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NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to 

Mars.  JSC-1, an Arizona volcanic ash that has mineral properties similar to lunar soil, is 

used to produce lunar environments for instrument and equipment testing. NASA is 

concerned about potential health risks to workers exposed to these fine dusts in test 

facilities.  The potential toxicity of JSC-1 and a Martian soil simulant (JSC-Mars-1, a 

Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated 

from volunteers; titanium dioxide and quartz were used as reference dusts.  This 

investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro 

with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and 

TiO2 were comparable, and more toxic than saline control,  but less toxic than quartz.  

HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity.  

To elucidate the mechanism by which these dusts induce apoptosis, we investigated the 

involvement of the scavenger receptor (SR).  Pretreatment of cells with polyinosinic acid, 

an SR blocker, significantly inhibited both apoptosis and necrosis.  These results suggest 

HAM cytotoxicity may be initiated by interaction of the dust particles with SR.  Besides 

being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active 

status. The immunomodulatory effect of the simulants was investigated. Treatment of 
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HAM with either simulant caused preferential damage to the suppressor macrophage 

subpopulation, leading to a net increase in the ratio of activator (RFD1
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+) to suppressor 

(RFD1+7+) macrophages, a result similar to treatment with silica.  It is recommended that 

appropriate precautions be used to minimize exposure to these fine dusts in large-scale 

engineering applications.  
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INTRODUCTION 

 

NASA has begun preparing to return to the Moon for permanent occupancy and research.  

Successful lunar habitation will be used as a stepping stone to a Mars mission.  The projected 

lunar tour of duty will be 180 days, during which NASA will use the lunar soil in situ for various 

purposes, including extracting life-essential resources such as oxygen and fuel.  JSC-1, an 

Arizona volcanic ash that has mineral properties similar to those of lunar soil (McKay et al., 

1994), is used for various ground-based experiments on lunar soil utilization and for simulating 

lunar environments in which to test instruments and other hardware.   This research includes 

environmental dust control, spacesuit durability, agriculture, and oxygen-production (Wagner, 

2004).   During these activities, workers at NASA and lunar project scientists and engineers at 

academic institutions could be exposed to this lunar soil simulant about which there is little 

toxicity data.   

 

JSC-1 is a glass-rich basaltic ash derived from the San Francisco volcanic field near Flagstaff, 

Arizona (Glaser, 1992).  It is very similar to lunar mare soil with respect to chemical 

composition (rich in silica and low in titanium), mineralogy (plagioclase, pyroxene, and olivine), 

and mechanical properties (specific gravity, angle of internal friction, and cohesion).  These 

similarities have made it ideal for large-scale soil utilization studies involving agriculture and 

oxygen extraction for life support.  Both lunar soil and the simulant, JSC-1, contain about 50% 
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SiO2; other common soil oxides (Al2O3, FeO, MgO, and CaO) account for another 42-45%.  No 

trace or heavy metals were found in either lunar soil or JSC-1 (McKay et al., 1994).   

 

The lunar soil simulant, like lunar soil collected on the Apollo missions, contains a fraction of 

fine dust particles in the respirable size range.  NASA is concerned about the potential health risk 

to workers who are exposed to this dust in Earth-based test facilities.  In the study reported here, 

the interaction of lunar dust simulant with alveolar macrophages obtained from human 

volunteers and toxicity of the stimulant to the macrophages were assessed; titanium dioxide 

(TiO2), a low-toxicity dust, and quartz dust (SiO2), which is fibrogenic in the lungs, were 

included as reference dusts.  A Martian soil simulant was also included in this study.  JSC-Mars 

1 is a silica-containing volcanic ash derived from a cinder cone, Mauna Kea, in Hawaii.  It is 

analogous to the bright regions of Mars based on reflectance spectral data obtained by Viking I 

and II and Pathfinder Landers.  The simulant is comparable to Martian soil in mineralogy; both 

are rich in feldspar and Ti-magnetite [15-22% TiO2)], with minor olivine and pyroxene in a 

glassy matrix.  Furthermore, JSC-Mars 1 is high in ferric oxide, as is Martian soil (Allen et al., 

1998).   

 

Both lunar and Martian soil simulants contain silica.  Silica, especially in the crystalline form, 

causes lung inflammation and fibrosis on prolonged exposure.  Macrophages are the first cell 

type to come into contact with dust in the lung.  Silica and silicates in the lung cause macrophage 

injury leading to necrosis or apoptosis (Iyer et al., 1996).  The alveolar macrophage is important 

in nonspecific host defense of the lung and is a central cell in regulating the inflammatory 

response in the lung.  Necrosis involves rupture of the cell membrane with spillage of 
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intracellular contents. Apoptosis, which can be followed by necrosis, is a “programmed” cell 

death that does not involve rupture of cell membranes, but does involve an orderly series of 

morphological and biochemical changes in the cell cytoplasm, nucleus, and membrane.  Changes 

that can be visualized by light microscopy include cytoplasmic shrinkage, chromatin clumping, 

membrane blebbing, and apoptotic body formation (Kimbell, 2007).   

