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Abstract 
The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development 

of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important 
aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to 
support both stationary and mobile applications. One candidate system to provide electrical power is made by 
coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we 
explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs 
for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition 
to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, 
integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal 
protection are explored. Of particular importance in the evaluation process is a thorough understanding of the 
interactions between the wide range of unique lunar environments and the selection of key systems operating 
characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and 
Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more 
important. 

Nomenclature 
Al/TPG aluminum/thermal pyrolytic graphite 
ASC advanced Stirling convertor 
ASRG advanced Stirling radioisotope generator 
BOL Beginning-of-Life 
EOL End-of-Life 
ESAS Exploration Systems Architecture Study 
ESMD Exploration Systems Mission Directorate 
FeNdB iron neodymium boron 
GPHS General Purpose Heat Source 
LPS Lunar Power System 
MLI multi-layer insulation 
RPS Radioisotope Power Systems 
RTG Radioisotope Thermoelectric Generator 
SmCo samarium cobalt 
SRG110 110 watt Stirling radioisotope generator 
UV ultraviolet 
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I. Introduction  
One method of providing power on the lunar surface is by coupling a General Purpose Heat Source (GPHS) to a 

Stirling convertor. These systems are potentially attractive in that they require fewer GPHS than their Radioisotope 
Thermoelectric Generator (RTG) counterparts and allow continuous operational capabilities without the need for 
energy storage systems during the long (14 Earth days) lunar night. In addition, the relatively low amount of emitted 
radiation allows for placement near human operations with minimal shielding (ref. 1). Although Stirling generators 
have been proposed numerous times before, as electrical power requirements increase, it becomes more challenging 
to insert and extract heat into a Stirling convertor without either heat pipes or a pumped liquid loop. Heat 
insertion/extraction is exacerbated by the use of GPHS because of the relatively low heat flux; a high heat flux is 
required by the Stirling convertor on the hot-end. Several concepts for integrating multiple GPHS modules to a 
Stirling convertor were discussed at last year’s Intersociety Energy Conversion Engineering Conference (IECEC) 
(ref. 2). While other types of integration are most likely a requirement for power levels above a few kilowatts, it is 
interesting to consider what limits may exist for a conductively coupled GPHS/Stirling power systems. This paper 
will explore the point at which conductive coupling become mass prohibitive for both the hot and the cold-ends. 
This paper is intended as a guide to help understand the important trades associated with a conceptual Stirling Lunar 
Power System (LPS) rather than a final power system design. 

Several factors were assumed for this analysis. A typical mass margin used for Exploration Systems Mission 
Directorate (ESMD) preliminary designs is 20 percent (sum of total component mass estimates times 0.2) and is 
used in this analysis. A power management and distribution and controller efficiency of 91 percent was assumed. 
System life is 14 years (end-of-life (EOL)) and a maximum heater head temperature of 1123 K. In most of the cases 
minimum system mass was used as the selection criteria for the “best” system. It was found that by varying the cold-
end temperature of the Stirling convertor system mass could be reduced. Maximum number of GPHS units per 
system was limited to 12. 

II. Thermal Environment 
Power system operation on the lunar surface is a challenge because of the lack of atmosphere to reject heat and 

the wide range of heat rejection or sink temperatures, which occur during the lunar diurnal cycle. To maximize the 
efficiency of the power system, a Stirling convertor prefers a large temperature difference across its hot/cold-ends. 
The maximum hot-end temperature is set by material concerns while the cold-end temperature is a compromise 
between getting as close as possible to ambient temperature to increase efficiency and increasing the size of the heat 
rejection system. While many radiator orientations are possible, horizontal (parallel to the lunar surface) and vertical 
radiators help bound the trade space. Vertical radiators have the advantage of being able to radiate from two sides, 
effectively doubling the amount of heat rejected per radiator panel. The downside to the vertical orientation is that 
the radiator “sees” the very warm (during the lunar day) lunar soil reducing the amount of heat that can be rejected. 

