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ABSTRACT

A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique
draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which

relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the
use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters

is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation
and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train
the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft

and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation

performance 'will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
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Introduction -_'

This paper presents an effort to apply optical correlation to pose estimation sensors for rendezvous and docking of free-
flying spacecraft and space-based surface mobility systems. Two significant advances in recent years have motivated
this current attempt at applying optical correlators to space-based pose estimation. The first advance is the development

of high-speed optical correlators. An optical correlator has been recently developed which can perform up to 4000
con'elations per second 1. This correlator is capable of comparing a single spacecraft image to a very large database of

images in a reasonable amount of time. When using synthetic discriminant function (SDF) filters, this correlator could
identify an object from a database of thousands of images or poses within a single second. Such a correlator has the

potential of enabling a sensor that could yield pose estimates on the order of 1-10 Hertz, a reasonable bandwidth for
space applications. The second advance is the emergence of sophisticated solid modeling and animation software
running on desktop computers with ever growing processing speed and memory allocations. These new software tools,

such as 3ds Max by Autodesk, facilitate the generation of a multitude of images for use as matched filters in an optical
correlator. The animation software enables simulation of objects with realistic lighting conditions and camera

parameters. Many SDF filters could be designed, a priori, relatively rapidly using computer-generated filter databases.
These two advances, when incorporated with linear and nonlinear estimation techniques (including artificial neural
networks) give merit to new efforts to use optical correlation techniques for space vehicle pose estimation z.

Castro 3'4 proposed an approach to pose estimation that shows promise. Figure 1 graphically illustrates their technique.
Within this fi'amework, the high-speed optical correlator would be used to evaluate the correlations and provide the

measurements to the pose estimator. The pose estimator, residing on the spacecraft on-board computer, estimates the
vehicle states or poses (attitude and position) as a function of the measurements. The pose estimator is the inverse of a

transformation from a space comprising the poses to a space comprising the correlation measurements. The
transformation is, in general form, nonlinear so a nonlinear estimator would be a natural solution. Artificial neural

networks are well suited to nonlinear estimation problems and were investigated by Castro for this application. In
certain smaller regimes, a linear estimator may yield good estimates and be a good approximation to the nonlinear
estimator as also shown by Castro.
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Figure 1: Pose Estimator Concept

In our current attempt at space vehicle pose estimation, we adopted the Castro technique, extended it from 2 degrees-of-
freedom (DOF) to 3DOF, and looked at the practical implementation using binary phase-only filters (BPOF) on the
Boulder Nonlinear Systems correlator 1. Castro estimated a recognition flag as one of the states in the pose estimator of

Figure 1. That approach often resulted in false detections of images not within the detection class, especially with
linear correlations. We propose to remedy that ambiguity with a 2-step approach. The first step is an interclass

discrimination step, in which the class of the test image would be ascertained. The second step is the pose estimation

step, implementing the concept in Figure 1.

In this paper we report on the theoretical feasibility of this pose estimation technique, present quantitative performance

results, and discuss issues associated with its implementation,in real hardware. Section 2 gives a general description of
the 2-step process: class distinction and pose estimation. Section 3 describes the implementation of the 2-step process

using conjugate matched filters with both linear and nonlinear estimators. Section 4 describes the adaptation of the 2,
step process for realization in a high-speed optical correlator using binary phase-only synthetic discriminant function
(BPOSDF) filters for the detection step and binary phase-only filters (BPO1 _-)for the pose estimation step. Section 5

discusses some of the practical considerations in implementing this type of pose estimator. Section 5 also presents
some general observations and some lessons learned from the development of this pose estimator.

1. Description of 2-step process

We propose a pose estimation methodology involving a 2-step process. The first step is an interclass discrimination

step. The interclass discrimination step processes the observed image and determines which "class" or subset of poses
to which it belongs. We intend to perform the interclass distinction using synthetic discriminant function (SDF) filters
in a manner first suggested by Casasent s. The second step is a linear pose estimation step within the class identified in

step one. The second step involves a relatively small bank of "construction" filters within the discerned class. This

bank of filters is used to compute, a priori, a linear mapping between the poses represented by the construction filters

and the auto- and cross-correlations of the construction filters with themselves. It is well known that the relationship
between pose and correlation is not nicely linear, but under certain conditions, a linear approximation might be
sufficient for some kinds of pose estimation requirements. The remainder of this section describes the mathematical

operations involved in each step of the 2-step pose estimation process.

