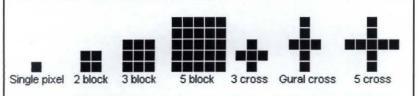
@ https://ntrs.nasa.gov/search.jsp?R=20070031973 2019-08-30T01:45:32+00:00Z

MSFC-246

Algorithms for Lunar Flash Video Search, Measurement, and Archiving

Wesley Swift^a, Robert Suggs^b, Bill Cooke^b


Abstract

Lunar meteoroid impact flashes provide a method to estimate the flux of the large meteoroid flux and thus their hazard to spacecraft. Although meteoroid impacts on the Moon have been detected using video methods for over a decade, the difficulty of manually searching hours of video for the rare, extremely brief impact flashes has discouraged the technique's systematic implementation. A prototype has been developed for the purpose of automatically searching Lunar video records for impact flashes, eliminating false detections, editing the returned possible flashes, and archiving and documenting the results. The theory and organization of the program is discussed with emphasis on the filtering out of several classes of false detected. Several utilities for measurement, analysis, and location of the flashes on the moon included in the program are demonstrated. Application of the program to a year's worth of Lunar observations is discussed along with examples of impact flashes as well as several classes of false impact flashes.

(a) Raytheon NASA/MSFC USA, (b) NASA / MSFC EV13 USA

Lunar Flash Video Search - Method

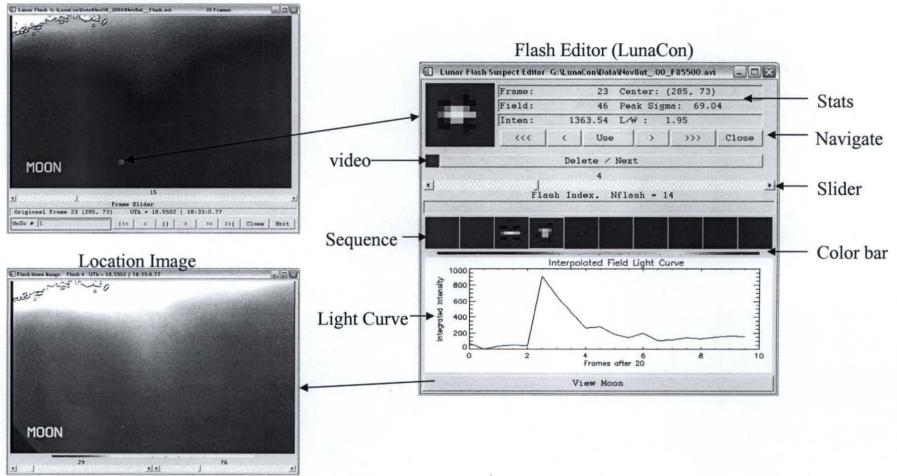
Single Frame or Image Mean	Movie Loop and Patch Sequence						
-1-	14						
LunarScan Window 3	🖼 LunarScan Console Window						
Press CTRL-P to halt processing - / = Decr/Incr Movie Loop Speed [/] Decr/Incr Image Contrast RETURN = Save 7 frame sequence, full image & thumbnail TIFs ANY other key> Next Image	Image: Construction Options: 1 = MASK region definition 3 = SCAN tape, CCD, BIT 4 = CONFIRMATION of impacts 5 = UIEW and EXTRACT confirmed impacts F = FUIURE prediction impact geometries P = PLAY digitized video file Q = QUIT Program						
	Select a processing option: ####################################	49					

Pixilated point spread function search patterns

• Detection based on assumed instrument point spread function (PSF)