This large variation in temperatures is due to the lunar soil’s high solar absorptivity and low thermal 
conductivity and lack of any atmosphere to move heat via conduction. This combination leads to lunar surface 
temperatures ranging from 120 to 374 K (–153 to 101 °C) (refs. 3 and 4). Figure 1 shows a plot of surface 
temperature as a function of latitude and time of day. In addition to the location selected for a power system, radiator 
orientation also plays an important role in the effective sink temperature. For a radiator located near the equator, 
north-south or east-west alignments of the Sun pass nearly straight overhead and an east-west alignment of the 
radiator would minimize the Sun incident component of the energy received by the radiator. Figure 2 shows a plot of 
sink temperature for both a horizontal radiator and a north-south vertical-pointing radiator at the equator. There is no 
long-term data on the thermal coating degradation in the lunar environment. Degradation is predicted to occur due to 
both the accumulation of dust on the surface and ultraviolet (UV)/charged particle interaction with the surface 
treatments on the radiators. Beginning-of-life (BOL) emissivity is >0.9 for modern space radiator surface treatments 
and solar absorptance is about 0.06. For this analysis a radiator emissivity of 0.86 and solar absorptivity of 0.5 was 
assumed to reflect dust accumulation on the radiator. For this analysis the range of temperatures considered for sinks 
ranged from 60 to 340 K (–213 to 67 °C). 
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III. Stirling Convertor 
The convertor technology utilized in the LPS evaluation is derived from that employed in the Advanced Stirling 

Convertor (ASC) currently under joint development by the industry team of Sunpower, Inc., P&W Rocketdyne, and 
NASA GRC. This convertor and the associated technology emphasizes the use of high heater head temperatures 
(1123 K (850 °C) versus the currently widely employed 923 K (650 °C)), (ref. 5) high specific power levels (75 to 
100 We/Kg), and electrical output to thermal input efficiencies of approximately 60 percent of Carnot. Unless the 
temperature of the GPHS exceeds this limit, 1123 K (850 °C) is used for all cases evaluated in this paper. In that 
case the temperature of the Stirling heater head is reduced to limit the upper temperature of the GPHS. Utilizing the 
ASC as a starting point, it is a straightforward matter to scale this technology to higher power levels and different 
waste heat rejection temperatures, which allows the convertors to be evaluated within the overall LPS context. As 
previously noted the specific power of the Stirling convertor itself improves somewhat with power level. However, 
this change is relatively small in comparison to the significant mass changes that occur in the convertor-related 
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subsystems involving the multiple GPHS to convertor integration and waste heat radiator (ref. 6). Therefore the 
focus of the convertor evaluation was in the areas of integration with the GPHS heat source, vibration isolation 
options, and convertor impact on LPS configurations. Current iron neodymium boron (FeNdB) magnet/alternator 
technology limits rejection temperatures to less than 390 K (115 °C). In many of the cases considered the worst case 
lunar sink temperature is 340 K (67 °C) allowing only a 50 K temperature difference between the cold-end and sink 
temperature to reject heat. In order to allow adequate margin and to maintain a reasonable size on radiator area 
Samarium Cobalt (SmCo) magnets were used for all convertors modeled. SmCo magnet/alternator technology limits 
rejection temperatures to somewhat less than 550 K (250 °C) and in all cases the maximum Stirling cold-end 
temperature was set at 530 K. Current assessment is that there is little or no impact on alternator mass or efficiency 
if SmCo magnets are used at temperatures between 400 K (127 °C) and 550 K (277 °C) when compared with the 
FeNdB magnets operating at their lower temperature limits. 

IV. GPHS/Convertor Hot-End Integration 
The GPHS in the form of an RTG has been used for many deep space missions when there is a lack of adequate 

solar illumination to power solar cells (ref. 7). The GPHS fuel has a half-life of approximately 87 years that leads to 
relatively constant heat flux out of the GPHS module and each module produces about 250 W BOL. Current GPHS 
in the form of a STEP 2 GPHS are used for all space missions. Dimensions of this Step 2 GPHS module are shown 
in table 1 (ref. 8). 
 

TABLE 1.—STEP 2 GPHS DIMENSIONS 
Height 5.3 cm 
Width 9.32 cm 
Length 9.72 cm 

 
Using the largest face (9.32 by 9.72 cm) the maximum heat flux out of a single GPHS module at BOL with 

insulation on the other sides is 2.69 W/cm2 (ref. 9). In contrast to the low heat flux from the GPHS modules is that of 
the Stirling convertor heater head, which requires an input heat flux of about 15 W/cm2. 

