition and con-
trol system. The solutions to the PKEs were then implemented in real time at each iteration of the con-
trol loop. All TCs installed in the test article were scanned at a rate of 5 Hz (approximately once every 
200 ms). The power supply controller set points were updated at a rate of 1 Hz. Taking into consider-
ation the time required to scan the TCs and depending on how well the scanning rate and the set point 
update rates were synchronized, the total lag between taking the temperature measurement and updating 
the controller set point varied between approximately 200 and 900 ms. Since there were multiple com-
puters in the control loop, the total end-to-end lag would drift at a rate dependent on how well the clocks 
of each system matched. Quantitative measurements of the lag and drift were not made. It was assumed 
that the time constants of the physical processes were much greater than 900 ms in the tested system. 
Future modifications to the software architecture can be made to constrain the lag to a smaller fixed 
value with a small amount of jitter. With hardware changes even greater improvement can be achieved.

The basic control methodology that was applied in previous applications of dynamic testing is 
summarized in the schematic in figure 11. The system can basically be divided into three parts: (1) Test 
hardware, (2) LabVIEW data acquisition system, and (3) LabVIEW power control system. In this rep-
resentation the test hardware consists of the core, instrumentation, and stand-alone power supplies. The 
test is controlled with two computer systems, both using customized programs built in LabVIEW. The 
LabVIEW data acquisition system collects data from all instrumentation and broadcasts that data over a 
local ethernet. The second system, the power control system, reads data broadcast by the data acquisition 
system, computes a new power level from the PKEs solution, and updates the set points used to control 
the power supplies.
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Test Hardware LabVIEW Data
Acquisition System

LabVIEW Power 
Control System

Power Control

Test Article

Read Data

Broadcast Data

Receive Data

Compute Reactivity Change 
and Reactor Power

Change Power Level
Set Points

Temperature
Measurement

Figure 11.  Schematic diagram of data flow for the SAFE–100a test system.

DDG testing will require increased computation time to solve a system of seven differential 
equations at each iteration of the control loop, due to the incorporation of six delayed neutron groups 
in the neutronic model. To accomplish this without impacting the control time, investigation has been 
initiated to determine ways in which the computational efficacy can be improved. Potential options for 
dynamic system control are summarized in table 2. Currently, the most promising arrangement appears 
to be the development of the neutronics model in a MATLAB® Simulink® code that can be operated 
on a separate computer that interfaces back to the governing LabVIEW data acquisition and control 
code. MATLAB Simulink utilizes a graphical, time-based differential equation solver. This arrangement 
requires that the dynamic model computer run xPC Target, an additional MATLAB product. The control 
computer can then communicate with the model computer, sending updated data to the Simulink model 
at specified time steps, which then returns the new power solution to the PKEs for application to the sys-
tem. Both UDP communications and shared memory are being investigated as potential communication 
options between the target and control PCs.

Table 2.  Software and hardware configurations for various data acquisition and control systems.

Data Acquisition Dynamic Model Power Control Description

1 LabVIEW—acquisition computer LabVIEW—power control computer LabVIEW—power control 
computer

SAFE–100a configuration. Dynamic 
model contains limited fidelity.

2 LabVIEW—acquisition computer Simulink/LabVIEW interface toolkit-
power control computer

LabVIEW—power control 
computer

Simulation Interface Toolkit for 
LabVIEW is required. Model is  
executed on same PC as LabVIEW.

3 LabVIEW—acquisition computer Simulink/xPC target (UDP)—dynamic 
model computer

LabVIEW—power control 
computer

A separate PC running xPC target 
executes the model. Data are trans-
ferred between model and LabVIEW 
via UDP communication.

4 LabVIEW—acquisition computer Simulink/xPC target (shared  
memory)—dynamic model computer

LabVIEW—power control 
computer

A separate PC running xPC target 
executes the model. Data are trans-
ferred via shared memory boards.
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5.1  Execution of Dynamic Model Within LabVIEW 

The first configuration listed in table 2 is the same as that described for the SAFE–100a  
test setup. Based on a change in temperature, which results in a change in the reactivity in a reactor,  
LabVIEW is used to compute a new solution to the PKEs, which is then translated to a new set  
of reactor power level setpoints over the projected time period. Although this method could be readily 
implemented on the DDG system, it becomes less desirable compared to other options that incorporate  
Simulink as the fidelity of the neutronic model is improved, increasing the computation time necessary 
at each application of the control loop.