 

The mechanisms, by which particulates such as silica initiate alveolar macrophage injury have 

not been fully elucidated, but seem to involve scavenger receptors (SR).  Scavenger receptors 

Class A I/II (SRA) and macrophage receptor with collagenous structure (MARCO) have been 

implicated in the mechanism of silica-induced toxicity to the alveolar macrophage (Hamilton et 

al., 2000; Hamilton et al., 2006).  Silica-induced apoptosis has been blocked by pretreatment of 

the cells with polyinosinic acid, an SRA inhibitor (Iyer et al., 1996; Hamilton et al, 2000), and 

the requirement for SRA has been confirmed using Chinese hamster ovary cells transfected with 

the murine SRA (Hamilton et al, 2000).  Here we report the results of a similar study with the 

lunar and Martian dust simulants.  

 

Lunar soil particles are powdery and have a great tendency to adhere to surfaces, including 

spacesuits.  When these particles were transported on spacesuits into the cabin of Apollo 

spacecraft after extravehicular activities, they caused visibility problems on resumption of 

weightlessness.  Some mechanical systems aboard the spacecraft were damaged due to dust 

contamination. Furthermore, astronauts inhaled the dust particles and reported nasal and eye 

irritation (Wagner, 2004).  At least one Apollo astronaut reported symptoms resembling “hay 

fever” when exposed to lunar dust.  Spectral data obtained from robotic Martian missions 
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indicate that Martian surface soil is both oxidative and reactive.  Exposure to reactive Martian 

dust will create an even greater concern for the astronauts’ health and the reliability of 

mechanical systems (Wagner, 2004).   

 

Silica is associated with immunological impairment in exposed workers (ICMR, 2001; Steenland 

et al., 2001).  The immunomodulatory effects of silica have been previously reported.  

Crystalline silica induces a shift of human alveolar macrophage (HAM) phenotypes to an 

immune active status; the treatment led to preferential damage to the suppressor (RFD1+7+) 

macrophage subpopulation, resulting in a net increase in the ratio of activator (RFD1+) to 

suppressor (RFD1+7+) macrophages (Holian et al., 1997).  We hypothesize that the lunar and 

Martian soil simulants, both silicates, affect macrophage subpopulations similarly.  Such a shift 

toward a more activated immune status could result in lung inflammation and increased risk for 

pulmonary and cardiovascular disease (Holian et al., 1998).  

   

The pulmonary toxicity of lunar dust simulant was previously investigated in mice exposed to 

the dust by intratracheal instillation; the results showed that the dust simulant is relatively low in 

acute toxic toxicity (Lam et al., 2002a), but high dose (1 mg/mouse) and prolong exposure (90-d) 

can cause fibrosis (Lam et al., 2002b).  The present study with alveolar macrophages isolated 

from human volunteers complements the animal studies in revealing the toxicity of the lunar soil 

simulant and its mechanism of toxicity.  NASA is planning to conduct toxicity studies with 

actual lunar dust.  One goal of the present study, like that of the animal studies, is to establish 

experiment protocols that could be applied to the study of lunar dust.  NASA requires that 

investigators conduct successful studies using the lunar dust simulant before they can receive 
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precious lunar soil for proposed studies, and our HAM study using the lunar soil simulant serves 

as a prerequisite to a toxicity study of real lunar dust as well as an investigation of the effect of 

the lunar and Martian dust simulants on human macrophages. 

 

 

METHODS 

  

Test Dusts 

  

 Lunar and Martian Dust Simulants.  Samples of raw Arizona and Hawaii volcanic ashes 

[designated as JSC-1 (McKay, 1994) and JSC-Mars-1 (Allen et al., 1998)], respectively, were 

provided by the NASA Astromaterials Curator; the soil samples were provided to Lovelace 

Respiratory Research Institute for size fractionation. The fine particles from the second (50% 

cutoff aerodynamic diameter 1.95 μm) and third stages (0.28 μm) of the cascade impactors, and 

the backup filter were collected and pooled for the present study.  Thus, the mass median 

aerodynamic diameter (MMAD) of both dusts was expected to be less than 5 μm.  Analysis by 

Microtrac Inc. (Montgomeryville, PA) showed that the respirable fraction of the lunar dust 

simulant had a mass median diameter (MMD) of 3 μm or less and contained 5% large particles 

with an MMD of 81 μm; on ultrasonication, all of the large particles disappeared and the 

resulting suspension showed a bimodal distribution, with MMDs of 1.05 μm (44%) and 2.99 μm 

(56%).  The Martian dust simulant, which was recently analyzed by Particle Technology Labs 

(Downers Grove, IL) using TSI Aerosizer LD 8050 (TSI Incorporated, Shoreview, MN), showed 

the aerodynamic MMD of 0.93 μm and particles with sizes >1.8 μm accounting for 5% mass.  
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 Titanium Dioxide and Crystalline Silica.  The titanium dioxide sample, a product of 

Particle Information Services (Kingston, MA), had an average particle diameter of 0.45 μm.  