Material temperature limits for both the convertor and the GPHS set the upper bounds for both component 
temperatures. The GPHS module temperature limit is set by the iridium cladding around the Pu-238 fuel whose 
temperature must be maintained between 1335 °C (1608 K) in normal operation and must not drop below 900 °C 
(1173 K) on ground impact. The 900 °C (1173 K) minimum temperature set the GPHS module dimensions and 
materials assuming a dispersal of the modules while the 1335 °C (1608 K) will be set by insulation and Stirling 
convertor heat flows. In the GPHS the iridium capsule is located inside a graphite shell. The effective maximum 
surface temperature of the graphite shell is 1100 °C (1373 K) in a vacuum (ref. 10). Fixing temperature of the heater 
head at 1123 K allows a temperature drop between the outer graphite shell and the heater head of 250 K (–23 °C). 
By combining this requirement with the distance between the heater head and the GPHS, the material properties and 
the contact resistance between the thickness of the connector and diameter of the convertor can be found. This 
connector between the GPHS and Stirling convertor is shown in figure 3. On the outside of the GPHS assembly, 
multilayer (vacuum foil) insulation is used and then around that, an aluminum housing is used. 

Currently small, low-power Radioisotope Power Systems (RPS), such as the ASRG and SRG–110, employ a 
single GPHS module, which is located forward of the heater head and coupled to it via a “hot shoe” that acts as the 
thermal interface between the two components (ref. 11). The heat transfer mechanism is soley via conduction 
through the hot shoe material that is generally an Ni-200 series alloy because of their relatively high-thermal 
conductivity. Simply stacking the GPHS modules in a “layer cake” manner, see figure 4, has distinct limits due to 
the increasing temperatures of the GPHS modules as one progresses away from the heater head of the convertor. 
Current estimates are that the GPHS temperature constraint, when combined with the convertors 850 °C (1123 K) 
heater head operating temperature, limits the stack to no more than two modules, the equivalent of approximately 
170 We output. To overcome this constraint it is necessary to utilize GPHS to heater head thermal couplings which 
are mounted radially about the heater head, see figure 5, when the GPHS module number required is greater than 
two. The focus in the LPS is higher convertor power levels so the number of GPHS modules becomes significant 
and their specific mounting configuration, which is important in both the overall mass and physical size of the LPS 
package. As can be seen in figure 5, as power increases (as well as the number of GPHS modules), there are two 
options available for mounting. The conventional “flat” (Orientation B) mounting arrangement utilizes the large face 
area of the GPHS at the thermal interface while the alternative “edge” (Orientation A) mounting employs one of the 
narrow faces. 
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The two configurations shown in figure 5 are potential geometries in which to integrate the GPHS to the Stirling 
convertor. It has been shown that regardless of orientation when all sides are insulated and heat flows out of a GPHS 
through one face that there is little difference between surface temperatures (ref. 12). This occurs because of the 
high conductivity of the GPHS graphite. Orientation A (edge) should allow a lighter GPHS to Stirling conductor by 
having a larger radius and thus a greater insulation and container mass. Orientation B (flat) should have a higher  
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GPHS to conductor mass and lower insulation and container mass. Figure 6 shows a system-level trade using both 
orientation A and B from 100 to 700 W. At each power level the system mass is minimized by a varying 
temperature of the Stirling convertor. For the entire power range considered flat surface is slightly more mass 
efficient for the assumptions made in this study and will be used from here forward for the discussed designs. 

A concern with the use of GPHS modules for configurations that have two convertors operating in an opposed 
manner is that if one convertor fails, even if the other convertor continues to operate, the thermal energy produced  
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by the GPHS assembly of the failed unit is lost from the point of view of useful power production. An alternative to 
thissituation involves taking advantage of the fact that the mass of these high-performance convertors is relatively 
low in comparison to the overall LPS mass thus allowing the convertor power capability to be oversized without 
having a significant impact on the overall LPS. For example, if an LPS employed two convertors each employing 
three GPHS modules the nominal output power would be on the order of 500 We. If one convertor fails the available 
power is on the order of 250 We. However, if the convertors were each sized for an output power of 500 We, but 
normally operated at 250 We and one convertor failed, the properly operating convertor could be “throttled up” to 
500 We assuming that the thermal input to the convertor is the equivalent of six GPHS modules. A possible 
technique for carrying out the latter is shown in figure 7 in which thermal “couplings” are employed that act as 
thermal short circuits between the two GPHS assemblies. During normal operation (both convertors functioning) 
these components essentially do nothing since the operating convertors are absorbing the thermal energy produced. 
If one convertor fails then these elements act as thermal conductors transferring energy from the failed side to the 
operating convertor. As can be seen in figure 7 each convertor has a GPHS support structure designed for six 
modules but only three are installed. This allows the thermal couplings to be integrated in a thermally effective 
manner with the GPHS support structure/convertor heater head. If a generator is designed to operate with a failed 
convertor it will most likely require a “balancer” to remove the vibration imposed by the failure of the single 
convertor. This is discussed in a later section. Stirling convertor diameters are set by fixing heat flux into the 
convertor and limiting heater head height to 1.5 cm. As the number of GPHS modules grows, the distance from the 
surface of the GPHS module to the heater head also grows. 
 