A classical SDF is defined by equation 1:

N

H k =__.aiF i (1)
i=1



The kth SDF is a weighted superposition of a set of N filters, F. The filters, F, are the complex conjugates of the
Fourier transforms of the images in the construction set. The a are the weight coefficients on each filter. The weight

coefficients are computed by equation 2:

a = R-1C (2)

C is a Nxl vector comprising prescribed correlation values for the resultant SDF. The matrix, R, is the NxN matrix of
coFrelations among the N images in the construction set. For conjugate matched filters, R is symmetric and thereby, full

rank and invertible. The selection of the vector C becomes the key in designing the SDF. In this paper we investigated
two approaches to selecting C, the multilevel nonredundant filter method and the equal correlation peak method s. Each

of these two approaches has its own merits and drawbacks, and some of them will be exposed in our application to
conjugate filters and binary phase-only filters.

The second step is the pose estimation step. For this solution we borrow a technique from Castro. We seek to establish

a relationship or mapping from the object poses to the numerical values obtained by correlating images of known poses
wi[h the observed 2-dimensional image. Equation 3 is an equation that might govern such a relationship.

C=TP (3)

The Nxl vector C comprises the N correlations that were evaluated using the N construction filters within the class of
interest. The vector P is the 3xl vector comprising the 3 pose degrees-of-freedom (DOF). The matrix T is a Nx3
malxix which is a linear mapping from poses to correlations for that particular set of construction filters. If one has N

construction filters representing N distinct poses, then P would become 3xN, and the C-matrix would become NxN, the
co/7:elation matrix of the construction filters with themselves.

The linear estimator is obtained by computing the pseudo-inverse of T. The preferred method for computing the linear

estimator is shown in equation 4.

T + =PC -1 (4)

Since C=R, the correlation matrix is full-rank and invertible. Computation of the pseudo-inverse of T by equation 4
minirnizes estimator errors arising from poor numerical conditions. Otherwise, one could solve for T by taking the

pseudo-inverse of P and premultiplying it to C. Then one would explicitly evaluate the pseudo-inverse of T by
conventional methods. This latter approach introduces significant numerical errors first, in the pseudo-inverse of P,

which is highly rectangular, and second in the subsequent pseudo-inverse of an already poorly computed matrix
comprised of the pseudo-inverse of P.

The poses can be estimated by equation 5.

-P=T+Cm_, (5)

The vector C;_, is a vector comprising the N measured correlations of the observed image with the N construction
filters in the filter bank of this particular class. Equation 5 yields an estimate of the poses based on a linear

approximation to the mapping of poses to correlations even though the relationship, for both conjugate and BPOF
filters, is nonlinear. Equation 6 expresses this relationship in general form.

C = T(P) (6)

Equation 6 shows T as a general, nonlinear function of the poses P. Then a nonlinear pose estimator would look like
equation 7.



P= T'(C) (7)

In equation 7 T' is the nonlinear estimator, which is a nonlinear function of the correlations C. Below we design the
nonlinear.estimator by training, a priori, an artificial neural network.

2. Discussion of 2-step process using conjugate matched filters

This section describes the 2-step pose estimation process using exclusively conjugate matched filters. The first step is
the interclass discrimination step. In the interclass discrimination step a SDF is designed in order to determine the class
to which the observed image belongs. The SDF was designed using the multilevel nonredundant filter approach
described by Casasent. We next describe how we applied that approach to the example problem of Space Shuttle pose
estimation.

Figures 2a-d depict four different "classes" of Space Shuttle poses. In other applications "class" may mean an entirely
different object. Here "class" means a distinctly different Space Shuttle orientation or pose. The images were obtained
from a Space Shuttle model in the 3ds Max animation software from Autodesk. Each of the four classes was assigned a
prescribed correlation value. The prescribed correlation values comprise the vector C = [150,000 120,000 90,000
60,OOO]T. The prescribed correlation values were chosen to establish a significant threshold between the different
classes. In this way a single SDF is intended to distinguish 4 different classes using 4 different levels of correlation
values. Thus it is a nonredundant multilevel filter.

