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Abstract9

10

11 When averaged over the tropical oceans (30 o N/S), latent heat flux anomalies derived from passive

12 microwave satellite measurements as well as reanalyses and climate models driven with specified sea-

l3 surface temperatures show considerable disagreement in their decadal trends. These estimates range

14 from virtually no trend to values over 8.4 Wm -2 decade 1. Satellite estimates also tend to have a larger

15 interannual signal related to E1 Nino / Southern Oscillation (ENSO) events than do reanalyses or model

16 simulations. An analysis of wind speed and humidity going into bulk aerodynamic calculations used to

17 derive these fluxes reveals several error sources. Among these are apparent remaining intercalibration

18 issues affecting passive microwave satellite 10 m wind speeds and systematic biases in retrieval of

19 near-surface humidity. Likewise, reanalyses suffer from discontinuities in availability of assimilated

20 data that affect near surface meteorological variables. The results strongly suggest that current latent

21 heat flux trends are overestimated.
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1. InWoducfion

Latent heat flux (LHF) over the global oceans is a key climate process linking fast convective,

radiative, and dynamical processes of the atmosphere to the slower, but equally dynamically active

thermal reservoir below. Prospects for enhancing climate predictability from seasonal to decadal scale

6 and beyond depend critically on an improved understanding and modeling of physical processes

7 controlling LHF. The WMO Working Group on Air-sea Fluxes [Taylor, 2000] has articulated this

8 need in broadest terms. The SEAFLUX project [Curry et al., 2004] has emerged as an example of

9 focused efforts to evaluate and improve satellite-based products in particular. As a result of these

10 efforts estimates of LHF variability on scales from interaunual to decadal are now emerging, ha

11 particular, evidence for upward trends in LHF over the tropical domain has recently been reported.

12 Chiu and Xing [2004] performed an EOF analysis on version 2 of the Goddard Satellite-based Surface

13 Turbulent Fluxes data set (GSSTF2) and found that the leading mode exhibited an upward trend over

14 the period 1990-2000. The structure of this mode showed positive changes in subtropical dry regions

15 and smaller negative changes in the equatorial Pacific. Liu and Curry [2006] expanded this analysis to

16 include reanalyses and an additional satellite algorithm, HOAPS-II (Hamburg Ocean Atmosphere

17 Parameters and Fluxes from Space version II). Their analysis provided a similar finding of a

t 8 statistically significant upward LHF trend having a similar spatial structure and they argued that

19 surface wind speed increases were a key driver. It should be noted that the rate of LHF increase

20 inferred from the GSSTF2 by both these studies was about 17 Wm'2dec -1, while the reanalysis

21 estimates in Liu and Curry range from 1.6 to 8.9 Wm'2dec 1. Given the estimated climatological

22 tropical mean LHF value of- 100 Wm -2, variations of this magnitude demand further scrutiny. In this

23 paper we re-examine several data sets and attempt to understand and narrow the uncertainties.
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2. Data and Methodology

The analysis presented here reIies on monthly means of LHF estimated through bulk aerodynamic

methods as applied to satellite data and in numerical models. Two satellite-derived products are used,

both of which rely heavily on Special Sensor Microwave Imager (SSM/1) radiances to provide 10m

6 wind speeds and estimates of near surface specific humidity, qa. For both of these data sets the fluxes

7 were derived on daily time scales and archived as monthly mean products. HOAPS-II provides ocean

8 turbulent flux retrievals and related quantities on several spatial and temporal scales [Schultz et al.,

9 1997; Grassl et al., 2000; Bentamy et aI., 2003]. Sea-surface temperatures (SSTs) taken from the

10 Advanced Very High Resolution Radiometer Pathfinder data set are used to compute saturation

11 specific humidity at the ocean surface, q_. We used the monthly mean, 0.5 degree lat /lon resolution

12 data for the period Jan. 1988 through December 2002, omitting the period July 1991 through July 1992

13 when aerosols from the Pinatubo eruption contaminated SST retrievals. A second data set from the

14 University of California, Santa Barbara (UCSB) providing 0.25 degree resolution monthly mean

15 retrievals was also used. The UCSB retrieval [Jones et al., 1999] uses a neural net methodology,

16 training on the NOAA/PMEL TAO and Pirata buoy arrays [McPhaden, 1995] to retrieve 2m qa (and