Cold-End Interface 

Just as in the hot-end of the convertor, the cold-end design limits the heat flux out of the convertor. For the 
designs considered here a value of half the heater head heat flux was used (7.5 W/cm2). A cold flange is attached to 
the convertor and runs radially out to the surface of the radiator. The radiator is a cylinder whose inner diameter is 
set by the housing of the GPHS modules and length set by the required area (section V). Temperature drops are 
calculated from the outer wall of the cold-end, through the cylindrical cold-end to radiator connecting plate, out to 
the surface of the radiator. The thickness of the flange is set to a specified temperature drop. The greater the 
temperature drop allowed in the flange, the lighter the mass but the lower the overall effective temperature of the 
radiator and thus the larger the radiator size and higher mass. The same is true for the fin thickness of the radiator 
that is set by fixing the temperature drop from the outer cold-end flange to the average radiator surface temperature. 
Figures 8 and 9 show typical mass and radiator area variations for both cold-end flange ∆T and fin-to-average 
radiator temperature for a 200 W generator in 60 K (–213 °C) sink environment. Both fin-to-average and cold-end  
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flange optimize to an approximate 30 K ∆T. Figure 10 shows the same 200 W system except now the sink 
temperature is raised to the lunar worst case 340 K (67 °C). This shows unsurprisingly at a system level it is more 
advantageous to trade a smaller ∆T (now 10 K) for mass at 340 K than it is at 60 K. 

Vibration Isolation Systems 
Due to the motions of the components within the Stirling convertor, a net unbalanced force will be transmitted 

to the structure supporting the convertor. In most cases, these are well above acceptable values, thus requiring the 
use of some form of vibration cancellation or minimization. The most common approach assessed recently in low-
power RPS is to mount the convertors in opposed pairs, see figure 11, such that the vibrations of the two operating 
convertors cancel each other (ref. 13). Note that the orientation of the convertors shown in the figure, hot-end to hot-
end, is not required and was used for clarity. This can be carried out by use of techniques such as the convertor 
controller actively synchronizing the two convertors, electrically coupling the alternators, or various combinations of  
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these and other techniques. A disadvantage of this configuration is that if one convertor “fails” then the remaining 
convertor will be unbalanced and will transmit vibration loads to the supporting structure. This can lead to the 
situation if one convertor actually fails that the “healthy” convertor must also be shut down, which has a significant 
impact on overall system reliability and the requirements for backup RPS to ensure mission success (ref. 14). An 
alternative is to incorporate a mechanical “balancer” with the convertor that will cancel a significant portion of the 
unbalanced force of a single convertor. This can be used for the case where opposed convertors are employed or 
where the system is made up of a single convertor, see figure 11. The balancer is fundamentally a spring mass 
system tuned to resonate close to the operating frequency of the convertor generally made up of planar or flexure 
springs, a mass, and in the case of an active balancer, a small linear motor. The additional mass increase in convertor 
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caused by the balancer will be on the order of 20 percent of the convertor mass. While there is this mass penalty, the 
use of balancers does allow a number of LPS configurations to be considered. 