Figure 2a: Class 1 Figure 2b: Class 2 Figure 2c: Class 3 Figure 2d: Class 4

A single SDF, H, was designed according to equations 1 and 2 and implemented in equation 8:

4

H =" a.F.L.J I /

;=1

(8)

The F are the complex conjugates of the Fourier transforms of each image in Figure 2. The a are the weighting
coefficients on each of the filters representing the four images. The weighting coefficients, a, are computed from
equation 2. In this case the matrix, R, is the 4x4 matrix of correlations among the four images in Figure 2. For this
particular set of images and the prescribed correlations in C, the solution becomes a =[7.1715.4712.70 8.93]T.

The SDF was synthesized by substituting the vector a into equation 8. Next, the SDF was tested on a set of images.
The test image set was obtained from 3ds Max by generating 125 images from 0-8 degrees in pitch, yaw and roll about
the orientation in Figure 2a. The images were generated in 2-degree increments. Correlations were then computed for
each test image with the SDF, H. The correlation values are plotted in Figure 3. Note that all the correlation values are
above 132,000. That magnitude clearly exceeds the threshold of 120,000 for the second class of Space Shuttle poses
from Figure 2. This test indicates that this particular SDF is a good interclass discriminator for poses within 8 degrees
of Figure 2a in pitch, yaw and roll.
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Figure 3: Correlations via SDF discriminator

After the images were determined to be within the

class of Figure 2a, the linear estimator specifically
designed for class 1 was used to estimate the pose

of each of the test images. The linear estimator
was designed using 27 construction filters. The 27

filters were the complex conjugates of the Fourier
transforms of 27 of the test images. The 27

construction filters were chosen to correspond to
the comers, faces, edges and center of an 8x8x8-

degree cube, which spanned the space of class 1.
Construction filters were at the center of the cube

and at each of the eight comers. A construction
filter was selected at the center of each of the six

faces, and at the midpoint of each of the 12 edges

of the cube. Equation 4 was used to compute the
3x27 estimator matrix relating correlations to

poses. The resultant estimator matrix interpolated
the poses within the 8x8x8 cube, given the
measured correlation value.

The performance of the linear estimator was evaluated using 189 test images within the class-1 cube. Each of the 125
images was correlated with the 27 construction filters. The values were stored in 189 separate 27xl vectors. The 3x27

linear estimator was multiplied to each correlation vector. After running all 189 test images through the linear
estimator, statistics were compiled for the estimator's accuracy within this class. Pitch (out-of-plane) accuracy was 0.22

degrees RMS. Yaw'(in-plane) accuracy was 0.20 degrees RMS. Roll (out-of-plane) accuracy was 0.14 degrees RMS.
These results are comparable to those reported previously for a 2DOF linear estimator 3'4.

Next an artificial neural network (ANN) was designed in order to attempt to improve the accuracy of the linear

estimator. Castro reported a significant gain in performance with ANNs on the 2DOF problem. We attempted to apply
an ANN to the 3DOF problem. An estimator in the form of equation 7 was implemented in a 2-layer back-propagation

network trained by the Levenberg-Marquardt algorithm. The ANN used 27 correlations as the input, just like the linear
-'estimator. Best results were obtained with 60 neurons in the hidden layer and 40 training epochs. 125 of the 189 test

images were used as '"training" filters for the neural network. Estimator performance was assessed by evaluating all 189
test images. Pitch accuracy was 0.22 degrees RMS. Yaw accuracy was 0.17 degrees RMS, and roll accuracy was 0.14

degrees RMS.

The results from the ANN show slight improvement over the linear estimator, but not very much. Since the ANN had a

very high accuracy on the 125 images in the training set, the statistics were skewed by the training poses. We were
interested in how well the ANN estimated those poses that were not in the training set. Statistics for the 64 non-training

filters were significantly worse. Pitch accuracy was 0.40 degrees RMS. Yaw accuracy was 0.29 degrees RMS, and roll
accuracy was 0.24 degrees RMS. These results indicate that the ANN was over-fittiing between the points in the

training set.

3. 2-step process using BPOSDF and BPOF

Since the ultimate goal of this undertaking was to implement the pose estimator in a real high-speed optical correlator
using spatial light modulators (SLM), exclusively real-valued filters are required. Binary phase only filters (BPOF) are

well suited for this application since their values are either 1 or -1. In our 2-step pose estimation process, the first

challenge in implementation is to convert the conjugate matched SDF into a BPOSDF for the class-distinction step. It is
expected that the BPOSDF, being a discrete approximation to the conjugate matched filter, will not behave exactly as



theconjugateSDFdid,andsomeaccommodationsmighthavetobemade.In thesecondstep,thelinearestimation
step,theconstructionsetof filtersmustbeconvertedto BPOFs.Thelinearestimatormustbe redesignedto
accommodatethecorrelationswiththeBPOFs,anddegradationsinperformanceareexpectedhereforthesamereasons
asexpectedfortheBPOSDF.