Crystalline silica (quartz) (acid-washed Min-U-Sil-5), which has  a mass median diameter of 1.7 

μm  and in which 97% of the particles are less than 5 μm was obtained from Pennsylvania Glass 

and Sand (Pittsburgh, PA).  These particle-size specifications were from the respective vendors.  
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Isolation of Alveolar Macrophages from Human Volunteers 

   

 HAM were obtained by bronchoalveolar lavage of healthy adult volunteers of both sexes 

as described previously (Dauber et al., 1979).  This protocol was approved by the University of 

Texas Committee for the Protection of Human Subjects.  Briefly, for each volunteer subject, the 

lung was washed 2 or 3 times with sterile saline (each instillation contained 240 to 300 ml) to 

collect about 200 to 600 ml of lavage fluid; the fluid was stored at 4°C until cells were isolated 

by centrifugation at 1500 revolutions/minute (rpm).  The saline supernatant was aspirated and 

discarded, and cells were resuspended in a small volume (1 to 5 ml) of N-2-

hydroxyethylpiperazine-N′-2-ethanesulfonic acid-buffered medium 199 (GIBCO-BRL, 

Bethesda, MD) with 10% heat-inactivated fetal calf serum (Sigma, St. Louis, MO) and 

antibiotics (50 U/ml penicillin, 50 μg/ml gentamicin, and 50 μg/ml streptomycin [GIBCO-BRL, 

Bethesda, MD]).  Cells were counted using a ZBI Coulter Counter (Coulter Electronics, Hialeah, 

FL).  Lavages yielded an average of 2 × 107 cells that were > 92% HAM, as verified by 

Leukostat staining (Fisher Scientific, Houston, TX).  Viability was > 90% as determined by 

trypan blue exclusion. 
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 Stock suspensions of test dusts were freshly prepared in buffered saline followed by brief 

sonication in a water bath just before they were added to HAM culture.  Unless otherwise 

indicated, cells were cultured at 1 × 106 cells/ml in the presence or absence of a test dust at a 

designated concentration for 24 h at 37°C and 5% CO2 in a water-jacketed incubator (Queue, 

Parkersburg, WV).  Cell suspension was maintained by end-over-end tumbling (Labquake 

Shakers, Labindustries, Berkley, CA) in sterile polypropylene tubes.  Samples were not pooled, 

so that each dose response was conducted on cells derived from an individual volunteer. 

 

Cell Morphological Study 

 

Immediately after cell culture, 3 × 104 cells were incubated with phosphate-buffered 

saline (PBS, pH 7.2) and centrifuged for 5 minutes at 1,500 rpm onto positively charged glass 

slides (Probe On Plus, Fisher Scientific, Houston, TX) using a Shandon Cytospin 2 (Shandon 

Upshaw, Pittsburgh, PA).  Slides were kept at 25°C until Leukostat fixation and staining were 

performed.  After they were fixed in methanol for 90 seconds, the cells on the slides were stained 

in Leukostat eosin stain (Fisher Scientific, Houston, TX) for 90 seconds, and then in Leukostat 

methylene blue (Hema 3, Fisher Scientific, Houston, TX) for 4 seconds.  Slides were air-dried 

and examined by light microscopy with a 600× dry objective (Zeiss Axioskop, Thornwood, NY).   
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 To determine viability, cells were mixed with trypan blue dye (0.04% in PBS, Sigma, St. 

Louis, MO), placed on a hemocytometer, and examined under light microscopy at 600× dry 

objective (Zeiss Axioskop, Thornwood, NY).  Viable cells exclude this dye and remain 

unstained. 

 

Apoptosis Assay (Cell Death Enzyme-Linked Immunosorbent Assay)   

  

 Intra-nucleosomal DNA cleavage that occurs late in the process of apoptosis can be 

assessed by cell death enzyme-linked immunosorbent assay (ELISA), which determines 

cytosolic histone-bound DNA fragments.  For this assay of apoptosis, cells from control and dust 

treatments were processed and analyzed for cytosolic histone-bound DNA fragments determined 

using the Cell Death Detection ELISA™ kit (Boehringer Mannheim, Indianapolis, IN) according 

to the manufacturer’s protocol. The reaction of the Boehringer reagents with histone-bound DNA 

fragments released into the cytosol produced a colored product that can be spectrometrically 

measured at 405 nm.   