V. LPS Configuration Constraints 
In the LPS evaluation, the GPHS modules and the associated support structure are assumed enclosed within a 

high-performance multi-layer insulation (MLI) package. The impact of this is further complicated by the fact that 
the baseline configuration of the LPS heat rejection radiator is a cylinder that surrounds the entire convertor and the 
MLI package as shown in figures 12 and 13. Note that the three-GPHS configuration is shown for clarity, all 
systems employing more GPHS modules are configured in the same manner. As can be seen, the convertor hot-end 
is coupled to the GPHS module assembly (MLI removed for clarity) while the cold-end (rejecter) of the convertor is 
attached to the “cold flange,” which thermally couples the convertor to the radiator assembly (shown transparent for 
clarity). 
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VI. Analysis 
A computer simulation was created to model the performance of a GPHS/Stirling system under various thermal, 

power, and environmental conditions. Each of the major components, which make up the system are accounted for 
in the mass balance. For each of the configurations, system life is set to 14 years, maximum GPHS temperature is 
1373 K (1100 °C), and maximum Stirling temperature is set to 1123 K (850 °C). Power level is set for EOL 
conditions and insulation is sized such that the GPHS at BOL is within its allowable temperature limits. Unless 
otherwise noted, cold-end Stirling temperature associated with the minimum mass system was used. In exploring the 
possible trades in the cold-end (conduction sleeve to radiator), both conductive and heat pipe interfaces were 
explored looking at various materials, power levels, and environments. Figure 14 shows system mass and radiator 
area as a function of Stirling cold-end temperature for a 200 W convertor with both a nickel hot-end and an Al cold-
end flange. 

The radiator fin material selected was an aluminum (Al)/thermal pyrolytic graphite (TPG) combination, and a 
60 K sink temperature was selected as representative of the shaded lunar polar region. TPG must be encapsulated in 
another material for strength and in this example Al was selected. A ∆T of 30 K was set for both the cold-end flange 
and the root-to-average radiator temperature. Three GPHS modules are required to produce the 200 W and minimize 
mass by varying cold-end temperature. A total system mass of 23 kgs results with a convertor specific power of 
8.7 W/kg. Figure 15 shows a pie chart of this system. The step in figure 14 occurring at 410 K occurs as the system 
has switched from requiring three GPHS modules to four. The mass rise before the switch is the insulation 
increasing in thickness in an attempt to extract as much energy as possible into the convertor. 
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GPHS Module and Mass Trades 
At each power level, the number of GPHS modules required depends upon whether the user desires minimum 

mass, has limitations on radiator area, or would like to reduce the number of GPHS modules to as few as possible.  
Figure 16 shows system mass and number of GPHS modules as a function of Stirling cold-end temperature for a 
500 W, 60 K sink system using a conductive-only interface on the cold-end. A minimum occurs in system mass 
resulting in a total mass of 59 kgs at a Stirling cold-end temperature of 410 K (137 °C) and using eight GPHS 
modules. If it were desired to reduce the GPHS module count to six, the bottom end of the convertor would be 
dropped to increase system efficiency. The additional mass for both radiator and insulation is about 50 kgs, nearly 
doubling the total mass of the convertor to 120 kgs and raising the radiator area from 1.35 m2 to over 4 m2. As the 
radiator area grows both the thickness of the cold flange and that of the radiator fin material must grow to maintain  
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the ∆T assigned to each piece. One way to effectively reduce the root-to-fin average temperature drop and the mass 
of the cold flange is with the use of heat pipes. While at low power levels, their mass and additional failure 
modes/complexity does not lend itself to a compelling mass advantage. At higher powers or if necessary to reduce 
the number of GPHS modules via their lower ∆T through the radiator the use of heat pipes can become 
advantageous. This will be discussed in greater detail in another section. Figure 17 shows the same system that was 
shown in figure 14 except now heat pipes are being used as a heat transport device on the cold-end. Mass effects are 
dramatic in that now rather than having a mass minimum at 410 K (137 °C) there is a broad minimum mass of just 
over 60 kgs (slightly higher than the conduction-only mass system) and a wide latitude of cold-end temperatures 
with comparable system masses. In addition, we can now go to six GPHS modules and pay little, if any, mass 
penalty. 

Sink Temperature 
Because sink temperatures can change so dramatically on the lunar surface, it is important to consider the 

differences in system mass and operation in both environments. Figure 18 shows a plot of mass and radiator area as 
a function of Stirling cold-end temperature. Minimum mass cold-end temperature has risen significantly over the 
60 K (–213 °C ) sink temperature discussed earlier. For this system (200 W, Ni hot-end, Al cold-end, Al/TPG 
radiator), designed for operation at the worst case lunar thermal environment (340 K), significant differences are 
seen not only in total mass, but also in the distribution of the mass fractions associated with each component and the 
operational temperatures of the Stirling convertor. Total system mass has risen to 26 kg (8.7 W/kg), and the number 
of GPHS modules needed for this minimum system mass is now four. Minimum mass occurs at a Stirling cold-end 
temperature of 480 K. Additionally, this is beyond the allowable magnet temperatures built into the SRG–110 and 
would require a change to Samarium Cobalt magnets.  