5.2  Execution of Dynamic Model Within Simulink on LabVIEW PC

A Simulink model may be executed on the same PC as a LabVIEW program through the use of 
the Simulation Interface Toolkit produced by National Instruments. This toolkit allows for communica-
tion between a LabVIEW program and a Simulink model. To assess the benefits and limitations of this 
configuration, further work needs to be performed. Preliminary work has shown that, as configured, the 
toolkit allows for limited interaction between a Simulink model and LabVIEW program. LabVIEW Real 
Time software may be required to allow for increased functionality between the LabVIEW program and 
Simulink model. Although this configuration may require the least amount of hardware changes to the 
system, the added complexity to the LabVIEW program required to accommodate a Simulink interface 
may offset the added complexity of new hardware required in the remaining configuration options.

5.3  Execution of Dynamic Model on a Target PC with User Datagram Protocol Communications

5.3.1  xPC Target

To remove the computational burden of executing a Simulink model on the same PC as a Lab-
VIEW program, xPC Target may be used to execute the Simulink model on a standalone PC. A boot disk 
produced by the xPC Target loads the xPC Target application on the target PC at bootup. With TCP/IP 
communication over an ethernet, the Simulink model may then be downloaded to the target PC. This 
may be accomplished several ways. If the model has already been built and compiled, LabVIEW may be 
used to communicate with the target PC through the use of application interface (API) drivers provided 
by MATLAB. Figure 12 shows the process used to build and deploy a model with xPC Target.

Develop Model 
in Simulink

Build Target Application 
With Real-Time Workshop

Download Model 
to Target PC

Execute Model 
in Real Time

Figure 12.  xPC Target model development process.
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5.3.2  User Datagram Protocol Communication

Once the model has been downloaded to the target PC, it is ready to be used in the system. To 
interact with the rest of the test system, the model must be capable of receiving reactivity information, 
then sending the power computed from a solution to the PKEs. One possible method of communication 
between the model and target PCs is the UDP communication protocol. The SAFE–100a test system 
used this protocol to distribute data over the local ethernet.

To test the ability of the Simulink model to interact with the LabVIEW application via UDP  
communication, a LabVIEW application and Simulink model were created. The LabVIEW model cre-
ated and sent the value of a sinusoidal signal once every 250 ms. The Simulink model was configured 
with a fixed step size of 250 ms. At each time step, the model read the most recent data from the com-
munications port and then sent the data back to the LabVIEW model, where LabVIEW then read the 
data and displayed it. Testing indicated that synchronization of the LabVIEW software and the Simulink 
model was difficult in this configuration. Both the LabVIEW and Simulink systems were operating at 
a sample rate of 250 ms. Depending on when the Simulink model was started relative to the LabVIEW 
application, data received by the LabVIEW application could lag behind the sent data by as much as 
250 ms. If this lag could be guaranteed, UDP communications might have been an acceptable method; 
however, if the LabVIEW application speeds up or slows down relative to the Simulink model (this is 
possible when windows are opened or closed on the LabVIEW PC), the lag between sent and received 
data could temporarily increase. Figure 13 shows data received by the LabVIEW application and the 
number of time steps between the sent and received data. This variable time lag between sent and 
received data could yield incorrect results from the dynamic model.

(a) (b)

Figure 13.  (a) Data received by LabVIEW and (b) time-step delay between sent and received data.

One method that could be used to mitigate the variability of the time lag between sent and 
received data would be to decrease the time step size of the Simulink model. With this method, sent 
data would be received sooner, then resent. This solution increases the required computational power 
in the target PC and, if time-dependent equations are used in the Simulink model, care must be used to 
ensure that the equations are solved over the correct time interval. Another avenue could be to use the 
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data to drive the model. If Simulink provides programmatic hooks for controlling when a model step is 
executed, the execution of each model step could be initiated whenever new data is received. In other 
words, the model could be driven by the data, and the variability of the time lag would be eliminated. 
This possibility still needs to be investigated.