17 Ta). Wind speeds for this algorithm are the version 5 retrievals of Wentz (1997)• SSTs are taken from

18 the NCEP/NCAR (National Center for Environmental Prediction / National Center for Atmospheric

19 Research) Reanalysis [Kalnay et al., 1996].
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Monthly mean fluxes and near surface meteorology were also taken from three reanalyses. These

included the NCEP/NCAR Reanalysis [Kalnay et al., 1996], the NCEP-2 Reanalysis [Kanamitsu et al.,

2002], and the new Japanese Meteorological Agency Reanalysis, JRA-25, [Onogi et al. 2005]. These

data sets will be referred to as NN, N2, and JRA-25, respectively. The JRA-25 assimilated SSM/I

column-integrated water vapor (CWV) as well as ERS-1, 2 and QuikScat scatterometer wind speeds.
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1 However,neithertheNN nor theN2 useeitherof these,thusproviding ausefulmeasureof

2 independencefromtheotherdatasets.Finally, we includeLHF producedby an integrationof the

3 NASA FVGCMmodel [Lin, 2004]forcedby observedSSTs.Thedataarefrom thesameintegration

4 analyzedby Bosilovichet al., [2005]. This integrationis alsoausefulcomparisonbecauseeven

5 thoughit is constrainedby thetimevariationof SSTs,it is freefrom anytime-dependentbiases

associatedwith dataassimilation(e.g.theavailabilityof SSM/Idataonly afterJuly 1987).The

physicalparameterizationsof theFVGCM arebasedonNationalCenterfor AtmosphericResearch

(NCAR) CommunityClimateModel version3.0(CCM3) physics.

3. Analysis

Our analysis focuses on tropical ocean area-averages, more specifically on departures from

climatological monthly means over the base period January 1988 to December 2002. Figure 1 contains

time series ofLHF, qs*- qa, and 10 m wind speed anomalies area-averaged over the tropical oceans

(30 ° N/S) for the data sets described above. Also shown in shading are associated SST anomalies

calculated in the same fashion. Each time series has been smoothed using a 5-month running mean for

presentation clarity. The LHF time series (Fig la) each show increases with time, although there is

substantial variability, ranging from 2.6 Wm-2decade l for the FVGCM to 8.4 Wm2decade -1 for UCSB.

This unanimity in trend might seem impressive were it not for the fact that these values are several

time larger than GPCP tropical oceanic rainfall trends (1.2 Wm-2decade-I). Since atmospheric water

vapor storage is vanishingly small on these scales, there would be a large implied atmospheric

transport of excess moisture to support increased precipitation over tropical land or higher latitudes.

This is not apparent in the GPCP record which actually shows small rainfall decreases over land areas

with time [Gu et al., 2007]. Note also that the FVGCM, though capturing much of the interannual

variability associated with ENSO, has the smallest trend. While the accuracy of atmospheric model
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integrationsforcedby observedSSTsis opento question[Wangetal., 2005], onemustalsoquestion

theeffectsof datasetinhomogeneityin assimilatedfields,andthe accuracyof satellite-basedLHF

algorithms.

Theoriginof thesedifferencesbecomessomewhatclearerwhenweexaminetime seriesof qs- qa(Fig

lb). Of all themodelruns,JRA25showsthegreatestrateof increase(0.21g Kg-1decade-l).Partof

this canbeattributedto theeffectsof theonsetof SSM/Idataavailability in July 1987. Relativeto NN

andN2which did not assimilateSSM/Idata,theJRA25is lowerby order0.10g Kg1 beforethis date

ascomparedto thefour yearsfollowing. It is alsoapparentthatN2 anomaliesexhibit a largertrend

thanNN while havingsimilar interarmualvariability. Before1995theoffsetN2 anomaliesarelarger

negative,but that afterthisdateN2 anomaliesincreaseto valuesnearly0.10gKg-1largerthanNN.

SSTand,thus,qs*is essentiallyinvariantbetweenthesetwo reanalyses•In contrast,theFVGCM

integration has a much smaller qs*- qa trend (0.04 Wm2decade-I).