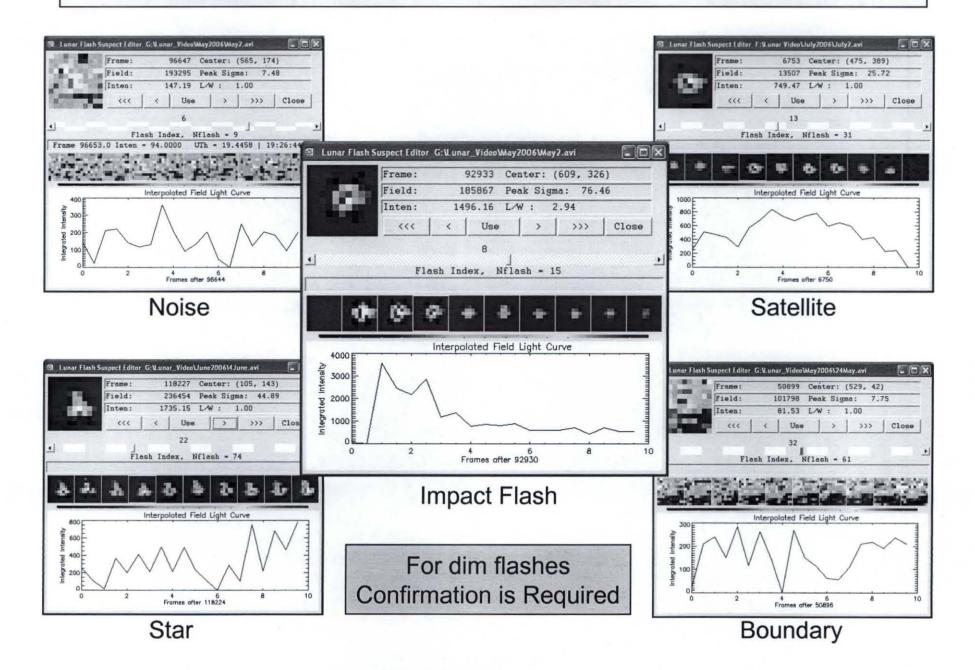
• Complete PSF pattern must exceed chosen local statistics

• At least one pixel in the PSF must exceed a chosen peak sigma

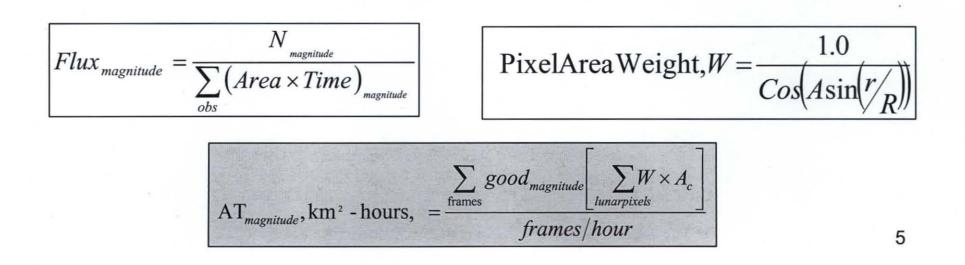

• Lunar masking & dark sky masking used to limit search and define statistical parameters

• Prototype software, LunaCon, was developed by W. Swift in IDL

• Current software, LunarScan, independently developed by Peter Gural, is fast and flexible.


Lunar Flash Video Search - Software

Full Frame


Software is semi-automated. Possible flashes need to be edited by operator

Lunar Flash Video Search - Artifacts

Lunar Flash Video Measurement - Lunar Area

- The Earth Shine area of the moon varies with phase and position.
- Area observed must be **accumulated**, pixel by pixel, throughout the observations. Lunar disc center pixel area, A_c , km² is determined by Lunar disc radius in pixels.
- Surveyed area is weighted by pixel distance, r/R, from center of the Lunar disc to account for spherical Moon effects.
- Lunar disc center pixel area, A_c , km² is determined by Lunar disc radius in pixels.
- Observed Area-Time product (km²-hr), AT, is binned by "limiting magnitude".
- Good_{magnitude} adjusts for clouds, dropouts, and the "limiting magnitude".
- Area-time product of null observations is part of flux estimate.
- Example: 355mm diameter f/8 telescope with 0.33 focal reducer operating at f = 950mm Surveys ~50km²-hr / frame or 1 hour video => 5e6 km²-hr