 

Assessment of the Interaction of Test Dusts with Scavenger Receptors 

 

 To determine if scavenger receptors were involved in cytotoxicity, HAM were 

preincubated with or without polyinosinic acid (100 μg/ml, Sigma, St. Louis, MO) for 15 

minutes at room temperature.  Cells were cultured at 1 × 106 cells/ml in the presence or absence 
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of lunar or Martian dust simulant (250 μg/ml) under conditions described above.  The upper limit 

of the suspension concentration was determined by the relative cytotoxicity of these dusts in a 

24-h cell culture; at concentrations > 250 μg/ml, both types of particles significantly decreased 

cell viability.  Cells were assayed for apoptosis by Cell Death Detection ELISA
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morphology and for necrosis by trypan blue exclusion, as described above. 

 

Immunomodulation Assay of Dust-Treated HAM 

  

 RFD1 and RFD7 surface markers on HAM subpopulations were analyzed by flow 

cytometry after the procedures described previously (Holian et al., 1997, 1998) were performed.  

Briefly, at the termination of the culture, cells were centrifuged, medium was aspirated, and the 

cell pellet (1 × 106 cells) was resuspended in 500 μl PBS with 3.5% bovine serum albumin 

(BSA, Sigma, St. Louis, MO).  Monoclonal antibodies to RFD1+ (murine IgM) and RFD7+ 

(murine IgG1) surface antigens (Serotec, Kidington, Oxford, England) were both added at a 

1:200 dilution (2.5 μg in 500 μl).  The mixture was incubated 30 minutes at room temperature, 

and the reaction was then terminated by centrifugation and aspiration.  The cell pellet was 

washed 3 times with PBS and resuspended in PBS/BSA, and fluorescein anti-mouse IgM (Vector 

Labs, Burlingame, CA) and R-phycoerythrin anti-mouse IgG (Vector Labs, Burlingame, CA) 

were added concurrently at a 1:100 dilution (5 μg in 500 μl) and incubated 30 minutes at room 

temperature.  The incubation was terminated as described above and washed 3 times in PBS.  

The cells were then suspended in 1% formaldehyde (phosphate buffered) and stored at 4°C 

before flow cytometric analysis.  Flow cytometry was performed on a Coulter EPICS Elite flow 

cytometer (Coulter, Miami, FL) using the Elite software.  Using forward and side scatter of the 
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total cell population; gates were drawn to include macrophages on the basis of the size and 

granularity of the cells.  The instrument was calibrated with beads coated with fluorescein 

isothiocyanate and phycoerythrin to compensate for any overlap within the green and red 

wavelengths.  Cells stained without the inclusion of primary antibodies had no significant 

staining. Controls included unstained cells, cells stained with secondary antibodies only 

(negative control), and cells stained for only one of these surface markers (positive control). 

 

Statistical Analysis 

 

    The experiment results were statistically analyzed by analysis of variance (ANOVA) 

followed by a Student-Newman-Keuls or Tukey’s multiple comparison test.  The number “N” in 

the figure legends denotes the number of HAM cultures given the treatment shown.     
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Comparison of the Toxicity of Lunar and Martian Dust Simulants with Titanium 

Dioxide and Crystalline Silica in HAM 

  

HAM in cultures were treated with lunar and Martian dust simulants, TiO2, or quartz (SiO2) at a 

concentration of 100 μg/ml for 24 h; cell viability was determined by trypan blue exclusion.  In 

the apoptosis assay, HAM were treated similarly and the extent of apoptosis was determined by 

assessing spectrometrically the amount of histone-bound DNA fragments released into the 

cytosol. The results of cell viability and apoptotic index analyses are shown in Figures 1A and 

1B.  Statistical tests were performed to compare the simulants with TiO2 or quartz, and the 

results show the lunar dust and TiO2 were comparable, and more toxic than saline control, but 

less toxic than quartz (Tables 1A and 1B).   
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FIG. 1. A: Viability of human alveolar macrophages (HAM) in cultures treated with test dusts (100µg/mL) for 24 h.  

Each bar illustrates the mean ± SEM percent viable cells. B:  HAM in cultures were treated with test dusts for 24 h 

and then assessed for apoptosis by spectrometrically measuring the release of cytoplasmic histone-bound DNA 

fragments into the cytosol.  Each bar on the graph illustrates the mean ± SEM value of optical density at 405 nm.  