5.4  Execution of Dynamic Model on a Target PC with Shared Memory

To ensure better synchronization of data between the Simulink model and LabVIEW applica-
tion, the use of shared memory cards was evaluated. A VMIC 5565 shared memory board was installed 
on the PCI bus of both the host and target PCs. The shared memory boards transfer data by writing data 
to a specified partition on all boards in a network when data is written to a single board; therefore, when 
data is available on a single memory board, it is then instantaneously available on all the memory boards 
in the system. The boards are connected with fiber optic cable and allow for high data transfer rates. A 
second feature of the shared memory boards that helps with data synchronization is that the boards are 
capable of sending and receiving hardware interrupts. When using xPC Target, a Simulink model exe-
cutes in real time. The use of hardware interrupts allows for an external signal to be used to dictate when 
the model should execute its next time step. Therefore, the Simulink model may be incremented by a 
single time step each time the LabVIEW application increases by a time step by sending an interrupt 
from the LabVIEW PC. With the neutronic models tested to date, the result at each time step was com-
puted within approximately 1×10–4 seconds. These data were then available to the LabVIEW application 
fractions of a second later. With this implementation, real-time execution of the dynamic model may be 
achieved—relative to the base system time scale of ≈200 ms.

Similar to the test performed with UDP communication, shared memory boards were used to 
send data from LabVIEW, read data with the Simulink model, and then send data back to LabVIEW. 
Through the use of network interrupts, a negligible time lag was found between the sent and received 
data in LabVIEW. Due to the high reliability of data transfer achieved with this method, this configura-
tion is preferred to the others presented above. Additionally, the use of a separate PC for the execution 
of the dynamic model increases available computational capacity and allows for the implementation of 
larger, more complex dynamic models in the future. 

5.5  Dynamic Model System Implementation

An implementation of the coupled LabVIEW-Simulink system was built to demonstrate the fea-
sibility of implementing the improved neutronics model on a target PC. The test system was built with 
the shared memory configuration described in section 5.4. Although shared memory was used as the data 
transfer mechanism between the LabVIEW and Simulink systems, an ethernet connection was necessary 
between the two systems to allow for download and control of the model on the target PC.

A simple Simulink model was built to simulate the behavior of both the reactor kinetics and the 
thermal system that would normally be coupled to the electrically heated test system. Figure 14 shows 
the Simulink block diagram of the model. The first three blocks in the data path, shown in the model, 
(“5565 read,” “5565 unpack,” and “change endianess”) read data from the shared memory board and 
prepare the data for Simulink calculations. The value of reactivity, based on the current core tempera-
ture, read from the shared memory board is then sent to the reactor power subsystem, which contains the 



22

point kinetics representation of the reactor dynamics. The new power level calculated from the PKEs 
solution at that time step is then prepared and written to the shared memory board. The reactor power  
is also used to compute a new structural temperature with the core thermal model subsystem. This  
temperature is also written to the shared memory.

Init.

Read UD

5565 Init.

Data_In
>

> Change Endianess

Change Endianess 1

Scope (xPC)

Scope (xPC) 1

Power

T_Struct.

Target Scope
Id: 1

Target Scope
Id: 2

5565 Read

Reactivity
Power

Reactor Power

Power_In     T_struct_Out

Core_Thermal_Model

5565 Unpack

5565 Pack

5565 Write

Write

Unpack
Bytes=24

Pack
Bytes=24

Change
Endianess
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Endianess

Figure 14.  Simulink block diagram of the test dynamic model.

The core thermal model subsystem, shown in figure 15, was created to allow for a demonstration 
of reactivity temperature feedback effects. The thermal model consists of two energy balances. The first 
energy balance is for the structure of the core and may be represented analytically (eq. (7)):

	 T
M C

P h A T
p

Rx cstruct
struct struct

struct=
⋅

⋅ − ⋅ ⋅
1

,
−−( )∫ Tcoolant,avg . 	 (7)
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Figure 15.  Simulink block diagram for the core thermal model.