Thecomputationof theBPOSDFposessomedifficultiesthatdonotarisewithsimpleconjugatematchedfilters.
WhereastheconjugatematchedSDFusesequations1 and2 to solvefortheSDFweightcoefficientsexactly,the
BPOSDFcannotbecomputedthatway.If theF were phase-only binarized prior to evaluating the correlation matrix R
and substituting into equation 2, the resultant SDF, H, is anything but binary and phase only. Then H would have to be

phase-only binarized, but the correlation matrix would no longer be valid because the correlations with H would be

significantly different than those in the correlation matrix for which the weighting coefficients were designed. The
design of the BPOSDF is a nonlinear optimization problem which can be solved iteratively 6'7. We chose to compute
the BPOSDF by use of a genetic algorithm because genetic algorithms have proven successful in applications like this 8.

The genetic algorithm toolbox from MATLAB facilitates this solution technique. Figure 4 is a flow diagram illustrating
the process used in computing the BPOSDF.

The first step is to start with the four conjugate matched filters of the images in Figure 1, equation 1 and an initial

population of guesses on the a vectors. Next we compute H for every a in the population. We chose a population of 50
so there will be 50 H. Next, each H is phase-only binarized. Then 50 4xl correlation vectors are computed by
correlating each H with the four images from Figure 1. Next we compute the mean-square error between each of the 50

4xl correlation vectors and the prescribed correlation vector, Cp,_. The mean square error difference from the previous

iteration is evaluated as the algorithm stopping criteria. If the stopping criteria is not met, the genetic algorithm operates
on the population of a by selection, crossover and mutation to obtain a new population of a for the next iteration. When
the stopping criteria is finally met (in about 20-30 iterations), the a which provide the best mean square error are chosen

as the weighting coefficients. Once the weighting coefficients are determined, equation 1 is evaluated, and H is phase,
only binarized to compute the BPOSDF. ,
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Figur e 4: Genetic Algorithm to design BPOSDF



We again chose to use a single multilevel nonredundant SDF. For the BPOSDF design, the prescribed correlation
vector was C = [25002000 1500 1000]T. The correlation values obtained from the resultant BPOSDF were C = [1800
1330 1040600]T. The discrepancy is attributable to the fact that, unlike the conjugate SDF, one cannot exactly satisfy
the prescribed conditions with a BPOSDF. There is no guarantee of an exact solution with the BPOSDF because of the
phase-only and binarizing operations. Nevertheless, the algorithm converges to a best-fit solution that yields significant
thresholds between the individual classes.

Next, the BPOSDF was applied to 125 test
images. Figure 5 shows the correlation values.
Note that most of the correlations are below the
threshold for class 2, and many of the values are
below the thresholds for class 3 and 4. This
indicates that this multilevel BPOSDF is not a
good ftlter for class discrimination for these
classes. This is a;ttributable to BPOFs being such
good discriminators. The BPOFs are very good at
intra-class discrimination, which makes them very
bad for inter-class discrimination on this particular
set of images. As a consequence of this result, it
was necessary to discard the nonredundant
multilevel BPOSDF and design a different type of
BPOSDF to perform the inter-class
discrimination.
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Figure 5: Correlations via multilevel BPOSDF

A new BPOSDF inter-class discriminator was designed using ftlters within class 1. The filter design approach was the
equal correlation peak (ECP) methodS. The three images shown in Figure 6a-c were used in the BPOSDF design.
Figure 6a is at (0,0,0) degrees (pitch, yaw, roll). Figure 6b is at (4,4,4) degrees, and Figure 6c is at (8,8,8) degrees. The
prescribed correlation vector contained equal magnitudes for each of the 3 ftlters in the construction set. The resultant
correlation values with the computed BPOSDF were C =[1772 1777 1741]T. This BPOSDF was designed with the
expectation that the correlation values for the other images within the (0,0,0)-(8,8,8) class would be above the noise
level and above the level of this BPOSDF's correlation with the images from classes 2, 3 and 4.