Statistical tests were performed on these data, and the results are shown in Tables 1A and 1B (N= 6). 
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TABLE 1 A 

Results of cell viability measurements in HAM cultures treated with test dusts for 24 h 

Test dust % viable 

cells 

Effect due to 

treatment1

Test vs. 

saline 

Test vs.  

TiO2

Test vs. 

SiO2 

Saline 91 --- ---  ρ = 0.23  *ρ < 0.001 

Titanium dioxide 84 7.7 ρ = 0.23 --- *ρ = 0.04 

Lunar dust simulant 82 9.9   ρ  = 0.11     ρ  = 0.12 *ρ = 0.03 

Martian dust simulant 74 18.7 *ρ  = 0.04   *ρ  = 0.01  ρ = 0.16 

Crystalline silica 62 32.9 *ρ = 0.01 *ρ = 0.04 --- 

4 

5 

6 

7 

8 

* Indicates significance at p < 0.05 compared with the control by ANOVA, followed by Tukey’s procedure. 

1The difference obtained by minus the result of dust-treated cultures from that of saline controls.  

 

TABLE 1 B 

Results of the apoptotic assays of HAM cultures treated with test dusts for 24 h 

Test dust Apoptotic 

index 

Effect due to 

treatment1

Test vs. 

saline 

Test vs. 

TiO2

Test vs. 

SiO2 

Saline 0.033 --- --- *ρ  < 0.001 *ρ < 0.001 

Titanium dioxide 0.167 0.134 *ρ < 0.001 --- *ρ < 0.001 

Lunar dust simulant 0.231 0.198 *ρ < 0.001 ρ = 0.10  * ρ = 0.005 

Martian dust simulant 0.258 0.225 *ρ < 0.001 *ρ = 0.04 *ρ = 0.03 

Crystalline silica 0.320 0.287 *ρ < 0.001 *ρ < 0.001 --- 

9 

10 

* Indicates significance at p < 0.05 compared with the control by ANOVA, followed by Tukey’s procedure. 

1The difference obtained by minus the result of dust-treated cultures from that of saline controls.  
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Effects of Lunar and Martian Dust Simulants on HAM Viability  

   

To determine the dose response of cytotoxicity to HAM in cultures treated with lunar and 

Martian dust simulants, the cultures were treated with simulants at 0, 100, 250, or 500 μg/ml for 

24 h and cell viability was measured.  The results (Figure 2) indicated that both simulants 

induced a dose-dependent decrease in viability.   
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FIG. 2.  Viability of human alveolar macrophages in cultures treated with lunar or Martian dust simulant at 0, 100, 

250, and 500 μg/ml for 24 h.  Each bar represents the mean ± SEM percent viable cells.  * indicates significance at p 

< 0.05 compared with the control (0 μg/ml) by the Student-Newman-Keuls procedure (N = 6). 
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Apoptosis in HAM Induced by Lunar and Martian Dust Simulants  1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

 

The ability of the lunar and Martian dust simulants to induce HAM to undergo apoptosis in 

cultures treated with the simulants at 0, 100, 250, or 500 μg/ml for 24 h was determined.  The 

results of the apoptosis assay (Figure 3) show that dust treatment produced a general dose-

dependent increase in the apoptotic index.  However, at the highest dose (500 μg/ml), the 

apoptosis induced by lunar dust simulant was less than that produced by the second highest dose 

(250 μg/ml); the apoptosis induced by the highest dose of Martian dust simulant did not increase 

over that produced by the second highest dose.  It is noteworthy that the highest dose of either 

test dust produced the highest percent of cell death (Figure 2); it may be that at the highest doses, 

a greater proportion of the cells undergo necrosis, which cannot be detected by the apoptotic 

assay (Figure 3). 
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FIG. 3. Human alveolar macrophages in cultures treated with lunar or Martian dust simulant for 24 h were assessed 

for apoptosis by spectrometrically measuring the release of cytoplasmic histone-bound DNA fragments into the 

cytosol.  Each bar illustrates the mean ± SEM value of optical density measured at 405 nm.  * indicates significance 

at p < 0.05 compared with the control (0 μg/ml) by the Student-Newman-Keuls procedure (N = 6). 
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Morphology of HAM Treated with Martian or Lunar Dust Simulants 1 
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To confirm that these dust simulants induce apoptosis in HAM, cells were cultured with or 

without a 15-minute pretreatment with polyinosinic acid (poly I), exposed to lunar or Martian 

dust simulant (250 μg/ml), and stained for morphology assessment.  Untreated HAM are intact 

cells with large, distinct nuclei (Figure 4A).  Poly I had no effect on control cells (Figure 4B). 