Dummy values for the coolant and structural masses and other material properties were used in 
the test dynamic model. The energy balance of the coolant inside the core was computed using the rela-
tionship in equation (8):

	 T
M C

h A T T
p

ccoolant,avg
coolant

struct coo=
⋅

⋅ ⋅ ⋅ −
1

llant,avg out �n( ) − ⋅ −( )∫ m C T Tp . 	 (8)

A simple LabVIEW application was built to test the functionality of the shared memory interface 
between the LabVIEW and target PCs. The LabVIEW application functions by reading temperature out-
put from the thermal model then computing and sending a new value for the reactivity based on the new 
core temperature. The output of the model is then read and displayed by the LabVIEW application. Fig-
ure 16 shows the user interface to this program. The reactivity, power, and temperature are displayed on 
the waveform charts. The control labeled Inserted_Reactivity allows for the addition or removal of reac-
tivity from the system; e.g., simulating a reactor control maneuver. For simulation purposes, the timed 
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loops in this application are set to run once every 25 ms, causing the Simulink model to run at ten times 
real time. The system appeared to behave as expected. The plots show a positive reactivity insertion  
followed by a negative reactivity insertion.

Figure 16.  LabVIEW application: VMIC test.

The rate at which the power may be accurately updated depends on the speed at which data is 
made available. In the current test system, TC data is available at 5 Hz. The test system with reactivity 
feedback was simulated in Simulink at various data rates to demonstrate the model performance when 
the sample rate differs from the data rate. Figures 17–19 show the simulated response of the system to  
a reactivity insertion at t = 100 s. The model was run at a rate of 100 Hz. However, the reactivity feed-
back was sampled at various slower sample rates to demonstrate the effect of running the model faster 
than the data was being updated. Figure 17 shows the reactivity as a function of time. The black line 
shows the model response when the data rate is the same as the model speed (Fs=0.1s). In the simula-
tion, temperature rises soon after the reactivity insertion, causing a drop in reactivity soon after the initial 
increase. When the data sample rate (Fs) is slower than the model sample rate, the model will compute 
the response using the last known value of reactivity. This causes the stepped shape of the curves  
in figure 17. When the model computes the time-dependent power response based on this constant  
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reactivity, an exponential increase is seen, causing the divergence between the black line and other lines 
at t = 100 s in figure 18. Although running the model at a faster sample rate than the data rate allows for 
a higher resolution time-dependent power function, there may actually be more error in the controlled 
power relative to the real, continuous system than if the power was held at a constant value until new 
temperature data were available.
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5.6  Selection of a Computing Environment for Dynamic Testing

As previously discussed, several methods can be adopted to improve the dynamic testing capa-
bility at the EFF–TF. After evaluating several potential configurations, separate model and control com-
puters were selected over a configuration in which Simulink and LabVIEW would be run on the same 
PC. At present, the most desirable option that can be readily implemented will incorporate Simulink  
and xPC Target software and will use shared memory boards for data transfer between PCs, providing 
the simplest and most reliable solution. This configuration minimizes complexity within the LabVIEW 
program that would be required to directly interface with Simulink on a single PC. Additionally, using  
a single processor places a fundamental limit on the complexity that can be added to the Simulink  
model while maintaining reasonable calculation rates; hence, the selected configuration offers the  
greatest capacity for future model expansions. The capability of updating data acquisition and control  
information at 100-ms time steps is currently being investigated.



28

6.  ConclusionS

Integrated system tests with simulated reactivity feedback on the SAFE–100a demonstrated the 
potential benefits to system operation with simulated neutronic response based on measured system 
conditions. By simulating dynamic system response, a better understanding can be gained with respect 
to system integration issues, system response times and response characteristics, and overall system 
design potentially allowing for design improvements prior to large fiscal and manpower investments 
into a nuclear test program. Plans are underway to implement similar test methodology on the DDG at 
the EFF–TF. This implementation will incorporate higher fidelity neutronic models and will utilize more 
detailed measurements of the system state, as described in this TM. Necessary system modifications 
could be completed within ≈2 mo with dynamic tests commencing shortly thereafter.
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