Another interesting aspect in Fig. lb is the distinctly larger magnitude ofq_*- qa anomalies in the two

satellite-based algorithms during ENSO events compared to those in the reanalyses. We believe that

this stems from the inability of satellite algorithms to discern systematic variations in the relationship

of near-surface moisture in the planetary boundary layer (PBL) with that of CWV. This issue was first

noted in a climatological sense by Esbensen et al. [1993] who found that Liu's (1986) method of

retrieving qa from CWV yielded systematic underestimates of qa in subsiding trade wind regimes and

over-estimates in zones of convergence and deep convection. In the subtropics, mean tropospheric

subsidence in the atmospheric column dries the column by vertical advection. However, in the well-

mixed lower portion of the PBL, the fractional reduction in moisture is not as pronounced as in the

free troposphere. In regions of anomalous ascent, vertical pumping of moisture provides a larger

fractional elevation of free-tropospheric moisture than occurs near the surface. To see if this effect is
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1 modulatedby ENSOweconstructedsatelliteminusNN q_anomaliesandcompositedthemfor bothE1

2 Nino andLaNina years. By furtherdifferencingtheLaNina from theE1Nino composites(e.g.warm

3 SSTversuscold SSTyears)weseesystematicpatternsof q, biasin UCSBor HOAPSqarelativeto

4 NN (Fig. 2a,b). Overestimatesin thecentralequatorialPacificduringE1Nino aresurroundedby

5 underestimatesto thewestandovertheadjacentsubtropics.Thispatterncorrespondsto anomalous

upwardmotionin theequatorialeasternPacificandsinkingmotion in thesurroundingareas.Bias

valuesaremoreprominentin HOAPSthanin UCSB. Theeffectsof widespreadtroposphericsinking

duringwarm eventsdominatestheareaaveragevaluein bothdatasets,leadingto overestimatesof q_*-

qaand,thus,LHF anomalies.TheoppositesituationholdsduringENSOcold events(e.g.1999-2000).

Anotherway of looking atthis issueis to comparetherelativevariationsof CWV andqafrom

reanalysesduringENSOevents.All qaestimatesbasedonsatellitepassivemicrowaverely essentially

ontheCWV signaleitherexplicitly or implicitly. Thus,for consistencywith thebiasmechanisms

outlinedabovewewould expectthattruefractionalCWV variationsarelargerthanthoseof trueqa.

UsingNN datawe compositedanomaliesof log10CWV andlog10qafor E1Nino andLaNina events,

subtractingtheLa Nina compositefrom theE1Nino composite.Theresults(Fig2c,d)indeedshow

that comparedto qa,fractionalincreasesin CWV arelargerpositiveover theequatorialPacificand

largernegativeoversubsidenceregionsin thesubtropicsandMaritime Continent•This is notaresult

peculiarto NN, thesameresultswereobtainedwhenweusedtheFVGCM which is independentof

anydataassimilationuncertainties.Onthebasisof theseresultsweconcludethatthepronounced

variationsin q_*-q, for the satellitedatasets(Fig lb) arelikely exaggerated,asareinterannual

variationsin LHF (Fig la) thattheysupport.

Figurelc comparesmonthlywind speedanomalies(computedfrom daily wind speeds).The

magnitudesof thesedeparturesareseveraltenthsof m s1 correspondingto order5%departuresfrom
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climatologicalvalues. NN andN2 anomaliestrackvery closely,perhapsbecauseassimilated

dynarfflcalfields aremorestronglyshieldedfrom modelphysicschangesthanarequantitiessuchas

near-surfacemoisture. Likewise,JRA-25tracksNN andN2before1995,but thendecreasesfor

severalyearsbeforesuddenlyrising sharplyin 2001. Mid-1995markstheonsetof EnvironmentaI

ResearchSatellite(ERS-1,2) scatterometerwind assimilationby JRA-25. QuikScatwindsare

assimilatedbeginningin mid-1999andaretheonly scatterometerwindsafterERS-2ceasesin 2001. It

ispossiblethatrain andcloudcontaminatedwind retrievalsmaystill notbeadequatelyflaggedin these

datasetsandarehavingasystematiceffect. Interestingly,theFVGCM wind speedshavelittle

coherencewith reanalysiswindson shorttime scalesassociatedwith transientclimate"noise"but

seemto capturelower frequencybehaviorsuchaselevatedspeedsin the late1980sandlowervaluesin

theearly1990s.Theyalsoshownosignsof theJRA-25wind speeddropandsubsequentrise

beginningin 1995.