Cells exposed to lunar dust (Figure 4C) had dark, shrunken, sometimes segmented nuclei 

characteristic of nuclear condensation common in apoptosis. Pretreatment with poly I protected 

the cells against apoptosis induced by the dust (Figure 4D).  Nuclear disintegration, another 

feature of apoptosis, was evident in some of the treated cells.  Cells treated with Martian dust 

simulant also had dark, shrunken nuclei (Figure 4E), and pretreatment with poly I also protected 

them against apoptosis (Figure 4F). 

 
AA BB

CC DD

EE FF

FIG. 4.  Morphology of human alveolar macrophages 24 h after 

exposure to lunar and Martian dust simulants. A, control macrophages 

cultured for 24 h; (B): Macrophages preincubated with 100 μg/ml 

polyinosinic acid and cultured for 24 h; (C):  Macrophages incubated 

with lunar dust simulant (250 μg/ml) for 24 h; (D): macrophages 

incubated with lunar dust simulant (250 μg/ml) for 24 h after a 15-

minute preincubation with polyinosinic acid (100 μg/ml);  (E): 

Macrophages incubated with Martian dust simulant (250 μg/ml) for 24 

h; (F), macrophages incubated with Martian dust simulant (250 μg/ml) 

for 24 h after a 15-minute preincubation with polyinosinic acid 

(100μg/ml).  Arrows indicate morphology consistent with macrophage 

apoptosis (photomicrographs 600X, dry objective). 
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Assessment of a Mechanism by Which Lunar and Martian Dust Simulants Might 

Induce Cytotoxicity in HAM 

 

Scavenger receptor class A I/II (SRA) has been implicated in the mechanism of silica-induced 

toxicity of the alveolar macrophage (Hamilton, 2000).  It was speculated that the toxic effects of 

silica resulted from the interaction between the macrophage surface SRA and silica. Silica-

induced apoptosis was blocked by pretreatment of cells with polyinosinic acid (poly I), the SRA-

inhibitor (Iyer et al., 1996; Hamilton et al., 2000).  To test whether the HAM cytotoxicity 

induced by the dust simulants involved SRA, cells in culture were preincubated with or without 

polyinosinic acid, and then exposed to 250 μg/ml lunar or Martian dust simulant for 24 h.  Cells 

were assessed for viability by trypan blue exclusion (Figure 5A) or for apoptosis by cell death 

ELISA (Figure 5B).  These results demonstrate that pretreatment of the cells with polyinosinic 

acid protected against both dust-induced apoptosis and necrosis of HAM. 
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FIG. 5.  Effect of the scavenger receptor antagonist, polyinosinic acid, on dust-induced cytotoxicity in human alveolar 

macrophages.  Polyinosinic acid (100 μg/ml) treated or untreated HAM cells were exposed in vitro to lunar or Martian 

dust simulants (250 μg/ml) for 24 h.  Cell viability and apoptosis were determined.  In (A), bars represent the mean ± 

SEM percent viable cells; in (B), bars represent the mean ± SEM apoptotic index (optical density at 405 nm).  * 

indicates significance at p < 0.05 compared with appropriate control by Student-Newman-Keuls procedure (N = 3). 
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Immunomodulation of HAM by Lunar and Martian Dust Simulants  1 
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 To determine if the dust simulants had immunomodulating effects on HAM, the HAM 

phenotypes were assessed in cultures treated with the lunar dust simulant (0, 100, or 250 µg/ml) 

or the Martian dust simulant (0, 250, or 500 μg/ml).  Both dusts induced a small concentration-

dependent increase in the percentage of immune activator (RFD1+) HAM (Figures 6A and 6B).  

In addition, a concentration-dependent decrease occurred in the percentage of suppressor 

(RFD1+7+) HAM (Figures 6A and 6B) compared to controls.  These data indicate that a 

significant shift occurred in HAM subpopulations toward an immune active phenotype on 

exposure to either dust simulant.  
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FIG. 6. A: Effects of lunar dust simulant on human alveolar macrophage phenotype distributions. Each bar 

represents the mean ± SEM percent activator macrophages (RFD1+) and suppressor macrophages (RFD1+7+) after 

24 h of culture with lunar dust simulant (0, 100, and 250 μg/ml). * indicates significance at p < 0.05 compared with 

appropriate control (0 μg/ml) by the Student-Newman-Keuls procedure (N = 3). B: Effects of Martian dust simulant 

on human alveolar macrophage phenotype distributions. Each bar represents the mean ± SEM percent activator 

macrophages (RFD1+) and suppressor macrophages (RFD1+7+) after 24 h of culture with Martian dust simulant (0, 

250, and 500 μg/ml). * indicates significance at p < 0.05 compared with appropriate control (0 μg/ml) by the 