Lunar Flash Video Measurement - Photometry

Problem

- · One has no choice of sky conditions or calibration stars
- · Available star can be hours away and at different elevation
- Sky conditions can vary from frame to frame
- Observations are often continued to very low elevations with rapidly changing airmass

Solution

- · Use mean lunar intensity, Lmi, as transfer standard
- Lunar sensitivity function, Lsf, includes extinction
- Sen0_k can be determined for every field_k, IU
- Flash light curve, ik, IU, using Circular Aperture Photometry
- Calibration using Sen0_k removes atmospheric effects

$$Lsf = \frac{Sen0_0}{Apsf_0(Lmi_0 - Smi_0)} \Longrightarrow Sen0_k = Lsf \times Apsf_0 \times (Lmi_k - Smi_k)$$

Lunar Flash Video Measurement- Moon

Definitions:

IU	Instrument Units
Lmi	Lunar mean intensity, IU
Smi	Sky mean intensity, IU
[Max, Min]	95 th and 5 th percentiles
PSF	Point Spread Function sigma
Apsf	Area of PSF, π (PSF) ² , pixels
Lpsfi	Lunar PSF intensity, IU
Lpsfm	Lunar PSF intensity, mag.
Sen0	Sensitivity, $sen0 = IU m_0 star$
С	Contrast of lunar image [0,1]
range	mean (1±C), see [Max, Min]
Range _{Lpsfm}	Lunar PSF magnitude range
Lsf	Lunar sensitivity factor

$$Contrast, C \equiv \frac{Max - Min}{Max + Min}$$

range =
$$Lmi(1 \pm C)$$

$$Lpsfm_{image} = -2.5Log_{10} \left(\frac{Lpsfi}{sen0}\right) - 5Log_{10} \left(\frac{PSF_{image}}{PSF_{star}}\right)$$

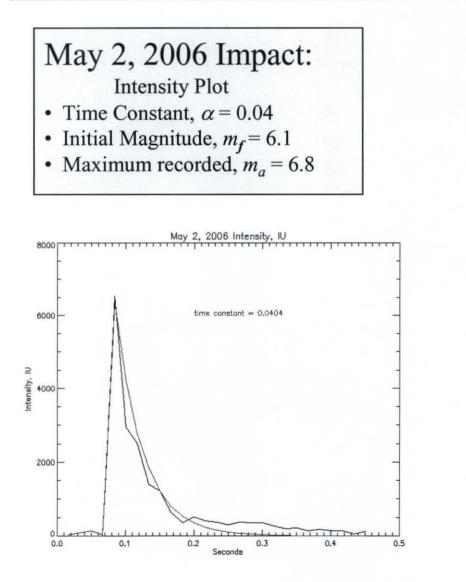
Range_{Lpsfm} =
$$-2.5Log_{10}\left(\frac{Lpsfi}{sen0}\right) + \left[-2.5Log_{10}\left(1+C\right), -2.5Log_{10}\left(1-C\right)\right]$$

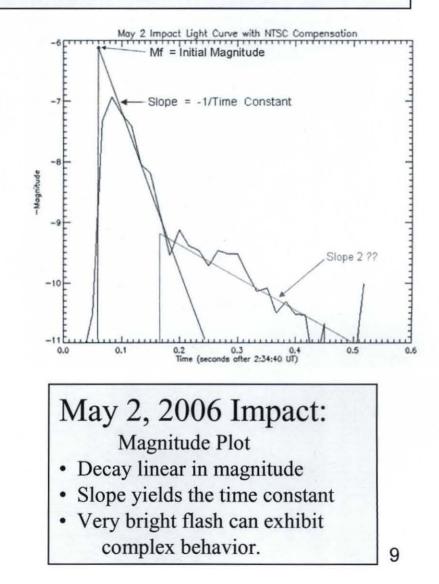
Range_{Lpsfm} can be used as proxy for Limiting Magnitude for Highlands and Mare