Figure 6a: (p,Y,R)=(O.O,O) Figure 6b: (p,Y,R)=(4,4,4) Figure 6c: (p,Y,R)=(8,8,8)

The new ECP BPOSDF was used to compute correlations with 125 images within class 1. Figure 7 shows the resulting
correlation values. All correlations within class 1 were above 643. The three peaks are the correlations for the 3
construction images from Figure 6. The noise floor for all 125 correlations was around 250 so there was sufficient
signal-to-noise ratio to discern a true correlation. Table 1 shows a comparison of class 1 correlations against
correlations with class 2, 3 and 4 images. All images from class 2, 3 and 4 had correlation values below 221, putting



them tmder the noise floor for this BPOSDF. The results indicate that this ECP BPOSDF is a sufficient filter for
interclass discrimination.
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Figure 7: Correlations via ECP BPOSDF

Table 1: Comparison of ECP BPOSDF Correlations

• ".....................' ..... '.

Minimum'
'From

(0,0,0)-(8,8,8) .
:Range

Correlation
Valqe

69 204 221 1772 643

After it was established that a BPOSDF can be designed to perform the first (interclass distinction) step in our two-step
pose estimation process, we proceeded to the pose estimation step using BPOFs with a linear estimator. For the BPOF
estimator, we chose a construction set of 27 fIlters. These filters corresponded to the same 27 images used as
construction fIlters for the conjugate matched fIlter pose estimator. BPOFs were computed for each of the 27 images in
the construction set. The 27x27 correlation matrix was computed, using the BPOFs. Using the 27x27 correlation
matrix as the prescribed correlations, the 3x27 linear estimator was computed using the same mathematical approach as
used for the conjugate filters. The 189 test images were rtm through the linear estimator, and statistics were compiled.
RMS Pitch (out-of-plane) accuracy was 0.75 degrees. RMS yaw (in-plane) accuracy was 0.33 degrees. RMS roll (out
of-plane) accuracy was 1.29 degrees. When using the BPOFs, in-plane accuracy is much better than out-of-plane
accuracy, and for this particular orientation, our estimator is least sensitive to roll. This makes sense intuitively because



theBPOFsarehighlysensitivetosignificantchangesin thespatialcontentoftheimage.At theorientationunderstudy
inourclass1,rollmotionsdonoteffectlargechangesinspatialcontent.

Sincetheperformanceof theBPOF-basedlinearestimatorwasmuchworsethantheconjugatefilterestimator,we
proceededtotrainanANNusingBPOFsseekingtoimprovetheresults.Weagainused2-layerbackpropagation.The
trainingsetcomprisedthesame125imagesusedfor theconjugatefilterANN. Bestresultswereobtainedwith40
hiddenneuronsandonly14trainingepochs.Afterevaluating189testimages,pitchaccuracywas0.38degreesRMS,
yawaccuracywas0.24degreesRMS,andyawaccuracywas0.71degreesRMS. Thiswasa fairlysignificant
improvementovertheBPOFlinearestimator.Toobservetheeffectsofover-fitting,weevaluatedstatisticsononlythe
64testimagesnotmthetrainingset.Resultswereapitchaccuracyof0.64degreesRMS,yawaccuracyof0.42degrees
RMS,androll accuracyof 1.23degreesRMS.Theestimatesof thenon-trainingposeswereaboutasaccurateasthe
estimatesusingthelinearestimator.ThisindicatesthattheBPOFANNperformanceishamperedbyover-fitting.

4. Practical Considerations

In the above sections we have defined a methodology for space vehicle pose estimation and performed a theoretical

proof-of-concept. Keeping in mind that this methodology would ultimately be implemented in real hardware, we

adapted the methodology to using BPOFs, exclusively real-valued filters, for realization m the spatial light modulators
of an optical correlator. In this section we will discuss some observations made during the development and proof of
the pose estimation methodology. We will examine the class distinction step and the special considerations that must be
made when using BPOSDFs in this phase of the methodology. We then will discuss the quantitative performance of our

pose estimator, examining the differences in conjugate filters versus BPOFs and linear estimators versus nonlinear
estimators. We will then discuss how our methodology can be extended to full 6DOF pose estimation, including range
and in-plane translations. Then we will discuss some of the trades involved in implementation of this pose estimator in

an optical correlator versus a digital correlator for space vehicle applications.