Power Level 
As power levels increase the relative importance of getting the heat into and out of the convertor becomes a 

greater fraction of the total mass of the convertor. Figure 19 shows mass and specific power comparisons for a solid 
Al/TPG radiator and a water heat pipe radiator as a function of power level with a Ni hot-end. For each case the ∆T 
of the cold-end flange and the radiator fins are set at 30 K. Up to 200 W, both the conductive and heat pipe 
integrated cold-end systems masses are about the same. Above that power level, the advantages of the shorter 
conduction distances and reductions in cold-end flange mass make a water heat pipe system more mass attractive. 
For both heat pipe and conductively coupled cold-ends, the best specific power occurs at about 200 W. 
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Figure 20 shows mass and specific power as a function of power output except the nickel hot-end is now 

replaced with a high-conductivity graphite hot-end. The combination of the graphite hot-end and the heat pipe cold-
end allows the system to scale relatively flat to 800 W (400 W/convertor). This is significant in that it shows that 
with the use of advanced materials, direct conductive heat input and water heat pipes on the cold-end can allow 
Stirling/GPHS power systems to grow to significantly higher powers while maintaining a relatively high specific 
power.  
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Single Convertor  
The advantage of using a single convertor over a dual-opposed convertor is both a reduction in part count and 

the desire to take advantage of the increasing specific power of the convertor with increasing power level. The 
disadvantage of using a single convertor will be the increase in heat flux into and out of the convertor and the 
associated increases in masses necessary to meet the temperature constraints set on the system. Figure 21 shows a 
comparison of a dual-opposed and single-piston system from 100 to 700 W using the minimum mass system over 
the range of cold-end temperatures considered (260 to 530 K). For the systems considered, little difference was seen 
in total mass; rather the differences are found in the minimum mass temperature ratios. For the single convertor 
option, minimum mass occurred at significantly lower temperature ratios (higher Stirling cold-end temperature) than 
for the dual-opposed system. This was due to the fact that a greater ∆T driving force was needed to keep the mass of 
the cold-end from growing too rapidly. This lower ∆T across the engine results in a lower Carnot efficiency and at 
each power point considered required at an additional GPHS module over its dual-opposed counterpart. Figure 22 
shows a similar plot except cold-end temperature was held constant (in this case Tcold = 400 K). This plot shows 
the dramatic rise in cold-end mass due to the increase in radiator and cold-end flange mass increases with increasing 
power level. 

Dual Opposed With Balancer 
Operation of a dual-opposed convertor with a balancer allows power to be produced even if one convertor 

fails. How much power depends upon how the system is designed and where in the operational life of the 
convertor the failure occurs. The configuration used in this analysis fixes the heat paths at the design point (EOL) 
with two convertors operating. Both convertors share the heat of the operating convertors. If one convertor fails 
then the system will continue to operate at reduced power output. This reduction comes from the fact that higher 
temperature drops occur when nearly double the amount of heat is sent through the same interface (both hot and 
cold) and the heat rejection path is now longer. In addition to this, given the temperature limits of the iridium 
cladding of the GPHS, this design sets the upperbound of the system temperature at the material limit of the 
Stirling convertor. This was done by sizing GPHS to heater head conduction bar such that the GPHS surface 
temperature was maintained at 1373 K (1100 °C). When a convertor fails, the upper limit on GPHS operation is 
still a requirement of our design. If we double the heat flow through the same GPHS to heater head conductive 
path, we increase the ∆T in order to remove all of the heat generated by the modules. This then requires a drop in  
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the heater head temperature and a rise in the cold-end temperature. Figure 23 shows a plot of BOL and EOL 
power output as a function of sink temperature for both convertors operating and a single convertor-out  
configuration. It is interesting to note that the BOL/EOL power output is nearly identical for a single convertor 
out. At BOL, the heater head temperature must be dropped significantly more than at EOL due to the greater 
amount of heat the single convertor is required to remove. Even with a convertor capable of the full power load 
for this configuration, only 150 W was possible out of the design point 200 W system. To keep the GPHS within 
its temperature limits requires a lower heater head temperature and thus a less efficient system. At EOL, less heat 



NASA/TM—2007-214426 17

 
 
is going into the convertor allowing the heater head temperatures to rise and resulting in a more efficient system. 
Table 2 shows the heater head temperatures necessary to ensure that the GPHS surface temperature does not 
exceed 1373 K (1100 °C). This requires that the engine and control system is able to over-stroke to pull the 
additional heat out and that it is able to infer the temperature of the GPHS surface. 