Lunar Flash Video Measurement Flash Characterization

- I_{Total} and maximum intensity, I_a often the only measurables of Lunar flash
- Measures are required that are independent of camera, exposure and sky
- Most flashes can be well approximated by exponential thermal decay curve
- Thermal Decay is specified by Initial intensity, i_0 and Time Constant, α
- For single frame flashes, $I_{Total} = I_a = i_0$ and $\alpha = 1$ (by definition)
- Flash Initial magnitude m_f and Time Constant α form ideal measures
- $m_f = 0 \Rightarrow i_0 = 5 \times 10^{-9} \text{ watts/m}^2 \text{ so: } m_f = 6, \alpha = 0.10 \text{ sec} \Rightarrow 2 \times 10^{-12} \text{ J/m}^2$

$$I_{Total} = \int_{0}^{\infty} i_0 e^{-\left(\frac{t}{\alpha}\right)} dt = i_0 \alpha$$

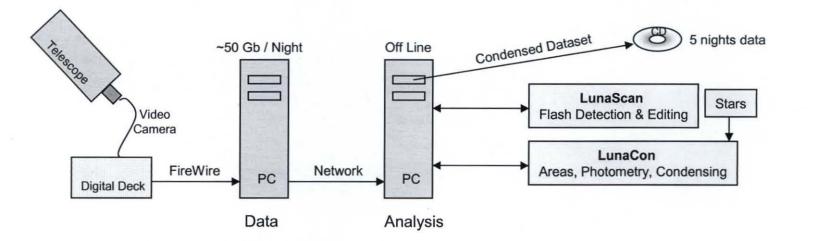

$$I_a = \int_{0}^{a} i_0 e^{-\left(\frac{t}{\alpha}\right)} dt = i_0 \alpha \left[1 - e^{-\left(\frac{a}{\alpha}\right)}\right] \Rightarrow \frac{I_a}{I_T} = 1 - e^{-\left(\frac{a}{\alpha}\right)}$$


Time Constant, $\alpha = \frac{a}{\ln\left(\frac{I_T}{I_T - I_a}\right)} \implies \text{Initial Intensity, } i_0 = \frac{I_T}{\alpha}$

Flash Initial magnitude,
$$m_f = -2.5 Log_{10} \left(\frac{i_0}{sen0_k} \right)$$

8

Lunar Flash Video Measurement Characterization Example



Lunar Flash Archiving – Condensed Data

Data Condensing

- One night's video is many Gigabytes of data, mostly empty of impacts
- Data compression tends to eliminate the short, dim flashes from video
- Data "condensing" is the process of removing all unnecessary video frames
- Lunar statistics, including AT_{magnitude}, Lmi, contrast, and Lsf found and saved
- Condensed data includes uncompressed flash video and auxiliary data
- Compressed data flashes can be reprocessed at some later date
- 4 hours uncondensed Lunar video: ~50 Gb, Condensed: ~100 Mb