Perhapsthemostsurprisingaspectof Fig.lc is the largevariability andtrendassociatedwith thetwo

SSM/Iwind timeseries.Thesealgorithmsareindependentfrom eachotheryet agreecloselyin their

departuresfrom assimilatedwind speeds.Heretooit is possiblethatliquid wateris contaminating

wind retrievals,but satelliteintercalibrationseemsamore likely explanation.Theagreementof high

frequencyinterannualSSM/Ivariationswith assimilatedwind speeds(e.g.themid-1990s)andthe

presenceof step-likedeparturesat theendof 1992and1997supportthis argument.Wentzetal.,

[2007]haverecentlyshownthatintercalibrationimprovementsin thenewversion6of theSSM/I

productsgreatlyreducethis trendin SSM/I surfacewind speedsandsubstantiallyreduceinferredLHF

estimates•

4. Discussion
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1 Fromthis comparisonof LHF datasetson interannualto decadalscalesthereclearlyexistuncertainties

2 in currentdatasetsthatrival interaunualto decadalsignals.Themostprominentdistinctionisbetween

3 satellite-basedandreanalysisLHF estimates.Theformerappearto havesignificantexplainablebiases

4 in qs*-qaonENSOtime scales,andthewind speedshavesignificantdeparturesfrom assimilatedfields

5 suggestiveof sensorintercalibrationissues.Thelatterdrive largeupwardtemporaltrendsin the

6 satelliteLHF. The GSSTF2 data set analyzed by Liu and Curry [2006] has an even larger trend (-17

7 Wm-2decade -1) due in part to use of the earlier version 4 of SSM/I wind and CWV products. The

8 reanalysis with the largest trend, JRA-25, owes part of this behavior to non-uniform temporal extent of

9 assimilated data sets, most notably, onset of SSM/I availability in 1987 and the use of scatterometer

10 winds beginffmg in 1995. These results do not, however, suggest that NN and N2 should be regarded

11 as definitive since there are many known deficiencies in these and other reanalyses. We have

12 purposely excluded the 40-year European Center Reanalysis, ERA-40, because of satellite radiance

13 calibration and water vapor assimilation issues which have led to known biases in hydrologic cycle

14 processes [Bengtsson et al., 2004; Andersson et al, 2005]. It appears also that blended products using

15 satellite, reanalysis, and buoys cannot fully resolve the issues found here. Yu and Weller [2007] report

16 an increase of about 9 Wm "2globally during the period 1981 to 2002 for their Objectively Analyzed

17 Air-sea Heat fluxes (OAFlux) data set. However, the GSSTF2 qa estimates and winds taken from

18 version 4 of the Wentz SSM/I products are integral components of this analysis and likely contribute to

19 a spurious upward trend.
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We would argue that given the error sources identified in the present results, the degree to which

interannual variations in LHF at regional scales integrate to a discemable tropic-wide trend remains an

open question. In terms of long-term greenhouse gas forcing effects, Held and Soden [2006] argue for

a scaling of order 2% rise in precipitation (or evaporation) per degree SST rise which, given the -.17 K

SST rise over the tropical oceans during the past 25 years, would yield a LHF increase of order 0.5
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1 Wm "2. This is far smaller than variations noted in the present results. However, there do exist

2 candidate physical mechanisms for producing variations of decadal scale and longer. Among these are

3 possible reddening of the ocean upper ocean heat content variations by "higher frequency" ENSO

4 events similar to that hypothesized by Newman et al., [2003] or low-frequency variations in the

5 shallow meridional overturning circulation of the Pacific Ocean [McPhaden and Zhang, 2004].

Associated ocean heat transports would likely lead to subsequent adjustments with the overlying

atmosphere through surface fluxes.

It is expected that ongoing improvements to existing data sets [e.g. Wentz et al., 2007] and planned

reanalyses (e.g. the NASA Modern-Era Retrospective Analysis for Research and Applications) will

substantially improve prospects for isolating physical signals of LHF variations.
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Figure Captions

Figure 1. Anomaly time series for LHF, q_*-qa, and 10m wind speed for NN (black), N2 (black dot),

JRA-25 (blue), FVGCM (gold), I-IOAPS II (green) and UCSB (red). Anomalies are with respect to

1988-2002 mean annual cycle (except FVGCM, 1988-1998). SST anomalies are shaded gray.

FVGCM wind speeds are only available through 1998.

Figure 2. Anomalies of(a) qa (UCSB minus NN) and (b) qa (HOAPS II minus NN3 for E1 Nino minus

La Nina composites with units ofg Kg-1; (c) fractional anomalies (dimensionless) of log10 CWV and

(d) log10 qa for E1 Nino minus La Nina composites made from NN reanalysis data.
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