For space vehicle pose estimation, if one assumes no a priori knowledge of the coarse pose of the vehicle (that is, the
pose is unbounded), one must first go about determining which subset of poses the vehicle belongs to in order to
proceed with the pose estimator described in Figure 1. When one applies the methodology of Figure 1 to a target whose

pose is unbounded, two things can happen. First, one would have to design an estimator which yields high accuracy
over a very wide range of poses. This would involve a very high-order estimator using a very large set of construction
filters. This would also require a very large quantity of correlations to be evaluated in real-time. All of these

requirements would be too demanding for the limited resources of a space system. Second, even if one did apply the
method of Figure 1 to such an unbounded range of poses, there is a large risk of false detection. That is, the estimator
might compute what it thinks is a good pose estimate for an image that does not represent the true pose. Castro
encountered this possibility when including a detection flag as one of the states in the pose estimator 3.

To avoid the difficulties of a complicated high-order estimator and false detection, we proposed the 2-step approach
described in Section 2 above. The full 3-axis, 360-degree range of motion is spanned by a finite number of subsets of
poses. Each subset would be treated like a class. As section 3 showed (when using conjugate matched filters), a finite

set of multilevel SDFs could be designed to span the entire number of classes and identify the class of the test image.
When using BPOFs, a finite set of ECP SDFs would work, one BPOSDF for each class. Multilevel and ECP filters

were investigated in our research, but that does not preclude the design of other innovative SDFs that could perform
interclass discriminations. From our experiences with the BPOFs, for implementation in real hardware, the multilevel

SDFs are not very good candidates for this application. A variation of the ECP filters is the preferred design approach,
perhaps even a mutual orthogonal function (MOF) SDF for interclass and intraclass distinction s would work in this

application.

Table 2 summarizes the quantitative performance of our pose estimator in its various manifestations. All of these

results were evaluated with the Space Shuttle located at a range of 50 meters from the camera. By comparison, the
specifications for the Advanced Video Guidance System (AVGS), a leading rendezvous and docking sensor, at 30-50
meters are 0.25 degrees in-plane and 0.5 degrees out-of-plane. AVGS specifications from 50-100 meters are 1.2



degreesin-planeand2.4degreesout-of-plane9. At therangeof interest,ourposeestimatoryieldstheoreticalresults
comparabletotheperformanceoftheAVGS.Intheory,ourposeestimatorcoulddoaswellassomeofthebestsensors
available.However,oursensorhasyettobestudiedforsensitivityandrobustnesstonoisesources,bothrandomand
colored.It is expectedthatnoisewithinthecorrelator,detectors,SLMsandimagingsystemwill degradethe
performancereportedhere.

Table2:PoseEstimatorPerformanceResults
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Estimators using conjugate matched filters generally work better than BPOFs. There are two reasons for this. First, the
cross-correlation amplitude of conjugate filters drops off more slowly (as a fflnction of pose) than it does for BPOFs.
This means that the BPOFs are better intra-class discriminators than the conjugate filters, but the BPOFs do not serve

well in an estimator which functions, to a large extent, as an interpolator between poses. The second reason is that
BPOFs are, in a sense, discrete approximations to the more continuous conjugate filters. The single-bit binarization of a

phase-only conjugate filter results in a quantization into only 2 levels whereas the conjugate filter has a continuity of
levels. Also, the BPOF is inherently nonlinear. An analogy is a feedback control system designed in the continuous
domain which is then discretized for implementation in digital hardware. Additional errors are introduced into control

system performance from discretization and its associated phase lag. Analog-to-digital conversion introduces

quantization errors and nonlinearities which adversely affect control system performance. So one can intuitively see
why BPOFs would yield worse results than conjugate filters in our pose estimator.

One observes from Table 2 that the nonlinear estimators using the artificial neural network generally perform better than

the linear estimators do. One would expect this result because the pose/correlation relationship is inherently nonlinear.
However, it was pointed out in sections 2 and 3 that the statistics in Table 2 are skewed by the high accuracy of the
estimator on the ANN's training images. The performance statistics of the non-training images reveal that the ANN

performance on non-training images is not very much better than that of the linear estimator. This finding is a departure

from Castro's results on the 2DOF problem where ANNs dramatically improved estimator performance. Prior to
working the 3DOF problem, we investigated the 2DOF problem and reached the same findings as Castro. However, the

extension to 3DOF apparently makes the ANN solution more complicated. We believe the 4-dimensional hyperspace
(pitch, yaw, roll, correlation) function grows ever more complicated with each added DOF such that the nonlinear
function is very difficult to approximate with a finite set of construction filters, even with a neural network. The result

was over-fitting between the training poses. We found it very difficult to heuristically overcome the overfitting problem
and could not improve the results very much.