 
TABLE 2.—HEATER HEAD TEMPERATURES AS A FUNCTION OF 

MISSION TIME AND OPERATIONAL CONVERTORS 
Configuration BOL–2 

convertors 
running 

EOL–2 
convertors 

running 

BOL–1 
convertor 

out 

EOL–1  
convertor out 

Heater head 
temperature (K) 1117 1123 924 979 

 

GPHS Temperature Limits 
If the LPSs are designed for full-power EOL operation at one of the lunar poles, significant variations in power 

and cold-end temperatures occur during operation under direct illumination and during BOL. GPHS modules heat 
production decays over time (about 0.8 percent per year) and over the 14-year life of the assumed mission will drop 
from an initial 250 W of thermal power per module to about 230 W. Figure 24 shows both cold-end Stirling cold-
end temperature and power variation as a function of sink temperature for a system designed for 200 W, full-power 
operation with a 60 K sink. Stirling cold-end temperature varies from about 390 K (117 °C ) with a 60 K sink to 
almost 480 K (207 °C) with a 340 K sink at BOL. Power ranges from a maximum of 220 to 180 W from BOL to 
EOL maximum and minimum sink temperatures. Figure 25 shows the same system with the exception of being 
designed for full-power operation at EOL in a 340 K sink. Power varies from 245 to 200 W, but now Stirling cold-
end temperatures vary from 430 to 510 K (157 to 237 °C). Both of these cases demonstrate the need for magnets, 
which can operate over a wide range of temperatures. In addition, each convertor must be sized to accommodate an 
approximate 20 percent increase in stroke (i.e., power) to maintain a constant heater head temperature. 
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VII. Conclusions 
The integration of the standard GPHS module with Stirling convertors employing technology defined in the 

current NASA/Sunpower Advanced Stirling Convertor project will allow considerable flexibility in the development 
of an LPS to support future mission requirements. These LPSs will be characterized by efficient utilization of GPHS 
resources and high reliability, and they can be employed over in a wide range of lunar environments. However, in 
the development of such system, a wide number of tradeoffs are possible all of which can lead to LPS configurations 
that change fundamentally as the desired power levels vary. Based on this evaluation of LPS configurations, the 
following conclusions and/or recommended areas for further review have been identified: 
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1. For the power levels of interest, energy transfer based only on thermal conduction between the GPHS 
modules and convertor heater head should be utilized due to its inherent simplicity. However, the overall 
integration of GPHS/Stirling convertor system is driven by the heat addition/removal constraints of the 
Stirling heat exchangers.  

2. Environment plays a significant role in the specific power of the system. Systems designed for operation in 
a 60 K environment but placed in 340 K (max. lunar sink environment) potentially can exceed linear 
alternator allowed temperatures. Convertor and linear alternator operating temperatures must be increased 
to on the order of 250 °C (523 K).  

3. Various mechanical configurations of the thermal interface between the GPHS/heater head are 
rejector/radiator available. An important factor in the specific selection will depend on the materials for the 
interface and, in the case of the cold-end, the heat transfer mechanism. Using a Ni interface on the hot-end 
and an aluminum cold shoe on the cold-end, maximum specific power (W/kg) occurs around 200 W for a 
dual-opposed convertor (100 W/convertor). Adding heat pipes on the cold-end and a graphite conductive 
interface on the hot-end allows specific power to stay relatively constant up to almost 800 W 
(400 W/convertor). 

4. The integration of multiple GPHS modules (up to 12 investigated) with a Stirling convertor can be carried 
out in a manner that is mutually compatible with the GPHS requirements and the conditions that are needed 
for high convertor efficiencies. GPHS orientation effects are relatively small. 

5. LPS configurations can vary widely from conventional opposed convertors (SRG–110 configuration) to 
independent convertors, which employ vibration-balancing systems.  

6. LPS configuration, in particular that of the radiator, can have considerable impact in the overall LPS mass 
due to the importance of the rejection temperature on convertor efficiency and the techniques employed to 
thermally couple the two components.  
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