10

Lunar Flash Archiving -Reporting

www.nasa.gov/centers/marshall/news/lunar/index.html

#	UT Date	UTTime	Video Frames (1/30 s)	Approx. Magnitude	Probable Type	Telescopes
1	07 Nov 05	23:41:52	5	7.3	Taurid	10"
2	02 May 06	02:34:40	14	6.9	Sporadic	10"
3	04 June 06	04:48:35	1.5	7.9	Sporadic	10"
4	21 June 06	08:57:17	2.5	8.3	Sporadic	10" & 14"
5	19 July 06	10:14:44	2	8.4	Sporadic	10" & 14"
6	03 Aug 06	01:43:19	3.5	6.7	Sporadic	14"
7	03 Aug 06	01:46:11	1.5	9.1	Sporadic	14"
8	04 Aug 06	02:24:57	2	7.1	Sporadio	10" & 14"
9	04 Aug 06	02:50:14	2	8.9	Sporadic	10" & 14"
10	18 Sep 06	09:52:53	1	8.7	Sporadic	two 14"
13	30 Oct 06	00:24:27	1.5	7.6	Sporadic	two 14"
21	13 Nov 06	11:03:14	3	9.3	Sporadic	two 14"
22	14 Nov 06	08:26:39	2	TBD	Sporadic	two 14"
12	17 Nov 06	10:48:27	1	9.4	Leonid	two 14"
11	17 Nov 06	10:56:34	1	8.2	Leonid	two 14"
23	17 Nov 06	11:02:28	2	8.2	Leonid	two 14"
24	17 Nov 06	11:09:11	1	8.7	Leonid	two 14"
25	24 Nov 08	23:24:05	1	6.4	Sporadio	two 14"
26	24 Nov 06	23:58:13	1	6.2	Sporadic	two 14"
27	25 Nov 08	00:55:54	1	7.0	Sporadic	two 14"
28	26 Nov 06	00:59:16	2	7.3	Sporadic	two 14"
29	26 Nov 08	01:28:43	1	9.1	Sporadic	two 14"
30	26 Nov 06	01:30:29	1	9.1	Sporadic	two 14"
14	14 Dec 06	08:12:40	1	9.4	Geminid	two 14"
15	14 Dec 06	08:50:36	1	8.5	Geminid	two 14"
16	14 Dec 08	08:56:43	0.5	8.6	Geminid	two 14"
17	14 Dec 06	09:00:22	1	8.5	Satellite?	two 14"
18	14 Dec 08	09:03:33	0.5	10.0	Geminid	two 14"
19	14 Dec 06	10:56:42	1	8.7	Geminid	two 14"
20	14 Dec 06	11:28:08	2.5	7.5	Geminid	two 14"
31	15 Dec 06	09:15:14	1	7.9	Geminid	two 14"
32	15 Dec 08	09:17:39	1	7.3	Geminid	two 14"
33	15 Dec 06	09:53:28	3	6.2	Geminid	14"
34	16 Dec 06	09:50:10	1	7.8	Geminid	14"
35	24 Dec 06	00:27:42	1	7.4	Sporadic	two 14"
36	23 Feb 07	00:11:36	2	TBD	Sporadic	14"
37	23 Feb 07	00:47:45	2	TBD	Sporadic	two 14"
38	23 Feb 07	04:02:44	1	TBD	Sporadic	two 14"

11

Summary

- Methods have been developed for semi-automated lunar impact flash detection.
- Software and techniques have been developed to edit suspected lunar impact flashes.
- Methods are described for finding Lunar survey area as a function of detection limits.
- Lunar intensity over the PSF is developed as a photometric calibration transfer standard.
- A system for characterization of impact flashes is developed independent of instrumentation.
- Lunar flash data archiving techniques are described and preliminary survey results shown.

References

- Bellot Rubio, L. R., Ortiz, J. L., and Sada, "Observation And Interpretation Of Meteoroid Impact Flashes On The Moon," Astron. Astrophys. 542, L65–L68.
- Cooke, W.J. Suggs, R.M. and Swift, W.R. "A Probable Taurid Impact On The Moon," Lunar and Planetary Science XXXVII (2006), Houston, Texas, LPI, paper 1731.
- Cooke, W.J. Suggs, R.M. Suggs, R.J. Swift, W.R. and Hollon, N.P., "Rate And Distribution Of Kilogram Lunar Impactors," Lunar and Planetary Science XXXVIII (2007), Houston, Texas, LPI, Paper 1986.
- Dunham, D. W. et al, "The First Confirmed Video recordings Of Lunar Meteor Impacts," *Lunar and Planetary* Science Conference XXXI (2000), Houston, Texas, LPI, Paper 1547.
- Gural, Peter, "Automated Detection of Lunar Impact Flashes," 2007 Meteoroid Environments Workshop, MSFC, Huntsville, Alabama, January 2007.
- Ortiz, J.L. et al., "Detection of sporadic impact flashes on the Moon: Implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates," Icarus 184 (2006) 319–326.
- Swift, W. R. "LunaCon Software to detect lunar impacts," 2007 Meteoroid Environments Workshop, MSFC, Huntsville, Alabama, January 2007.