For the reasons cited above, we have chosen to implement linear estimators in a hardware demonstration of this pose
estimator. Since relatively little performance is to be gained by the neural network, we feel it is not worth the extra
effort to generate a multitude of training images and run the algorithms to train the ANNs. Rather, it is more efficient to

perform the quick matrix multiplications using a small construction set of images in order to compute the linear
estimator. Furthermore, for a space vehicle application, the linear estimator might be the method of choice, after all. A



linearestimatorwill takeuplessmemoryin anon-boardcomputerthanwouldahigh-orderANN. Theon-board
computationburdenwillbelesswiththesimpleoperationsinherenttoamatrixmultiplication.Finally,it willbeeasier
andlesscontroversialtoverifyandvalidatea linearestimatorthanit wouldbefor aneuralnetwork.Theinherent
nonlinearityof theANNmeansmoreresourcesmustbespentonverificationandvalidationinordertocoverenough
casesto gainconfidencein thesystem'sperformance.Also,themerefactof usinganeuralnetworkmakesproject
managersverynervousabouttherisksofflyingaself-trainedsystem,eventhoughthisparticularestimatorisastatic
ANNtrainedandfixedapriori.

Weanticipateextendingourposeestimationmethodologytocomplete6DOFstateestimation(rotationandtranslation).
Weobservedthatestimatingrangecanberelativelyeasywiththisapproach.Asthetargetobjectmovesawayfromthe
camera,its sizediminishesin theimageplane.Consequently,thecorrelationvaluedecreasesastheobjectsize
decreases.Thoughthisrelationshipis notexactlylinear,welearnedthatit is comparableto thepose/correlation
relationshipsfortherotations.Preliminarystudiesindicatedthatourposeestimatorcouldindependentlyestimaterange
(separatefromattitude)toanaccuracyof about5metersoverarangefrom50-150metersfromthesensor'scamera.
Bycomparison,theAVGSspecificationforrangeestimationaccuracyis1.67metersat50-100meters9.If oneusesthe
maximumcorrelationvaluein thecorrelationplaneasthemeasurement(asopposedto thecorrelationvalueatthe
con:elationplaneorigin),onecoulddirectlyidentifythein-planetranslationof thetargetvehiclewithrespectto a
canlera-fixedcoordinateframe.Thus,all6degrees-of-freedomcantheoreticallybeestimatedfromourtechnique.We
anticipatethatestimatingrangealongwithpitch,yawandroll couldintroducemorecomplexityintobothlinearand
nonlinearestimators.The4DOFproblemnowpresentsa5-dimensionalhyperspacefunctionof correlations.The
4DOFestimatormighthavea degradedoverallaccuracycomparedto thenumbersreportedhere. Thiswill be
investigatedfurtherasweproceedtohardwaredemonstration.

Throughthecourseof developingandverifyingourposeestimator,weconsideredwhetherit isbettertoimplement
thismethodologyin anopticalcorrelatoror a digitalcorrelator.Theopticalcorrelatornowhasthebenefitof
performingcorrelations4000timespersecond,potentiallyyieldinghighbandwidth.However,thebottlenecklimiting
thebandwidthmightactuallyresidewiththeframerateonthecorrelation-planedetector.EventhoughBPOFsresultin
degradedestimationperformance,BPOFsareonlyasinglebitperpixel,significantlyreducingmemoryvolumeand
datathroughputtime.Ontheotherhand,digitalcorrelatorscanuseconjugatefiltersin theestimator,improvingoverall
accuracy.Thedigitalcorrelatormightbelighterweightthantheopticalcorrelatorbecausethedigitalcorrelatordoesn't
requirea laseranditsaccompanyingpowersupply.Digitalcorrelators,however,might_notyetbeasfastasoptical
correlatorsdespiterecentadvancesindigitalsignalprocessing(DSP)technology,andtheDSPsmightconsumemore
powerthantheopticalcorrelator'slaser.All thesefactorswill beconsideredinassessingwhichtypeof correlatoris
bettersuitedfor spacevehicleapplications,particularlyonmicrosatellitesin whichweight,powerandvolumearea
premium.
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