Student-Newman-Keuls procedure (N = 3). 
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DISCUSSION 

 

The present study was conducted to address NASA’s concern about its workers being exposed to 

a lunar dust simulant for which little toxicity information is available.  Thus, the potential 

toxicity and immunomodulatory effects of this simulant (JSC-1) and a Martian regolith simulant 

(JSC-Mars 1) were evaluated.  A previous study from our laboratory showed that silica at a dose 

of 66 or 133μg/ml in cultures cause apoptosis in HAM, with the results of the high dose 

approached a plateau value; TiO2 at 100, or 200 μg/ml produced little apoptosis (Iyer et al., 

1996).  Based on these findings, a dose of 100 μg/ml was chosen for our present comparative 

study to examine the apoptosis and cytotoxicity induced by the test dusts in HAM isolated from 

human volunteers.  In this study, the HAM were treated with the test dusts in vitro for 24 hours; 

the cells were examined for viability by trypan blue exclusion and for apoptosis by morphology 

and Cell Death Detection ELISA™ assay.  The findings, which are consistent with the results of 

our previous study (Lam et al., 2000a) on biomarkers of toxicity in lung alveolar lavage fluid 

from intratracheally-instilled mice, showed that the lunar dust and TiO2 were comparable, and 

more toxic than saline control, but less toxic than quartz.  These results showed that both 

simulants are relatively low in acute toxicity.    

 

Even both dust simulants are relatively low in toxicity when compared with silica, they did cause 

significant necrosis and apoptosis of HAM in a concentration-dependent manner.  Since both 

simulants consist of more than 40% silica, we had hypothesized that their bioactivity on HAM 

would be similar to that observed with crystalline silica, but reduced. To elucidate a possible 
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mechanism by which these fine dust simulants are cytotoxic, we investigated the role of SR.  SR 

has been reported to mediate silica-induced cytotoxicity of HAM (Iyer et al, 1996).  The class A 

type II scavenger receptor was specifically implicated in silica-induced cytotoxicity in studies 

with a Chinese hamster ovary cell line stably transfected with the murine gene for this receptor 

(Hamilton et al., 2000).  However, recent studies demonstrated that MARCO may be more 

important in mediating binding and toxicity of silica particles (Hamilton et al., 2006).  The 

results of the present study also implicate scavenger receptors as the mediator of cytotoxicity 

induced by both lunar and Martian dust simulants, since a 15-minute pretreatment with 

polyinosinic acid (poly I), a SR antagonist, significantly inhibited both apoptosis and necrosis.   

 

Finally, the impact of these dust simulants on macrophage subpopulations was examined using 

flow cytometry to classify treated HAM as activator (RFD1+) or suppressor (RFD1+7+) 

subpopulations based on expression of these surface antigens.  Silica was previously shown to be 

more toxic to suppressor than to activator HAM phenotypes (Spiteri and Poulter, 1991; Holian et 

al., 1997, 1998).  In addition, phenotype shifts were observed in HAM treated with the fibrogenic 

particles silica or asbestos but not with non-fibrogenic particles, such as titanium dioxide or 

wollastonite (Hamilton et al., 1996; Iyer et al., 1996; Iyer and Holian, 1997).  In the current 

study, both lunar and Martian dust simulants caused an increase in the ratio of RFD1+ (immune 

active) to RFD1+7+ (immune suppressor) HAM.  Thus, HAM subpopulations were significantly 

shifted toward an immune active phenotype on exposure to either of these dust simulants.  If 

similar changes occur in vivo, chronic lung inflammation could develop, precipitating fibrosis.  

In fact, inflammation and fibrosis were observed microscopically in mice 7-d and 90-d after 
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intratracheally exposed to bolus doses of lunar and Martian dust simulants, but not with 
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2(Lam et al., 2002b).   

 

The present study with alveolar macrophages isolated from human volunteers complements our 

previous animal studies in revealing potential toxicity of JSC-1 and JSC-Mars 1.  The overall 

results of these three studies showed that these dusts, especially the JSC-1, are relatively low in 

toxicity,  but are more toxic than titanium dioxide, whose toxicity has been equated with that of 

nuisance dusts; taken together, the above results indicate that individuals inhaling moderate to 

large amounts of these dusts for prolong periods could suffer adverse health effects.  The results 

of this study, therefore, are relevant to human health here on Earth, since these soil simulants are 

used for large-scale engineering applications at NASA.  It is reasonable to speculate that lunar 

dust would be more toxic than its surrogate.  Lunar dust resides in near-vacuum conditions and is 

constantly bombarded by solar winds and cosmic rays (Stubbs et al., 2005); on the Moon, the 

chemical bonds on the grain surfaces are not pacified by moisture, thus making them very 

reactive (Stubbs et al., 2007).  The results of the present study support NASA’s directive that the 

lunar dust needs to be tested toxicologically. 

 

The current investigation supports NASA’s requirement to develop experiment protocols using 

dust simulants before conducting toxicity studies with extraterrestrial dusts (Wagner, 2004).  

Furthermore, this study is consistent with the National Research Council’s recent 

recommendation to utilize in vitro toxicity testing methods to evaluate toxicological effects on 

cells, cell lines, or cellular components, preferably of human origin (NAS, 2007).  Using in vitro 

methods such as these would allow investigators to conduct toxicology studies of extraterrestrial 
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dusts with minute quantities of these precious materials.  Therefore, the design and methodology 

of the current study could be adopted for pulmonary and immunotoxicity studies of actual lunar 

and Martian dusts. 
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FIGURE LEGENDS 

FIG 1. A: Viability of human alveolar macrophages (HAM) in cultures treated with test dusts 
(100µg/mL) for 24 h.  Each bar illustrates the mean ± SEM percent viable cells. B:  HAM in 
cultures were treated with test dusts for 24 h and then assessed for apoptosis by spectrometrically 
measuring the release of cytoplasmic histone-bound DNA fragments into the cytosol.  Each bar 
on the graph illustrates the mean ± SEM value of optical density at 405 nm.  Statistical tests were 
performed on these data, and the results are shown in Tables 1A and 1B (N= 6). 
 
FIG. 2. Viability of human alveolar macrophages in cultures treated with lunar or Martian dust 
simulant at 0, 100, 250, and 500 μg/ml for 24 h.  Each bar represents the mean ± SEM percent 
viable cells.  * indicates significance at p < 0.05 compared with the control (0 μg/ml) by the 
Student-Newman-Keuls procedure (N = 6). 
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FIG. 3. Human alveolar macrophages in cultures treated with lunar or Martian dust simulant for 
24 h were then assessed for apoptosis by spectrometrically measuring the release of cytoplasmic 
histone-bound DNA fragments into the cytosol.  Each bar illustrates the mean ± SEM value of 
optical density measured at 405 nm.  * indicates significance at p < 0.05 compared with the 
control (0 μg/ml) by the Student-Newman-Keuls procedure (N = 6). 
 
FIG. 4. Morphology of human alveolar macrophages 24 h after exposure to lunar and Martian 
dust simulants. A: Control macrophages cultured for 24 h. B: Macrophages preincubated with 
100 μg/ml polyinosinic acid and cultured for 24 h. C: Macrophages incubated with lunar dust 
simulant (250 μg/ml) for 24 h. D: Macrophages incubated with lunar dust simulant (250 μg/ml) 
for 24 h after a 15-minute preincubation with polyinosinic acid (100 μg/ml).  E: Macrophages 
incubated with Martian dust simulant (250 μg/ml) for 24 h. F: Macrophages incubated with 
Martian dust simulant (250 μg/ml) for 24 h after a 15-minute preincubation with polyinosinic 
acid (100μg/ml).  Arrows indicate morphology consistent with macrophage apoptosis 
(photomicrographs 600×, dry objective). 
 
FIG. 5. Effect of the scavenger receptor antagonist, polyinosinic acid, on dust-induced 
cytotoxicity in human alveolar macrophages.  Polyinosinic acid (100 μg/ml) treated or untreated 
HAM cells were exposed in vitro to lunar or Martian dust simulants (250 μg/ml) for 24 h.  Cell 
viability and apoptosis were determined.  In (A), bars represent the mean ± SEM percent viable 
cells; in (B), bars represent the mean ± SEM apoptotic index (optical density at 405 nm).  * 
indicates significance at p < 0.05 compared with the appropriate control by Student-Newman-
Keuls procedure (N = 3). 
 
FIG. 6. A: Effects of lunar dust simulant on human alveolar macrophage phenotype distributions. 
Each bar represents the mean ± SEM percent activator macrophages (RFD1+) and suppressor 
macrophages (RFD1+7+) after 24 h of culture with lunar dust simulant (0, 100, and 250 μg/ml). * 
indicates significance at p < 0.05 compared with the appropriate control (0 μg/ml) by the 
Student-Newman-Keuls procedure (N = 3). B: Effects of Martian dust simulant on human 
alveolar macrophage phenotype distributions. Each bar represents the mean ± SEM percent 
activator macrophages (RFD1+) and suppressor macrophages (RFD1+7+) after a 24-h culture 
with Martian dust simulant (0, 250, and 500 μg/ml). * indicates significance at p < 0.05 
compared with the appropriate control (0 μg/ml) by the Student-Newman-Keuls procedure (N = 
3). 
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